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Abstract: In this paper, we provide a compositional method for the construction of symbolic
models (a.k.a. finite abstractions) for infinite networks of discrete-time control systems. The
concrete infinite network and its symbolic model are related by a so-called alternating simulation
function which allows one to quantify the mismatch between the output behavior of the infinite
interconnection of concrete subsystems and that of their symbolic models. We show that such
an alternating simulation function can be obtained compositionally by assuming some small-
gain type conditions and composing so-called local alternating simulation functions constructed
for subsystems. Assuming certain stability property of concrete subsystems, we also provide a
technique to synthesize their symbolic models together with their corresponding local alternating
simulation functions. Finally, we apply our results to a traffic network divided into infinitely
many cells.
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1. INTRODUCTION

Large-scale networks appear in a wide variety of modern
applications, including integrated circuits, traffic networks
and transportation systems. In many applications, a sys-
tem is considered as a finite but very large network with
possibly unknown number of subsystems. Hence, it is rea-
sonable to over-approximate such a system by an infinite
network which is seen as an interconnection of infinitely
many finite-dimensional subsystems. In that way, one ulti-
mately aims at proposing methods which are independent
of system size (i.e. scale-free) and specifically suitable for
the original large-but-finite network.

The costs of incorrect configuration as well as safety and
security concerns require automated and provably correct
techniques for the verification and synthesis of complex
systems. Moreover, emergent applications necessitate so-
phisticated control objectives, which go well beyond stan-
dard goals pursued in classic control theory. A promising
direction to address these issues is to use automated con-
troller synthesis based on symbolic models (a.k.a. finite
abstractions). However, an efficient approach to the large-
scale and possibly infinite networks is still missing. As the
computational complexity of constructing symbolic mod-
els often scales exponentially with the dimension of the
state space, a brute force approach to large-scale systems
is not feasible.
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The dimensionality problem can be addressed by de-
composing the overall system into a number of lower-
dimensional subsystems for which individual abstractions
can be efficiently computed. This methodology called com-
positional approach has received considerable attention;
(see, e.g., Meyer et al. (2017); Pola et al. (2018); Swikir
et al. (2018); Swikir and Zamani (2019c,b) and references
therein). However, all compositional techniques for the
construction of symbolic models introduced so far in the
literature are tailored to networks composed of finitely
many subsystems and can not be directly applied to net-
works consisting of an infinite number of components.

Related Work. Construction of symbolic models for
infinite dimensional systems is already proposed in Pola
et al. (2010); Girard (2014); Pola et al. (2015); Jagtap
and Zamani (2020). In Pola et al. (2010), symbolic mod-
els are constructed for nonlinear continuous time-delay
systems with known and constant delays. This work was
extended in Pola et al. (2015) to the same class of systems
with unknown and time-varying delays. The results in
Girard (2014) provide a generic state-space discretization-
free approach for computing symbolic models of finite or
infinite dimensional incrementally stable systems. A state-
space discretization-free approach was also introduced in
Jagtap and Zamani (2020) for designing symbolic models
for infinite dimensional stochastic systems, particularly,
retarded jump-diffusion systems. While the results in Pola
et al. (2010, 2015); Jagtap and Zamani (2020) deal with
time-delay systems evolving over finite-dimensional state
spaces, here we deal with an interconnection of infinitely
many finite-dimensional subsystems evolving over infinite-
dimensional state spaces. The result in Girard (2014) deals
with a single incrementally stable infinite-dimensional sys-
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tem with finite-dimensional input space and the finite
abstraction is based on input sequences which is not the
case in this paper. In this work both state and input
spaces of the interconnected system is infinite-dimensional
and the construction of symbolic models is based on the
discretization of both state and input spaces. Moreover, all
the proposed results in Pola et al. (2010); Girard (2014);
Pola et al. (2015); Jagtap and Zamani (2020) take a
monolithic view of the systems while constructing finite
abstractions. However, our main result provides a compo-
sitional approach on the construction of symbolic models
of interconnected systems using those of subsystems.

This work proposes a compositional methodology for con-
structing symbolic models for a network composed of
countably infinite number of finite-dimensional systems.
To the best of our knowledge, this paper is the first
attempt to provide a framework for synthesizing symbolic
models for infinite networks. We first recall a notion of so-
called alternating simulation function introduced in Swikir
and Zamani (2019b) to relate two infinite networks. Alter-
nating simulation functions provide upper bounds for the
mismatch between the output behaviors of two infinite
networks. Then, based on the recently developed small-
gain theorem Dashkovskiy et al. (2019), we show that
this alternating simulation function can be constructed
by composing so-called local alternating simulation func-
tions relating each finite-dimensional subsystems and their
symbolic models. Moreover, we provide a technique to syn-
thesize symbolic models together with their corresponding
local alternating simulation functions for concrete finite-
dimensional subsystems under some assumptions ensuring
their incremental input-to-state stability.

We verify the effectiveness of our proposed technique by
applying it to a model of a road traffic network containing
infinitely many cells (subsystems). We construct symbolic
models for the original subsystems and compositionally
construct an alternating simulation function from the
interconnection of infinitely many symbolic models to
the interconnection of the concrete subsystems. We also
design controllers compositionally maintaining the density
of traffic between 10 and 25 vehicles per cell.

2. NOTATION AND PRELIMINARIES

2.1 Notation

We denote by R, N0, and N the sets of real numbers, non-
negative integers, and positive integers, respectively. We
denote the closed, open, and half-open intervals in R by
[a, b], (a, b), [a, b), and (a, b], respectively. For a, b ∈ N0 and
a ≤ b, we use [a; b], (a; b), [a; b), and (a; b] to denote the
corresponding intervals in N0. Given any a ∈ R, |a| denotes
the absolute value of a. Given any ν = (ν1, · · · , νn) ∈ Rn,
the infinity norm of ν is defined by |ν| = max1≤i≤n |νi|.
Elements of Rn are by default regarded as column vectors
and we write ν> for the transpose of a vector ν ∈ Rn. Given
a symmetric matrix A, λmax(A), and λmin(A) denote the
maximum and minimum eigenvalues of A, respectively. By
`∞ we denote the Banach space of all infinite uniformly
bounded sequences s := (si) ∈ `∞, i ∈ N, where si denotes
the ith position of a sequence s ∈ `∞. Moreover, `∞+
denotes the positive cone in `∞ consisting of all vectors
s ∈ `∞ with si ≥ 0, i ∈ N. For all s, s′ ∈ `∞ we say that
s ≤ s′ if si ≤ s′i for all i ∈ N, and that s 6≥ s if there
is i ∈ N such that si < s′i. The standard unit vectors in
`∞ are denoted by ei, i ∈ N; i.e., ei is the sequence of
zeros with exception of position i, where the entry is 1.
Given an operator Γ : `∞+ → `∞+ , k ≥ 1 ∈ N, we define

Γk(·) := Γk−1 ◦ Γ(·), where Γ0 is the identity operator on
`∞. We denote by C(A) the cardinality of a set A and by
∅ the empty set. For any set S ⊆ Rn which is a finite

union of boxes, e.g., S =
⋃M
j=1 Sj for some finite number

M ∈ N, where Sj =
∏n
i=1[cji , d

j
i ] ⊆ Rn with cji < dji ,

and a positive constant η ≤ span(S), where span(S) =

minj=1,...,M ηSj and ηSj = min{|dj1 − c
j
1|, . . . , |djn − cjn|},

we define [S]η = {a ∈S | ai=kiη, ki ∈ N, i=1, . . . , n}. The
set [S]η will be used as a finite approximation of S with
precision η. Note that [S]η 6= ∅ for any η ≤ span(S). We
use the notations K and K∞ to denote different classes
of comparison functions, as follows: K = {α : R≥0 →
R≥0| α is continuous, strictly increasing, and α(0) = 0};
K∞ = {α ∈ K| lim

r→∞
α(r) = ∞}. For α, γ ∈K∞ we write

α ≤ γ if α(r) ≤ γ(r), and, with abuse of the notation,
α= c if α(r) = cr for all r≥ 0 and a given c > 0. Finally,
we denote by id the identity function over R≥0, that is
id(r) = r, ∀r ∈ R≥0.

2.2 Infinite Networks

First, we define discrete-time control subsystems which
will be later interconnected to form an infinite network
consisting of countably infinite number of discrete-time
control subsystems.
Definition 2.1. A discrete-time control subsystem Σi, i ∈
N, is a tuple

Σi = (Xi,W i, U i, f i, Y i, hi), (1)

where Xi ⊆ Rni , W i ⊆ Rpi , U i ⊆ Rmi , Y i ⊆ Rqi , are
the state set, internal input set, external input set and
output set, respectively. The set valued map f i : Xi×W i×
U i ⇒ Xi is called transition function and hi : Xi → Y i is
the output map. The discrete-time control subsystem Σi
is described by a difference inclusion of the form

Σi :

{
xi(k + 1) ∈ f i(xi(k), ωi(k), νi(k)),

yi(k) = hi(xi(k)), (2)

where xi : N0 → Xi, yi : N0 → Yi, ωi : N0 → Wi, and
νi : N0 → Ui are the state signal, output signal, internal
input signal, and external input signal, respectively.

For each i ∈ N let Ni andMi be finite subsets of N. Here,
the index sets Ni and Mi enumerate the neighbors of Σi,
i.e., those systems Σj , j ∈ Ni, Σj′ , j

′ ∈ Mi that affect or
are affected by Σi, respectively. By definition we require
that i /∈ Ni ∪ Mi, ∀i ∈ N. Since Ni and Mi are finite
subsets of N, each Σi can have only a finite number of
neighbors.

Formally, the input-output structure of each subsystem Σi,
i ∈ N, is given by

wi = (wij)j∈Ni
∈Wi :=

∏
j∈Ni

Wij , (3)

yi = (yij)j∈(i∪Mi) ∈ Yi :=
∏

j∈(i∪Mi)

Yij , (4)

hi(xi) = (hij(xi))j∈(i∪Mi), (5)

with wij ∈ Wij , yij = hij(xi) ∈ Yij . The outputs yii are
considered as external ones, whereas yij , j ∈ Mi, are
interpreted as internal ones which are used to construct
interconnections between subsystems. The dimension of
wij is assumed to be equal to that of yji for all i ∈ N and
for all j ∈ Ni.
If for all xi ∈ Xi, ui ∈ Ui, wi ∈ Wi, C(fi(xi, ui, wi)) ≤
1 we will say the system S is deterministic, and non-
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deterministic otherwise. System Σi is called finite if
Xi, Ui,Wi are finite sets and infinite otherwise. Further-
more, if for all xi ∈ Xi there exist ui ∈ Ui and wi ∈ Wi
such that C(fi(xi, ui, wi)) 6= 0 we say the system is non-
blocking. In this paper, we assume that all subsystems are
non-blocking.

Now, we provide a formal definition of the infinite network.

Definition 2.2. Consider discrete-time control subsystems

Σi = (Xi,Wi, Ui, fi, Yi, hi), i ∈ N,
with input-output structure given by (3)-(5). The infinite
network is then formally a tuple Σ = (X,U, f, Y, h), where

X = {x = (xi)i∈N : xi ∈ Xi, ‖x‖ := sup
i∈N
{|xi|} <∞},

U = {u = (ui)i∈N : ui ∈ Ui, ‖u‖ := sup
i∈N
{|ui|} <∞},

f(x, u) = {(x+i )i∈N|x+i ∈ fi(xi, wi, ui)},
Y =

∏
i∈N

Yii, h(x) = (hii(xi))i∈N.

The infinite network is denoted by Σ = I(Σi)i∈N, and
described by

Σ :

{
x(k + 1) ∈ f(x(k), ν(k)),

y(k) = h(x(k)).

Moreover, the interconnection variables are constrained by

∀i ∈ N,∀j ∈ Ni, wij = yji, Yji ⊆Wij . (6)

We also assume that f(x, u)∈X for all pair (x, u)∈X×U
to ensure the infinite network Σ = (X,U, f, Y, h) is well-
defined.

2.3 Alternating Simulation Functions

In the following, we introduce a notion of so-called al-
ternating simulation functions, adapted from Swikir and
Zamani (2019b), which quantitatively relates two infinite
networks.

Definition 2.3. Consider infinite networks Σ=(X,U, f, Y, h)

and Σ̂= (X̂, Û, f̂ , Ŷ, ĥ), where Ŷ ⊆ Y . A function V : X ×
X̂ → R≥0 is called an alternating simulation function from

Σ̂ to Σ if there exist α, σ∈K∞, where σ≤ id, ρu∈K∞∪{0},
and some ε∈R≥0 so that the following hold:

• For every x ∈ X, x̂ ∈ X̂, one has

α(‖h(x)− ĥ(x̂)‖) ≤ V (x, x̂). (7)

• For every x ∈ X, x̂ ∈ X̂, û ∈ Û there exists u ∈ U
such that for every x+ ∈ f(x, u) there exists x̂+ ∈
f̂(x̂, û) so that

V (x+, x̂+) ≤ max{σ(V (x, x̂)), ρu(‖û‖), ε}. (8)

The next result shows that the existence of an alternating
simulation function for two infinite networks implies the
existence of an approximate alternating simulation rela-
tion between them as defined in Pola and Tabuada (2009).

Proposition 2.4. Consider two infinite networks Σ =

(X,U, f, Y, h) and Σ̂ = (X̂, Û , f̂ , Ŷ , ĥ), where Ŷ ⊆ Y .

Assume V is an alternating simulation function from Σ̂ to
Σ as in Definition 2.3 and that there exists v ∈ R>0 such

that ‖û‖ ≤ v ∀û ∈ Û . Then, relation R ⊆ X × X̂ defined

by R =
{

(x, x̂) ∈ X × X̂|V (x, x̂) ≤ max {ρu(v), ε}
}
, is an

ε̂-approximate alternating simulation relation from Σ̂ to Σ
with

ε̂ = α−1(max{ρu(v), ε}). (9)

The ε̂-approximate alternating simulation relation guaran-
tees that for each output behavior of Σ there exists one of
Σ̂ such that the distance between these output behaviors
is uniformly bounded by ε̂.

Remark 2.5. Since the input set in all practical appli-
cations is bounded, requiring the control inputs to be
bounded is not restrictive at all. Moreover, under certain
stability property of concrete subsystems (see Section 4),
one can choose the function ρu in (9) to be identically zero
which cancels the dependency to the size of control inputs
in Proposition 2.4. �

3. COMPOSITIONALITY RESULT

In this section, we provide a method for compositional
construction of an alternating simulation function be-
tween two infinite networks Σ = I(Σi)i∈N and Σ̂ =

I(Σ̂i)i∈N defined in Definition 2.2. Here, we assume that

each subsystems Σi = (Xi,Wi, Ui, fi, Yi, hi) and Σ̂i =

(X̂i, Ŵi, Ûi, f̂i, Ŷi, ĥi) admits a local alternating simulation
function as defined next.

Definition 3.1. Consider Σi = (Xi,Wi, Ui, fi, Yi, hi) and

Σ̂i = (X̂i, Ŵi, Ûi, f̂i, Ŷi, ĥi), for all i ∈ N, where Ŵi ⊆ Wi

and Ŷi ⊆ Yi. A function Vi : Xi × X̂i → R≥0 is called a

local alternating simulation function from Σ̂i to Σi if there
exist αi, αi, σi, ρwi ∈ K∞, where σi < id, ρui ∈ K∞ ∪ {0},
and some εi ∈ R≥0 so that the following hold:

• For every xi ∈ Xi, x̂i ∈ X̂i, one has

αi(|hi(xi)− ĥi(x̂i)|)≤Vi(xi, x̂i)≤αi(|xi − x̂i|). (10)

• For every xi ∈ Xi, x̂i ∈ X̂i, ûi ∈ Ûi there exists
ui ∈ Ui such that for every wi ∈ Wi, ŵi ∈ Ŵi, x

+
i ∈

fi(xi, wi, ui) there exists x̂+i ∈ f̂i(x̂i, ŵi, ûi) so that

Vi(x
+
i , x̂

+
i ) (11)

≤ max{σi(Vi(xi, x̂i)), ρwi(|wi − ŵi|), ρui(|ûi|), εi}.

Σ̂i is called an abstraction of Σi if there exists a local al-
ternating simulation function from Σ̂i to Σi. Additionally,
if Σ̂i is finite (X̂i, Ûi and Ŵi are finite sets), Σ̂i is called
a symbolic model of Σi. Note that local alternating simu-
lation functions of subsystems are mainly for constructing
alternating simulation functions for the overall infinite
networks and they are not directly used for deducing any
approximate alternating simulation relation.

Note that the different quantifiers appeared before condi-
tion (8) in Definition 2.3 (condition (11) in Definition 3.1)
capture the different role played by control inputs as well
as nondeterminism in the system. We refer the interested
readers to (Pola and Tabuada, 2009, Section 3.2) justifying
in details the role of those quantifiers.

For functions σi, αi, and ρwi associated with Vi, ∀ i ∈ N,
given in Definition 3.1, we define ∀i, j ∈ N

γij :=

{
σi if i = j,
ρwi ◦ α−1j if j ∈ Ni,
0 if i 6= j, j 6∈ Ni.

(12)

Correspondingly, we define an operator Γ : `∞+ → `∞+ by
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Γ(s) =
(

sup
j∈N
{γij(sj)}

)
i∈N, s ∈ `∞+ . (13)

Additionally, we assume that there exist σ̃, ρ̃w, α̃ ∈ K∞
such that σi ≤ σ̃, ρwi ≤ ρ̃w, αi ≥ α̃ for all i ∈ N. This
assumption guarantees that Γ is well-defined.

In order to establish the main compositionality results
of the paper, we make the following small-gain type
assumption, inspired by Dashkovskiy et al. (2019).

Assumption 3.2. Consider operator Γ defined in (13). As-
sume that supj∈N{γij(sj)} > 0,∀sj > 0,∀i, j ∈ N, Γ is

continuous on `∞+ , lim
k→∞

Γk(s) = 0,∀s ∈ `∞+ , and there

exist positive constants c1 and c2 such that for all i, j ∈ N
the operator Γi,j(s) := Γ(s) + c1sjei, s ∈ `∞+ satisfies

Γi,j(s) 6≥ (1− c2)s, s ∈ `∞+ \{0}. (14)

Remark 3.3. If for any b ≥ 0 the set of all functions
{γij , i, j ∈ N} is uniformly equicontinuous in [0, b], the
operator Γ defined in (13) is continuous. That is, for
any β1 > 0 there exists β2 > 0 such that for any
r1, r2 ∈ [0, b] with |r1 − r2| < β2 it follows that |γij(r1) −
γij(r2)| < β1,∀i, j ∈ N. We refer the interested readers to
Dashkovskiy et al. (2019) for more details on regularity
properties of the operator Γ. �

Note that by using Lemma 4.5 in Dashkovskiy et al.
(2019), the small-gain condition (14) implies that there
exist a function δ := (δi)i∈N : R≥0 → `∞+ with δi ∈ K∞, i ∈
N, and ε ∈ (0, 1) such that

Γ(δ(r)) ≤ (1− ε)δ(r), r ∈ R≥0. (15)

It follows from (15) that ∀i ∈ N and ∀r ∈ R≥0
sup
j∈N
{γij ◦ δj(r)} ≤ (1− ε)δi(r) ≤ δi(r).

Applying δ−1i to both sides, one has

δ−1i (sup
j∈N
{γij ◦ δj(r)}) = sup

j∈N
{δ−1i ◦ γij ◦ δj(r)} ≤ r. (16)

Since (16) holds for all i ∈ N, one has

sup
i,j∈N
{δ−1i ◦ γij ◦ δj} ≤ id. (17)

Now we have all the ingredients to formulate the main
result of this paper. The next theorem provides a compo-
sitional approach to construct an alternating simulation
function from Σ̂ = I(Σ̂i)i∈N to Σ = I(Σi)i∈N via local

alternating simulation functions from Σ̂i to Σi.
Theorem 3.4. Consider the network Σ = I(Σi)i∈N. As-

sume that each Σi and its abstraction Σ̂i admit a local
alternating simulation function Vi as in Definition 3.1.
Suppose Assumption 3.2 holds and there exist K∞ func-
tions δ, δ, α̂, ρu, and constant ε ∈ R≥0 such that δ ≤ δi ≤ δ,
αi ≤ α̂, ρui ≤ ρu, εi ≤ ε, ∀i ∈ N. Then, function

V : X × X̂ → R≥0 defined as

V (x, x̂) := sup
i∈N
{δ−1i (Vi(xi, x̂i))} (18)

is well-defined and it is also an alternating simulation
function from Σ̂ = I(Σ̂i)i∈N to Σ = I(Σi)i∈N.

The proof follows by utilizing equation (17) and following
similar argument to the one in Swikir and Zamani (2019a),
and it is omitted due to lack of space.
Remark 3.5. If γij ≤ id for any i, j ∈ N, inequality (17)
holds with δi = id for all i ∈ N, and inequality (18) reduces
to V (x, x̂) := supi∈N{Vi(xi, x̂i)}, and, consequently, the
small-gain condition (14) is satisfied automatically. �

Remark 3.6. Note that computing the symbolic model of
the infinite network using those of its subsystems is not
possible practically since it consumes infinite memory to
store. However, our proposed compositional framework is
still required even if controller synthesis problems can be
solved compositionally using symbolic models of subsys-
tems. In particular, if decentralized (or distributed) con-
trollers exist for some types of specifications, one still needs
to establish the compositional relation as in Theorem 3.4
to formally reason about the preservation and satisfaction
of properties across related infinite networks. �
Remark 3.7. In the context of stability analysis of infinite
networks, condition (14) is used to show different stability
proprieties (e.g., uniform global asymptotic stability or
input-to-state stability) for the entire network by inves-
tigating stability criteria for subsystems. Moreover, con-
dition (14) is also been shown to be tight and cannot be
weakened in the context of stability verification of infinite
networks. We refer interested readers to Dashkovskiy et al.
(2019) for more details on the tightness analysis of small-
gain condition (14). �

4. CONSTRUCTION OF SYMBOLIC MODELS

In this section, we show how to construct a symbolic
model Σ̂i for a given finite-dimensional deterministic sub-
system Σi together with the corresponding local alternat-
ing simulation function from Σ̂i to Σi. Consider Σi =
(Xi,Wi, Ui, fi, Yi, hi) as in Definition 2.1. Assume that
there exists `∈K∞ such that ‖h(x)−h(x′)‖ ≤`(‖x−x′‖) for
all x, x′ ∈ X. Additionally, let Σi be incrementally input-
to-state stable (δ-ISS) Angeli (2002) as defined next.
Definition 4.1. System Σi is δ-ISS if there exist functions
Vi : Xi×Xi → R≥0, ψ

i
, ψi, κi, ρwi, ρui ∈ K∞, with κi < id

such that for all xi, x
′
i ∈ Xi, for all wi, w

′
i ∈ Wi, and for

all ui, u
′
i ∈ Ui
ψ
i
(|xi − x′i|) ≤ Vi(xi, x′i) ≤ ψi(|xi − x′i|), (19)

Vi(fi(xi, wi, ui), fi(x′i, w′i, u′i)) (20)

≤ κi(Vi(xi, x̂i)) + %wi(|wi − w′i|) + %ui(|ui − u′i|).

We say that Vi is δ-ISS Lyapunov function for system Σi
if it satisfies (19) and (20). We refer the interested readers
to Angeli (2002) for more details on incremental input-to-
state stability.

Now, we construct a symbolic model Σ̂i of a δ-ISS control
system Σi as the following.
Definition 4.2. Let Σi = (Xi, Ui,Wi, fi, Yi, hi) be δ-ISS
as in Definition 4.1, where Xi, Ui,Wi are assumed to be
finite unions of boxes. One can construct a symbolic model

Σ̂i = (X̂i, Ûi, Ŵi, f̂i, Ŷi, ĥi) where:

• X̂i = [X]ηx
i
, where 0 < ηxi ≤ span(Xi) is the state set

quantization parameter;
• Ûi = [Ui]ηu

i
, where 0 < ηui ≤ span(Ui) is the external

input set quantization parameter;

• x̂+i ∈ f̂i(x̂i, ŵi, ûi) if and only if |x̂+i −fi(x̂i, ŵi, ûi)|≤ηxi ;

• Ŷi = {h(x̂) | x̂ ∈ X̂};
• ĥi = hi;
• Ŵi is an appropriate finite internal input set satisfy-

ing Ŵi=
∏
j∈Ni

Ŵij and Ŷji ⊆ Ŵij ∀i ∈ N,∀j ∈ Ni.

We impose the following assumptions on function Vi in
Definition 4.1 which are used to prove the results later.
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Assumption 4.3. There exists a K∞ function γi such that

∀xi, yi, zi ∈ Xi, Vi(x, y) ≤ Vi(xi, zi) + γi(|yi − zi|). (21)

Note that condition (21) is not restrictive provided that
one is interested to work on a compact subset of X ×X;
see Zamani et al. (2014) for more details.

Now, we establish the relation between Σi and Σ̂i, intro-
duced above, via the notion of local alternating simulation
function as in Definition 3.1. The next theorem is adapted
from Swikir and Zamani (2019b) and stated without a
proof.

Theorem 4.4. Let Σi be an incrementally δ-ISS control
system as in Definition 4.1 with δ-ISS Lyapunov func-
tion Vi, and Σ̂i be a symbolic model constructed as in
Definition 4.2. Let Assumption 4.3 holds. Then Vi is an
alternating simulation function from Σ̂i to Σi.

In particular, Vi satisfies (10) and (11) with αi = (`i ◦
ψ−1
i

)−1, αi = ψi, σi = id− (id− ϕi)(id− κi), ρwi = (id +

λi) ◦ κ−1 ◦ ϕ−1i ◦ χi ◦ %wi, ρui = 0, εi = (id + λ−1i ) ◦ κ−1 ◦
ϕ−1i ◦ χi ◦ (χi − id)−1 ◦ γi(ηxi ), where λi, χi, ϕi are some
arbitrarily chosen K∞ functions with ϕi < id, χi > id.

Remark 4.5. For linear control systems
(
i.e., xi(k + 1) =

Aixi(k) + Diwi(k) + Biui(k), yi(k) = Cixi(k)
)
, one can

restrict the attention to δ-ISS Lyapunov functions of the
form

Vi(xi, x′i) =
√

(xi − x′i)>Zi(xi − x′i), Zi � 0. (22)

It can be readily seen that such functions always satisfy
Assumption 4.3 and (19), and inequality (20) is satisfied
using the following linear matrix inequality

A>
i ZiAi � κiZi, (23)

in which Zi can be computed by semi-definite program-
ming, where 0 < κi < 1. Consequently, it can be readily
verified that εi in (11) is defined as εi = ciλmax(Zi), for
some ci > 0 depending on the dimensions of Zi. �

Note that condition (23) is nothing more than asking
matrix A being Hurwitz.

Remark 4.6. One can also verify that function Vi satis-
fying (21) (respectively (22) in Remark 4.5) is also an

alternating simulation function from Σi to Σ̂i. In particu-
lar, Vi satisfies (10) and (11) with the same K∞ functions
αi, αi, σi, ρwi, ρui defined in Theorem 4.4, and εi = (id +
λ−1i ) ◦ κ−1 ◦ ϕ−1i ◦ χi ◦ (χi − id)−1 ◦ (%ui(η

u
i ) + γi(η

x
i )). �

Given Remark 4.6, it can be readily verified that function
V defined in (18) is also an alternating simulation function

from Σ = I(Σi)i∈N to Σ̂ = I(Σ̂i)i∈N, and, hence, Σ̂ =

I(Σ̂i)i∈N is a complete symbolic model Tabuada (2009)
for Σ = I(Σi)i∈N. In other words, there exists a controller
enforcing the desired specifications on the symbolic model
Σ̂ = I(Σ̂i)i∈N if and only if there exists a controller
enforcing the same specifications on the original infinite
network Σ = I(Σi)i∈N.

5. CASE STUDY: A ROAD TRAFFIC MODEL

In this case study, we apply our approach to a variant
of the road traffic model from de Wit et al. (2012). We
consider a traffic network divided into infinitely many cells,
indexed by i ∈ N. Each cell i represents a one-dimensional
subsystem Σi = (Xi,W i, U i, f i, Xi, hi) described by a
difference equation of the following form

Fig. 1. Model of a road traffic network composed of infinitely many
subsystems.

Σi :

{
xi(k + 1)=(1− τv

l
−e)xi(k)+diωi(k)+bνi(k),

yi(k) = hi(xi(k)) = xi(k),
(24)

with the following structure

− di = ( 1−e
2 )( τvl ,

τv
l )>, ωi = (yi+1,yi+2) if i ∈ S1 :=

{1 + 2c : c ∈ N0};
− di = (1− e) τvl , ωi = yi+1 if i ∈ S2 := {2};
− di = ( 1−e

2 )( τvl ,
τv
l )>, ωi = (yi−2,yi−1) if i ∈ S3 :=

{4 + 2c : c ∈ N0}.
In (24), τ is the sampling time interval in hours, l is the
length of a cell in kilometers (km), and v is the flow speed
of the vehicles in kilometers per hour (km/h). The state of
each subsystem Σi, i.e. xi, is the density of traffic, given
in vehicles per cell, for each cell i of the network. The
scalar b represents the number of vehicles that can enter
the cells through entries which are controlled by νi(·). In
particular, νi(·) = 1 means green light and νi(·) = 0 means
red light. Moreover, the constant e ∈ (0, 1) represents the
percentage of vehicles that leave the cells using available
exits. The infinite network and its cells are illustrated by
Figure 1.

Let us first show that Σ = I(Σi)i∈N is well-defined by
showing that ‖f(x, u)‖ <∞, where f(x, u) is constructed
as in Definition 2.2. Define C1 = |1 − τv

l −e|, C2 = |(1 −
e) τvl |, C3 = |b|, C = max1≤i≤3{Ci}, then one has

‖f(x, u)‖ = sup
i∈N
{|fi(xi, wi, ui)|}

= sup
i∈N
{|(1− τv

l
−e)xi+diwi+bui|}

≤ C1 sup
i∈N
{|xi|}+ C2 sup

i∈N
{|xi|}+ C3 sup

i∈N
{|ui|}

≤ C(sup
i∈N
{|xi|}+ sup

i∈N
{|xi|}+ sup

i∈N
{|ui|})

= C(‖x‖+ ‖x‖+ ‖u‖}) <∞
Hence, Σ = I(Σi)i∈N is well-defined.

Fix τ = 10
60×60 , v = 60, l = 0.5, and e = 0.1, then for any

i ∈ N, system Σi is δ-ISS, where conditions (19) and (20)
are satisfied with Vi(xi, x̂i) = |xi − x̂i|, ψi = ψi = id,

κi = (1 − ( τvl + e))id, %wi = |(1 − e) τvl |id, and %ui = 0
with ui = ûi. Furthermore, (21) is satisfied with γi = id.
Consequently, Vi(xi, x̂i) = |xi − x̂i| is an alternating

simulation function from Σ̂i = (X̂i, Ŵi, Ûi, f̂i, X̂i, hi),
constructed as in Definition 4.2, to Σi satisfying condition
(10) with αi = αi = id and condition (11) with σi = 0.97id,
ρwi = 0.87id, ρui = 0, εi = 17ηxi , where ηxi is the state set
quantization parameter. Note that for the construction
of symbolic models Σ̂i, we have chosen the finite set
Ŵi = X̂i+1 × X̂i+2 for all i ∈ S1, Ŵi = X̂i+1 for all

i ∈ S2, and Ŵi = X̂i−2 × X̂i−1 for all i ∈ S3. Moreover,
it can be readily verified that γij < id. Therefore, by
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remark 3.5, V (x, x̂) := supi∈N{|xi− x̂i|} is the alternating

simulation function from Σ̂ = I(Σ̂i)i∈N to Σ = I(Σi)i∈N
satisfying conditions (7) and (8) with α = id, σ = 0.97id,
ρu = 0, ε = 17 supi∈N{ηxi }. In order to guarantee that ε is
well-defined, one should choose ηxi such that there exists
ηx ∈ R>0 so that ηxi ≤ ηx,∀i ∈ N.

Now we show how to use the constructed symbolic models
Σ̂i to design a controller for Σ such that the density of
traffic is maintained between 10 and 25 vehicles per cell
(subsystems Σi). Based on assume-guarantee reasoning
Henzinger et al. (1998), we compositionally synthesize
controllers for symbolic models, and then refine them
to the ones for concrete subsystems. In particular, we
design local controllers ûi for Σ̂i while assuming that
the other subsystems Σ̂j,j 6=i meet their specifications, and
then refine ûi to ui using ui = ûi. We leverage software
tool SCOTS Rungger and Zamani (2016) for constructing
symbolic models and controllers for Σi compositionally
with b = 5, state quantization parameter ηi = 0.1 and
the computation times are amounted to 0.016s and 9 ×
10−4s, respectively. Figure 2 shows trajectories of sample
subsystem Σi starting from different initial conditions
under input ui. Finally, one can compute the mismatch
between the output behavior of Σ = I(Σi)i∈N and its

symbolic model Σ̂ = I(Σ̂i)i∈N by utilizing Proposition 2.4.
In particulate, using (9) and since α = id, ρu = 0, we have
ε̂ = α−1(ε) = supi∈N{εi} = 1.7.
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Fig. 2. Trajectories of sample subsystem Σi starting from different
initial conditions with (a) i ∈ S1, (b) i ∈ S2, and (c) i ∈ S3.

6. CONCLUSION

In this work, we proposed a compositional scheme for
the construction of symbolic models of infinite networks
consisting of infinitely many finite-dimensional discrete-
time control systems. We used some small-gain type condi-
tions in order to construct compositionally an alternating
simulation function that is used to quantify the error
between the output behavior of the infinite interconnec-
tion of discrete-time control subsystem and that of their
symbolic models. Furthermore, under some assumptions

ensuring incremental input-to-state stability of each con-
crete subsystems, we showed how to construct their sym-
bolic models together with their corresponding alternating
simulation functions.
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