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Abstract: This manuscript proposes a robust switched controller design with minimization of
an upper bound of a quadratic performance index (guaranteed cost) related to the system
output for a class of uncertain nonlinear systems with actuator saturation described by
Takagi-Sugeno (TS) fuzzy models. The switched control eliminates the necessity of finding or
estimating the membership functions, which can be uncertain or complex to obtain. In most
practical implementations, systems and actuators have physical limitations. Therefore, in order
to approximate the theoretical switched controller design closer to its implementation, it will be
considered that the system has an operating region and control signal saturation. The proposed
switched controller design will be implemented in a bench active suspension system considering
actuator saturation with uncertain mass and actuator fault. A comparison will be shown between
robust single-gain and switched controller with the same design parameters.
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1. INTRODUCTION

A wide range of nonlinear systems can be described in an
operation region by TS fuzzy models, based on the non-
linearity sector and the knowledge of the physical limits
and uncertainties of the system (Alves et al., 2016; Souza
et al., 2014; Tanaka and Wang, 2004). The idea of TS fuzzy
models is to describe a nonlinear system through linear
subsystems combined by membership functions (Santim
et al., 2012; Tanaka and Wang, 2004). Fuzzy controllers
based on parallel-distributed compensation (PDC) need to
compute the membership functions to compose the control
signal. In some cases, these functions may depend on
uncertain parameters from the system, or even be complex
to obtain (Alves et al., 2016; Souza et al., 2014).

The class of switched controllers studied here does not
need the knowledge of the membership functions to com-
pose the control signal. Furthermore it is found in the
literature better performances using these switched con-
trollers than only one state-feedback gain (Alves et al.,
2016; Oliveira et al., 2018; Souza et al., 2014). In each
time, these switched control laws select a state-feedback
gain that minimizes the time derivative of a Lyapunov
function (Souza et al., 2014, 2013).

It is usual to consider an appropriated guaranteed cost
as a performance index and seek to minimize it (Caun

⋆ This study was financed in part by CAPES, CNPq and FAPESP.

et al., 2018; Deaecto et al., 2010). In this way, a guaranteed
cost related to the system output will require the system
output transient to be fast. In Deaecto et al. (2010), the
guaranteed cost of the output was related to the dissipated
energy in heating of DC-DC converters.

Therefore, based in the optimal quadratic regulator the-
ory (Boyd et al., 1994; Caun et al., 2018) and switched
controller design methodology, in this manuscript, it is
proposed a new switched controller design that provides a
good performance of the controlled systems minimizing the
energy of the system output. In the proposed procedure,
it is also considered that the switched control is subject to
actuator saturation. The proposed switched controller de-
sign will be compared to the single-gain feedback controller
with same design requirements. The controllers designed
will be applied for controlling a bench active suspension,
which is an uncertain nonlinear system and it is exactly
described by TS fuzzy models (Oliveira et al., 2018; Santim
et al., 2012).

Some notations will be used such as x = x(t), y = y(t),
u = u(t), z = z(t), β̄ = β−1, Knr

= {1, 2, . . . , nr},
nr ∈ N, the set of natural numbers. I represents identity
matrix with appropriate dimension. The function α=α(z)
is dependent on z vector, whose elements are premise
variables that depend on the state vector and uncertain
system parameters. The notation He(A) = A+AT is used
for matrices and scalar numbers.
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2. SWITCHED CONTROL OF NONLINEAR
SYSTEMS DESCRIBED BY TS FUZZY MODELS

SUBJECT TO ACTUATOR SATURATION

2.1 Preliminaries

The TS fuzzy models is described by IF-THEN rules
(Takagi and Sugeno, 1985). Such models relate locally the
input and output of a nonlinear system.

Rule i : If z1 is Mi
1 and · · · and znz

is Mi
nz
,

Then

{

ẋ = Aix+Biu,
y = Cx,

(1)

where i ∈ Knr
, nr is the number of the IF-THEN rules

from the TS fuzzy models, and j ∈ Knz
, nz is the

number of system state variables and uncertainties or
nonlinearities of the system. Mi

j is the fuzzy set j of the

rule i, Ai ∈ R
nx×nx , Bi ∈ R

nx×nu and C ∈ R
ny×nx are the

matrices from linear local models, z ∈ R
nz are the vector of

premise variables, x ∈ R
nx is the state vector and u ∈ R

nu

is the control input. Each local model is given by the linear
system ẋ = Aix+Biu, y = Cx.

The TS fuzzy models consists of the combination of local
linear models using the membership functions. In Tanaka
and Wang (2004), the fuzzy system is







ẋ =

∑nr

i=1 ωi(z)(Aix+Biu)
∑nr

i=1 ωi(z)
,

y = Cx,

(2)

where ωi(z) =
∏nz

j=1 M
i
j(zj),

∑nr

i=1 ωi(z) > 0 and ωi(z) ≥

0, for all i ∈ Knr
. Mi

j(zj) is the weight of the fuzzy set
associated with the premise variable zj . The normalized
weight represents a membership function αi(z), i ∈ Knr

,
and it is

αi(z) =
ωi(z)

∑nr

i=1 ωi(z)
, (3)

where
∑nr

i=1 αi(z) = 1 and αi(z) ≥ 0 for all i ∈ Knr
. From

(2) and (3), the nonlinear system described by TS fuzzy
model is

{

ẋ = A(α)x +B(α)u,

y = Cx.
(4)

where (A(α), B(α)) =
∑nr

i=1 αi(z)(Ai, Bi).

Important to note that the description by TS fuzzy model
is valid for an appropriate system operation region. There-
fore it must be ensured that the system state does not leave
the operation region. The design procedure assures the
TS fuzzy models (4) will remain in the operation region
X for all t ≥ 0 when the initial conditions x(0) are in
the region E(P, β) within the operation region X , that is,
E(P, β) ⊂ X , and the origin of closed-loop system is an
asymptotically stable equilibrium point (Klug et al., 2015).

Consider N =
[

NT
1 NT

2 . . . NT
nφ

]T
∈ R

nφ×nx , a real

constant β > 0 and φ =
[

φ1 φ2 . . . φnφ

]T
∈ R

nφ all

known and a symmetric definite positive matrix P =PT ∈
R

nx×nx . The operation region X (Klug et al., 2015) in the
state space and attraction region E(P, β) (Hu et al., 2002)
are defined as follows

X ,

{

x ∈ R
nx : |Nhx| ≤ φh, h ∈ Knφ

}

. (5)

E(P, β) ,

{

x ∈ R
nx : xTPx ≤ β

}

, (6)

Consider H =
[

HT
k1

HT
k2

. . . HT
knu

]T
∈ R

nu×nx and ρ =
[

ρ1 ρ2 . . . ρnu

]T
∈ R

nu a known vector, ρl > 0, l ∈ Knu
.

The set L(Hk) (Hu et al., 2002) is

L(Hk) ,

{

x ∈ R
nx : |Hkl

x| ≤ ρl, l ∈ Knu
, k ∈ Knr

}

. (7)

The matrix set D (Cao and Lin, 2003) is defined such that
each element is called Ds ∈ R

nu×nu , s ∈ K2nu and D−

s

denotes the element of D associated with Ds, such that
D−

s = I −Ds. There are 2nu elements in D set

D ,

{

Ds ∈ R
nu×nu : dii = 0 or 1 and dij = 0 ∀ i 6= j

}

,

(8)

Lemma 1. (Alves et al., 2016; Hu et al., 2002) Let the
set E(P, β) (6) and the set L(Hk) (7). The constraint
E(P, β) ⊂ L(Hk) is enforced if the conditions

[

ρ2l β
−1 Gkl

GT
kl

X

]

≥ 0, (9)

are feasible for all k ∈ Knr
and l ∈ Knu

. Gkl
= Hkl

X ,
where X = P−1.

Proof. The proof can be found in Alves et al. (2016).

2.2 Switched Control and Actuator Saturation

This section introduces a switched controller design sub-
ject to actuator saturation, based in (Alves et al., 2016),
applicable to a class of nonlinear systems described by
TS fuzzy models (4). The presented controller selects the
feedback gain, from a set of gains, that minimizes the time
derivative of quadratic Lyapunov function.

The switched control law returns the switching index
σ(t) to select a gain, which belongs to the set of gains
{Ki ∈ R

nu×nx , i ∈ Knr
}. The switched control law with

switching law is defined as follows

u = uσ = −Kσx,

σ(t) = arg∗min
j∈Kr

{

xTQjx
}

. (10)

where σ(t) ∈ Knr
is the lowest value of the j index that

results in the minimum value of xTQjx. Qj ∈ R
nx×nx , j ∈

Knr
, are auxiliary matrices.

Now, consider a nonlinear system subject to actuator
saturation whose dynamic equation is

{

ẋ = A(α)x +B(α)sat(u),
y = Cx,

(11)

where sat(u) ∈ R
nu is the amplitude-bounded control

input, such that

sat(u) =

[

sat(u)1
:

sat(u)nu

]

, sat(u)l =

{

−ρl, if ul < −ρl,
um, if |u|l ≤ ρl,
ρl, if ul > ρl,

(12)

where l ∈ Knu
, u = uσ for switched control and ρl is a

known positive constant.

For x ∈ L(Hj), j ∈ Knr
, then x ∈ L(Hσ). According to

Cao and Lin (2003), it follows that sat(uσ) = sat(−Kσx) ∈
{co}{Ds(−Kσx) + D−

s (Hσx)}, where {co} means convex
combination.
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2.3 Main Results

The main goal of this paper is, for system (11), to design
the switched control law (10) in order to minimize the
upper bound of output signal energy (guaranteed cost), as
shown below

J =

∫

∞

0

yTRy dt =

∫

∞

0

xTCTRCxdt. (13)

where R ∈ R
ny×ny is a definite positive matrix.

The performance index (13) considers the initial condition
x(0) belonging to the convex set

x(0) =

nx0
∑

k=1

λkxk(0),

nx
∑

k=1

λk = 1, (14)

λk ≥ 0, for all k ∈ Knx0
, nx0

is the number of the vertices
from the initial condition polytope. The minimization of
J (13) requires that the system output transient be fast.

Conditions for control of uncertain nonlinear system sub-
ject to actuator saturation controlled by switched control
law (10) with the origin of the system (11) asymptotically
stable respecting the minimization of performance index
J and decay rate γ are proposed in Theorem 1.

Theorem 1. Consider an uncertain nonlinear system sub-
ject to actuator saturation described by TS fuzzy model
(11) in an operation region X (5) and the performance
index J (13). Let ρ ∈ R

nu , φ ∈ R
nφ and N ∈ R

nφ×nx

known as well the range of the uncertain parameters.
Suppose the existence of symmetric matrices X > 0, Q̄i

and Z̄i ∈ R
nx×nx , matrices Gj and Mi ∈ R

nu×nx and
scalars β̄ > 0 and γ ≥ 0, such that the conditions

maximize
X,Mi,Gj ,Q̄i,Z̄i

β̄

subject to

He
(

Bi

[

−DsMj +D−

s Gj

]

)

− Z̄i − Q̄j ≤ 0, (15)
[

He
(

AiX
)

+ 2γX + Q̄i + Z̄i XCT

CX −R−1

]

< 0, (16)

[

ρ2l β̄ Gjl

GT
jl

X

]

≥ 0,

[

φ2
hβ̄ NhX

XNT
h X

]

≥ 0, (17)

[

β̄ β̄xT
k (0)

xk(0)β̄ X

]

≥ 0, (18)

are feasible for all i and j ∈ Knr
, l ∈ Knu

, h ∈ Knφ
,

k ∈ Kn0
, s ∈ K2nu , Ds ∈ D and D−

s = I − Ds ∈ D.
Then the switched control (10) which Ki = MiX

−1 and
Qi = X−1Q̄iX

−1 for all i ∈ Knr
applied in the system

(11) makes the origin an asymptotically stable equilibrium
point with decay rate greater than or equal to γ ensuring
the performance index J < β for all x0 belonging to convex
set (14).

Proof. Consider as Lyapunov function candidate Vσ(x) =
xTPx, such that P = PT ∈ R

nx×nx . From (10) and (11),
we have

V̇σ(x) = ẋTPx+ xTP ẋ

= He
(

xTPA(α)x + xTPB(α)sat(−Kσx)
)

. (19)

If x ∈ L(Hk), for all k ∈ Knr
, then x ∈ L(Hσ) and

sat(−Kσx) can be rewritten as follows (Cao and Lin, 2003)

sat(−Kσx) =

2nu
∑

s=1

λs

[

Ds(−Kσx) +D−

s (Hσx)
]

, (20)

where σ = σ(t) ∈ Knr
, Ds ∈ D, D−

s = Inu
−Ds ∈ D, and

λs ≥ 0,
∑2nu

s=1 λs = 1. Thus, from (19) and (20)

V̇σ(x) = xT {A(α)TP + PA(α)}x (21)

+
∑2nu

s=1 He
(

xTPB(α)λs[Ds(−Kσx) +D−

s (Hσx)]
)

.

Supposing that the conditions of Theorem 1 are satisfied.
Applying the Schur complement in (16) we have

XAT
i +AiX + 2γX + Q̄j + Z̄i +XCTRCX < 0. (22)

Pre and post multiplying (22) by P = X−1, doing the
variable changes GjX

−1 = Hj , MjX
−1 = Kj, Zi =

X−1Z̄iX
−1, Qi = X−1Q̄iX

−1, multiplying by αi and
summing from 1 to nr, it follows that

He
(

PA(α)
)

+ 2γP +Q(α) + Z(α) + CTRC < 0. (23)

Pre and post multiplying (15) by P = X−1, doing the
suitable variable changes, multiplying by αi, summing
from 1 to nr and considering j = σ, we have

He
(

PB(α)[−DsKσ +D−

s Hσ]
)

− Z(α)−Qσ ≤ 0. (24)

Multiplying (24) by λs, λs ≥ 0,
∑2nu

s=1 λs = 1, we have

2nu
∑

s=1

λsHe
(

PB(α)[−DsKσ +D−

s Hσ]
)

≤ Z(α) +Qσ. (25)

From switched control law (10) and knowing that the
minimum of a set of real numbers is less than or equal to
the convex combination of the set elements (Alves et al.,
2016)

xT Q̄σx = min
i∈Knr

{

xT Q̄ix
}

≤

nr
∑

i=1

αi(z)x
T Q̄ix = xT Q̄(α)x.

(26)

From (21), (25) and (26), one has

V̇σ(x) ≤ xT
{

A(α)TP + PA(α) + Z(α) +Q(α)
}

x. (27)

Considering (23) and (27), it follows that

V̇σ(x) + 2γxTPx < −xTCTRCx. (28)

From (28), V̇σ(x) + 2γxTPx < 0, there is a sufficient
condition for the asymptotic stability of the origin of the
system (10) and (11) with decay rate greater than or equal
to γ (Boyd et al., 1994). Furthermore, knowing that P > 0,

V̇σ(x) < −xTCTRCx. Integrating both sides from 0 to ∞
and considering (13), we have

J < Vσ(0) = xT (0)Px(0). (29)

Pre and post multiplying (18) by diag{β̄−1, I}, multiplying
by λk, summing from k = 1 to nx0

, knowing that β = β̄−1

and applying Schur complement, one has

β ≥ xT (0)Px(0) = Vσ(0) > J. (30)

Then, from (29) and (30), J < β for all x(0) (14).

From Lemma 1, the first constraint of (17) ensures
E(P, β) ⊂ L(Hk). Then, for all x(0) ∈ E(P, β), x(0) ∈
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L(Hk) and the description of saturation function as a con-
vex combination (20) can be used (Alves et al., 2016; Cao
and Lin, 2003). Following analogous steps from the proof
of the Lemma 1, the second constraint of (17) ensures
E(P, β) ⊂ X and the uncertain nonlinear system subject
to actuator saturation can be exactly described by (11)
(Alves et al., 2016). As (15) and (16) ensure that E(P, β) is
a positively invariant set (Blanchini, 1999) for the system
in closed loop (10) and (11), then these conditions are
sufficient for all trajectory started with x(0) ∈ E(P, β) to
remain in X for all t > 0 (Klug et al., 2015), because
V (x) ≤ β, for t ≥ 0 and the proof is concluded.

Usually, controllers may have high gains and these gains
can make practical implementations impossible because
of high control signal. In view of this problem, high
gain values will be avoided by inserting a constraint that
imposes E(P, ξ) ⊂ L(Kj). The Theorem 2 is used to
decrease high gains in the implementations

Theorem 2. (Hu et al., 2002) Let the set E(P, ξ) (6),
X = P−1 and ξ > 0. The constraint E(P, ξ) ⊂ L(Kj)
is imposed if the following conditions

[

ρ2l ξ
−1 Mjl

MT
jl

X

]

≥ 0, (31)

is feasible for all j ∈ Knr
and l ∈ Knu

. Note that L(Kj) is
defined as in L(Hk) (7).

Proof. The proof is similar to the proof from Lemma 1.

Conditions for control of uncertain nonlinear system sub-
ject to actuator saturation (11) controlled by single-gain
feedback sat(u) = sat(−Kx) are proposed in Theorem 3.
The origin of the system is locally asymptotically stable
respecting the performance index J and decay rate γ.

Theorem 3. Consider an uncertain nonlinear system sub-
ject to actuator saturation described by TS fuzzy model
(11) in an operation region X (5) and the performance in-
dex J (13). Let ρ ∈ R

nu , φ ∈ R
nφ and N ∈ R

nφ×nx known
as well the range of the uncertain parameters. Suppose the
existence of symmetric matrix X > 0 ∈ R

nx×nx , matrices
G and M ∈ R

nu×nx and scalars β̄ > 0 and γ ≥ 0, such
that the conditions

maximize
X,M,G

β̄

subject to
[

ν XCT

CX −R−1

]

< 0, (32)

[

ρ2l β̄ Gl

GT
l X

]

≥ 0,

[

φ2
hβ̄ NhX

XNT
h X

]

≥ 0, (33)

and (18), ν = He
(

AiX
)

+He
(

Bi

[

−DsM+D−

s G
]

)

+2γX ,

are feasible for all i ∈ Knr
, l ∈ Knu

, h ∈ Knφ
, k ∈ Kn0

,

s ∈ K2nu , Ds ∈ D and D−

s = Im − Ds ∈ D. Then the
single-gain control law u = −Kx, which K = MX−1,
applied in the system (11) makes the origin an stable
asymptotically equilibrium point with decay rate greater
than or equal to γ ensuring the performance index J < β
for all x0 belonging to convex set (14).

Proof. Similar to the proof from Theorem 1.

3. EXPERIMENTAL RESULTS

3.1 Active Suspension System with Actuator Fault

The purpose of the active suspension is to decrease os-
cillations to mitigate the passenger’s discomfort. Con-
sider the bench active suspension system manufactured
by Quanserr (Quanser, 2010), that was acquired with
resources from FAPESP project (2011/17610-0). The
schematic model, Fig. 1, and the real system, Fig. 2, used
in implementation are shown below.

bsks

Ms →
1

4
of vehicle mass

zr(t)

(Track)

kus bus

zs(t)

zus(t)

Active Suspension

Tire

Fc

Mus → mass of tire assembly

Fig. 1. Schematic of an active suspension system.

Fig. 2. Bench active suspension system.

The system consists of two masses, denoted by Ms and
Mus. The mass Ms represents 1/4 of total vehicle mass
and is supported by the spring ks and by the damper
bs. The mass Mus corresponds to the tire mass and is
supported by the spring kus and by the damper bus. The
vibrations caused by irregularities on the road zr(t) can be
attenuated by the active suspension system represented by
a motor connected between the masses Ms and Mus which
imposes the force Fc (Oliveira et al., 2018).

The spring stiffness has nonlinear behavior near the spring
ends. Hence, it is adopted a mathematical model presented
in Oliveira et al. (2018) for the nonlinearity stiffness

kus(zus − zr,∆kus) = kus0(1 + ∆kus|zus − zr|). (34)

Furthermore, it is considered an actuator fault resulting in
power loss. The power loss is represented by kfault(t). Sup-
posing a control signal fault from controller to actuator, it
fallows that

ufault = kfault(t)u, u = Fc(t). (35)
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Thus, the actuator fault can be considered as parametric
uncertainty. In the physical model of the active suspension
system there is a mass Ms that can assume values between
1.455 and 2.45 kg. Hence, the Ms mass may be uncertain
and belongs to interval 1.455 ≤ Ms ≤ 2.45 kg.

Therefore, based on the modeling presented by Quanser
(2010), considering (34) and (35), the dynamic model of
active suspension system is represented by

ẋ =











0 1 0 −1

−
ks

Ms

−
bs

Ms

0
bs

Ms

0 0 0 1
ks

Mus

bs

Mus

f43(z) −
(bs + bus)

Mus











x+











0
kfault

Ms

0

−
kfault

Ms











u, (36)

y = Cx =

[

1 0 0 0
0 0 1 0

]

x, f43(z) = −
kus0(1 + ∆kus|zus − zr |)

Mus

,

where x = [zs(t)− zus(t) żs(t) zus(t)− zr(t) żus(t)]
T
and

z = [xT ∆kus kfault Ms]
T .

The Table 1 shows the values of the system parameters
(Oliveira et al., 2018; Quanser, 2010).

Table 1. Active suspension parameters.

Parameters Symbol Value

Mass of 1/4 of the vehicle (kg) Ms 1.455− 2.45
Mass of the tire set (kg) Mus 1
Spring Stiffness constant (N/m) ks 900
Spring Stiffness constant (N/m) kus0 2500
Damping coefficient (Ns/m) bs 7.5
Damping coefficient (Ns/m) bus 5
Parameter of the spring (m−1) ∆kus0 5.71

Then, to find the local models, the methodology proposed
in (Santim et al., 2012) is used and allows stabilization for
a set of operation points. Considering that the actuator
fault can decrease from 0% to 30% of actuator power,
then 0.7 ≤ kfault ≤ 1. Due the physics of spring length,
the state variables x1 and x3 are limited in the interval
0.035 ≤ x1, x3 ≤ 0.035 m. The domain D of the premise
variables is
D = {z = [xT ∆kus kfault Ms]

T ∈ R
7 :

− 0.035 ≤ x1, x3 ≤ 0.035, 0 ≤ ∆kus ≤ 5.71,

0.7 ≤ kfault(t) ≤ 1, 1.455 ≤ Ms ≤ 2.45}.

(37)

The maximum and minimum values of the function f43(z),
in domain D, are

−3000 ≤ f43(z) ≤ −2500. (38)

From (36)-(38) and Table 1, the local models are obtained

A1=A3=





0 1 0 −1
−367.34 −3.06 0 3.06

0 0 0 1
900 7.5 −3000 −12.5



, B1=B2=





0
0.2857

0
−0.7



,

A2=A4=





0 1 0 −1
−367.34 −3.06 0 3.06

0 0 0 1
900 7.5 −2500 −12.5



, B3=B4=





0
0.4082

0
−1



, (39)

A5=A7=





0 1 0 −1
−618.55 −5.15 0 5.15

0 0 0 1
900 7.5 −3000 −12.5



, B5=B6=





0
0.4811

0
−0.7



,

A6=A8=





0 1 0 −1
−618.55 −5.15 0 5.15

0 0 0 1
900 7.5 −2500 −12.5



, B7=B8=





0
0.6873

0
−1



.

3.2 Simulation and Practical Implementation

A numerical comparison between switched and single-gain
control about β (upper limit of guaranteed cost) is shown
with actuator fault. Following, a practical implementation
in the bench active suspension system Fig. 2 is also
presented.

Firstly, in Fig. 3, the comparison between Theorems 1 and
3 with norm constraint from Theorem 2 is done considering
the parameters ρ = 39.2, φ = [0.035 0.035]T , ξ−1 = 50000,
R = I2×2 and γ = 0. The convex initial conditions set
x(0) (14) is formed considering a convex combination of
−0.02 ≤ x1(0), x3(0) ≤ 0.02 and x2(0) = x4(0) = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.005

0.01

0.015

0 0.2 0.4 0.6
0

0.5

1

1.5

10-3

Fig. 3. Upper limit β for single-gain and switched control.

Note that the upper limit β of performance index J (13)
for switched controller is smaller than that one for single-
gain controller in view of increasing actuator fault. The
problem is unfeasible for values greater than 68% fault for
single-gain control and 72% fault for switched control.

The switched controller from Theorem 1 considering 30%
of actuator fault and the same parameters of previous
example is implemented. The optimal solution obtained
is β = 1.3007× 10−4 and controller gains are

K1 = [1094.582 89.234 165.869 −42.256] ,

K2 = [1042.260 89.071 −18.835 −43.725] ,

K3 = [997.004 87.989 −49.455 −44.913] ,

K4 = [896.700 85.966 −385.574 −49.333] , (40)

K5 = [712.390 85.543 −73.171 −47.118] ,

K6 = [712.390 85.543 −73.171− 47.118] ,

K7 = [654.378 83.233 −250.106 −49.362] ,

K8 = [654.378 83.233 −250.106 −49.362] .

In implementation is considered Ms = 2.45 kg and im-
plementation time 18 seconds. From [0, 6) seconds the
system is in open-loop, from [6, 12) seconds the system
is in closed-loop with switched control (10) and gains (40)
without actuator fault, and from [12, 18] seconds a fault
equal to 30% occurs in the control signal. The reference
zr(t) produces a square wave signal with 0.02 m amplitude,
1/3 Hz frequency and 50% pulse width. The relative plate
position is shown in the Fig. 4 as well the control signal
u and switching index σ(t).

The practical implementation decreases the oscillations
caused by the road surface zr(t). The open-loop system
is stable but presents wide amplitude oscillations which
produces discomfort for vehicle passengers and high level
of mechanical stress. The switched controller design by
Theorem 1 and 2 reduces the oscillations and establish-
ment time of the plates zs and zus even considering an
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Fig. 4. Implementation of switched control designed using
Theorem 1 and constraint of the controller gains (31).

actuator fault, in this case 30% fault. The relative position
of the plates are the system output, then the output
energy of the system decreases, that is, the cost guaranteed
function. It is important to note that the saturation of
control signal did not occur but it is considered in control
design ensuring stability and performance if it happens.

4. CONCLUSION

The proposed methodology in this manuscript with mini-
mization of upper limit of the quadratic index related to
energy of system output allows the control of a class of
uncertain nonlinear systems without knowing the member-
ship function. The switched controller can achieve better
guaranteed costs compared to the single-gain feedback
controller for the same scenario. The practical results
for switched controller show that there is a valid and
implementable control strategy, which leads to a good
performance for the active suspension system even with
actuator fault decreasing the oscillations felt by passen-
gers. Another performance index can be included to the
design of switched controllers in future works.
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