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Abstract: In this paper we study the contraction properties of the recently introduced
Advanced Step Real-Time Iteration (AS-RTI) under active-set changes. Compared to the
well-known Real-Time Iteration, in order to improve optimality, in the AS-RTI some extra
calculations on a problem with a predicted state are carried out. This enables us to trade off
controller performance for computational load in a simple manner. Under standard assumptions,
we prove the contraction of the iterates and boundedness of the numerical error. To achieve
these goals we use generalized equations, Robinson’s strong regularity and recently presented
results for abstract real-time algorithms. Finally, we present a numerical benchmark, where the
performance of different variants of the AS-RTI is demonstrated on an industrial case study.
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1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) is an ad-
vanced optimization-based control strategy which is be-
coming increasingly widespread in industry and academia.
One of the main advantages of NMPC over classical control
strategies is that nonlinearities and constraints can be
handled directly. In NMPC one has to repeatedly (ap-
proximately) solve in real-time a discrete-time parametric
Optimal Control Problem (OCP):

POCP(x) :

min
w

N−1∑
i=0

`i(si, ui) + `N (sN )

s.t. s0 − x = 0,

si+1 − ψ(si, ui) = 0, ∀i ∈ I,
π(si, ui) ≤ 0, ∀i ∈ I,
πN (sN ) ≤ 0.

(1)
Here, N ∈ N is the horizon length and we define
the index set I := {0, . . . , N − 1}. We define the vector
w := (w0, w1, . . . wN ) with wi := (si, ui), ∀i ∈ I and
wN := sN , with si ∈ Rns , ui ∈ Rnu being the predicted
states and inputs of the controlled system. The objective
terms `i : Rns ×Rnu → R and `N : Rns → R are the stage
and terminal costs, respectively. The function ψ : Rns ×
Rnu → Rns describes the discrete-time system dynamics.
The functions π : Rns × Rnu → Rnh and πN : Rns → Rnr

define the stage and terminal constraints, respectively and
the parameter x represents the initial state of the system.
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DyConPV (0324166B), and by DFG via Research Unit FOR 2401.

We assume that all functions are twice continuously dif-
ferentiable.

In NMPC, at every sampling instant a new state esti-
mate xk corresponding to time tk is received. Then, after
(approximately) solving the OCP, the first control input
ū0(xk) (the optimal solution is an implicit function of
the parameter value) is passed to the system and held
constant for the sampling time Ts. We denote the optimal
solution of the parametric OCP as w̄(x). In general, it is
not possible to solve the OCP (1) immediately. In order
to reduce the computation times many NMPC algorithms
seek approximate solutions. The aim of these algorithms
is to closely track w̄(x) with a high sampling rate in
real-time (see e.g. (Diehl et al., 2009)). Hence, the goal
is to develop discrete-time schemes which provide com-
putationally cheap approximations of w̄(xk) (Zavala and
Anitescu, 2010; Tran-Dinh et al., 2012; Zanelli et al., 2019).
The possibility to track w̄(x) with a lower sampling time
enables one to use larger and more detailed models, longer
prediction horizons and include more decision variables,
which is desirable in many industrial applications.

The key for success of real-time NMPC algorithms is
that the OCP does not have to be solved to conver-
gence, but to keep the numerical error bounded over
time (Zavala and Anitescu, 2010; Zanelli et al., 2019).
Examples of real-time NMPC algorithms are the Advanced
Step Controller (ASC) (Zavala and Biegler, 2009) and the
C/GMRES algorithm (Ohtsuka, 2004). Among others, Se-
quential Quadratic Programming (SQP) based algorithms
are the Real-Time Iteration (RTI) scheme (Diehl, 2001),
the Multi-Level Iteration (MLI) (Bock et al., 2007) and
the recently propose Advanced Step Real-Time Iteration
(AS-RTI) (Nurkanović et al., 2019b). Many other variants
of the RTI and MLI schemes can be found in the literature,
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for an overview see e.g. (Nurkanović et al., 2019a). An aug-
mented Lagrangian tracking scheme is presented in (Zavala
and Anitescu, 2010) and general predictor-corrector al-
gorithms for sampled-data NMPC are described in e.g.
(Anitescu and Zavala, 2017). Error estimates for contin-
uation methods for generalized equations are studied in
(Dontchev et al., 2013) and general Q-linearly convergent
real-time algorithms are studied in (Zanelli et al., 2019).

1.1 Contributions and Outline

In this paper we provide a more general theoretical analy-
sis for the recently introduced AS-RTI scheme (Nurkanović
et al., 2019b). Moreover, we confirm our theoretical find-
ings on a numerical benchmark. The main contributions of
this paper are: (1) we prove contraction of the iterates of
the AS-RTI under active-set changes if the computations
are carried out with Q-linearly convergent algorithms, (2)
we provide sufficient conditions for boundedness of the
numerical error for the AS-RTI, (3) we present a numerical
benchmark in which the AS-RTI is used to control a diesel
generator.

In Section 2 we describe the AS-RTI scheme. This is
followed by a brief presentation of Robinson’s strong
regularity and contraction results for general Q-linearly
convergent real-time algorithms in Section 3. Using these
tools we prove our main theoretical results in Section 4.
In Section 5 we provide an industrial use-case: controlling
the frequency of a diesel generator and the voltage at the
load bus. There we show the benefits of few additional
computations in the AS-RTI compared to the RTI.

2. THE ADVANCED STEP REAL-TIME ITERATION

This section describes the AS-RTI scheme introduced in
(Nurkanović et al., 2019b). The AS-RTI combines ideas
from the RTI, MLI and ASC. We highlight the benefits and
drawbacks of these schemes and how the AS-RTI mitigates
some of the issues.

2.1 Sequential Quadratic Programming

We consider the following parametric Nonlinear Program
(NLP):

P (x) :

min
w

f(w)

s.t. g(w) + M̂x = 0,

w ∈ Ω,

(2)

with w ∈ Rn and where Ω ⊆ Rn is a nonempty, closed and
convex set. The functions f : Rn → R and g : Rn → Rng

are twice continuously differentiable functions. The matrix
M̂ = [−I, 0, . . . ]> embeds linearly the parameter x ∈ X,
where X is the set of all possible parameter values. The
set Ω is usually described by a set of inequalities, i.e.
Ω = {w | h(w) ≤ 0}, with h : Rnw → Rnh being also
a twice continuously differentiable function. Convexity of
the set Ω in (2) can always be achieved by introducing
slack variables. Problem POCP(x) in (1) can be cast in
this form by properly defining the functions f(·), g(·) and
h(·).
For a fixed x, the problem P (x) in (2), can be solved
to local optimality with standard NLP algorithms, see

(Nocedal and Wright, 2006). Let λ ∈ Rng and µ ∈ Rnh be
the Lagrange multipliers corresponding to the equality and
inequality constraints, respectively. In SQP, we assume
to start with a primal-dual guess z0 := (w0, λ0, µ0) close
enough to the solution and a full SQP step is computed
as:

wk+1 = wk + ∆wk, λk+1 = λkQP, µ
k+1 = µkQP. (3)

Here, (∆wk, λkQP, µ
k
QP) is the primal-dual solution of the

Quadratic Program (QP):

min
∆w

1

2
∆w>Ak∆w + ak>∆w (4a)

s.t. Gk∆w + g(wk) + M̂x = 0, (4b)

Hk∆w + h(wk) ≤ 0, (4c)

where Ak ∈ Rnw×Rnw is a symmetric positive definite ma-
trix being the exact Hessian of the Lagrangian (5) or an ap-
proximation of it at the current iterate zk = (wk, λk, µk).
The Lagrangian of the NLP (2), with an explicit definition
of the set Ω, reads as

L(w, λ, µ) = f(w) + λ>g(w) + λ>M̂x+ µ>h(w). (5)

The vector ak = ∇wf(wk) is the gradient of the cost func-
tion and Gk and Hk are the Jacobians of the constraints
g(·) and h(·) at the current iterate wk, respectively.

2.2 The Advanced Step Real-Time Iteration

The RTI and MLI schemes perform a single (inexact) SQP
iteration per sampling time which might lead to conver-
gence issues and larger numerical errors. The ASC solves
an advanced problem POCP(x̃k+1) to local optimality, with
a predicted state x̃k+1 at the time we need the next feed-
back. This might be computationally too expensive for a
given sampling rate. Since in practice the sampling time is
often fixed due to sensor hardware limits, one can perform
a few more computations than a single (inexact) SQP step
as in the RTI or MLI, but still not solve the problem to
convergence as the ASC. The recently proposed AS-RTI
(Nurkanović et al., 2019b) bridges this gap and combines
the benefits of the RTI, MLI and ASC and enables one
to trade off computational load for controller performance
in a flexible way. It was successfully used in simulation
experiments for wind turbine control (Nurkanović et al.,
2019a) and microgrid operation (Nurkanović et al., 2020).

In general, feedback delay can severely degrade the con-
troller’s performance. Therefore, in the AS-RTI as in many
other real-time NMPC algorithms, the computations are
divided into a preparation phase where all computations
can be performed without the knowledge of xk+1 and a
feedback phase, after the parameter value xk+1 is available
(Diehl et al., 2009). In the AS-RTI few additional compu-
tations on an advanced problem POCP(x̃k+1) are carried
out in the preparation phase to overcome the possible
convergence issues of performing a single (inexact) SQP
iteration per sampling time. Depending on the available
time, one can perform extra calculations ranging from a
single QP (level A of the MLI) or a few iterations of some
level of the MLI up to a fully converged SQP solution in
the limit. For more details about the different levels of the
MLI see (Bock et al., 2007; Nurkanović et al., 2019a). In
the feedback phase, just as in the RTI and MLI schemes,
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Algorithm 1: The Advanced Step Real-Time Itera-
tion Scheme

Algorithm 1a: Preparation Phase

Input: zk, xk, uk0 , all data for the QP at iteration k
Output: New iterate guess z̃k+1

1 Get prediction x̃k+1, e.g. with x̃k+1 = ψ(xk, uk0).

2 Get optimal solution prediction z̃k+1 by iterating
with some mode of the MLI on the advanced problem
POCP(x̃k+1) (inner iterations)

3 Evaluate all functions and derivatives at z̃k+1

needed to construct the QP (4)
4 Possibly condense the QP (4)
Algorithm 1b: Feedback Phase

Input: Solution guess z̃k+1, new state estimate xk+1

Output: New iterate zk+1, uk+1
0 , all data for the QP

solved at iteration k + 1
5 Embed current state estimate xk+1 into the QP (4)

6 Solve QP, compute next iterate zk+1 via (3) and

send first control uk+1
0 to the controlled dynamical

system

a single QP is solved. This accounts also for the mismatch
between the predicted x̃k+1 and actual state xk+1 and
provides a generalized tangential predictor (Diehl et al.,
2009). This is a piece-wise affine approximation of the
solution manifold z̄(xk+1), see (Diehl, 2001). We call the
last QP solve outer iteration and the calculations in the
preparation phase regarding POCP(x̃k+1) inner iterations.
Note that in the ASC, in the feedback phase an additional
linear system based on the last Newton iteration’s matrix
factorization is solved which provides an affine tangential
predictor (Diehl et al., 2009). A linear system solve in
the feedback phase of the ASC is usually cheaper than a
QP solve. The affine tangential predictor can not ”jump”
over active-set changes (Diehl et al., 2009). However, in
(Jäschke et al., 2014) an extension for the ASC is intro-
duced to handle active-set changes and non-unique multi-
plier values via a path-following algorithm. In the AS-RTI,
we do not solve POCP(x̃k+1) to convergence, but adapt the
computational load according to the given sampling time
Ts.

In contrast to the AS-RTI, the RTI and MLI have cheaper
preparation phases, which enable higher sampling rates.
However, compared to them, loosely speaking the new
linearization point is closer to the point on the solution
manifold z̄(xk+1) which we aim to track at time tk+1.
This is latter formalized in Section 4. Additionally, we can
also use the AS-RTI approach in a parallel MLI setting
to refine the linearization point and improve optimality
(Nurkanović et al., 2019a). Depending on which calcula-
tions we choose to do in the preparation phase of the AS-
RTI one can assemble a wide number of different schemes.
A single AS-RTI iteration is summarized in Algorithm 1.

To get a new guess for the parameter for the advanced
problem, one can simply use the discrete-time system
model to predict x̃k+1 = ψ(xk, uk0) while using the last
available parameter and control input. Since the evaluation
of this function might be expensive we can apply a shift
strategy, i.e. reuse the solution from a previous problem
POCP(xk) and set x̃k+1 = s1. The goal is to ensure a

Output
Linearization point

Fig. 1. Tangential predictors and solution manifold track-
ing with the Real-Time Iteration. The last output is
the new linearization point.

Output
Linearization point
Further inner iterations

Fig. 2. Tangential predictors and solution manifold track-
ing with the Advanced Step Real-Time Iteration. The
linearization point is due to the inner iterations re-
fined.

reasonably good prediction, which is close to the true value
xk+1.

Interestingly, the RTI and AS-RTI with an extra QP solve
and a perfect prediction (x̃k+1 = xk+1) have the same
linearization points, but different outputs u0(xk+1), cf.
Lemma 1 in (Nurkanović et al., 2019b).

Figures 1 and 2 illustrate the linearization points, outputs
and tangential predictors of the RTI scheme and the AS-
RTI with an extra QP solve in the preparation phase,
respectively. In the AS-RTI case we use the tangential
predictor from the previous iteration and get z(x̃k+1) as
the new linearization point (observe that z̃k0 is on the same
tangent as the previous output zk−1 in Figure 2). When
implementing this, one has to take care of not adding the
same corrector twice. The QP solution (∆wk, λkQP, µ

k
QP)

has both predictor (moving along the tangent) and correc-
tor (getting closer to the manifold) properties, see (Diehl
et al., 2009). Now in the AS-RTI solving an extra QP

(4), with x̃k+1 one gets (∆w̃k+1, λ̃k+1
QP , µ̃k+1

QP ). This should

be added to (wk−1, λk−1, µk−1) and not to (wk, λk, µk),
otherwise we add the same corrector twice. Doing further
iterations with optimality improving levels of the MLI (see
(Bock et al., 2007)) will bring us closer to z̄(xk+1). This
ultimately leads to smaller numerical errors as discussed
in Section 4.
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3. CONTRACTION ESTIMATE FOR ABSTRACT
REAL-TIME ALGORITHMS

In this section we recall the results from (Zanelli et al.,
2019) which we use to analyze the contraction properties of
the AS-RTI when using Q-linearly convergent algorithms.
We consider again the parametric NLP P (x) in (2).
Moreover, due to the considered formulation, the results
are more general than for the special case of POCP(x) in
(1).

Following (Tran-Dinh et al., 2012; Zanelli et al., 2019) one
can write the first order necessary optimality conditions of
the NLP (2), i.e. the KKT conditions, as:

∇f(w) +∇g(w)λ+NΩ(w) 3 0, (6a)

g(w) + M̂x = 0. (6b)

The set-valued map NΩ(w) : Rnw ⇒ Rnw is the normal
cone to Ω at w, which is defined as:

NΩ(w) :=

{
{v ∈ Rn | v>(w − u) ≥ 0, ∀u ∈ Ω}, ifw ∈ Ω,

∅, otherwise.

Now, introducing z := (w, λ), K = Ω× Rng ,

F (z) :=

(
∇f(y) +∇g(y)λ

g(y)

)
and M =

[
0

M̂

]
, (7)

equations (6) can be rewritten as a Generalized Equation
(GE)

F (z) +Mx+NK(z) 3 0. (8)

We define its solution mapping as

Z̄(x) := {z |F (z) +Mx+NK(z) 3 0},
which is the set of KKT points of P (x) for a given x.

Definition 1. (Strong Regularity (Robinson, 1980)). Let
z̄(x) ∈ Z̄(x) and let F ′(z) be the Jacobian of F (z). We
say that the GE (8) is strongly regular at z̄(x), if there
exist neighborhoods B(0, r̄δ) and B(0, r̄z) such that the
linearized GE

F (z̄(x)) + F ′(z̄(x))∆z +Mx+NK(z̄(x) + ∆z) 3 δ, (9)

with unknown variable ∆z has a unique solution in B(0, r̄z)
and its solution is Lipschitz continuous in B(0, r̄δ) with a
Lipschitz constant σ:

‖∆z̄(δ′)−∆z̄(δ)‖ ≤ σ‖δ′ − δ‖, ∀δ′, δ ∈ B(0, r̄δ).

In the context of optimization, a point z̄(x) is strongly
regular if it satisfies the Linear Independence Constraint
Qualification (LICQ) and the strong second order suffi-
cient condition (SSOSC), cf. Proposition 1.28 in (Izmailov
and Solodov, 2014). More details about this concept can
be found in the seminal paper of Robinson (1980) and
its application in real-time optimization can be found in
e.g. (Tran-Dinh et al., 2012; Zavala and Anitescu, 2010;
Anitescu and Zavala, 2017; Zanelli et al., 2019; Dontchev
et al., 2013).

We make now the following regularity assumption.

Assumption 2. The set Z̄(x) is nonempty and the corre-
sponding GE (8) is strongly regular at z̄(x) for all x ∈ X.

The following lemma provides conditions under which the
solution manifold z̄(x) is Lipschitz continuous.

Lemma 3. (Lemma 3.3, (Tran-Dinh et al., 2012)). Let As-
sumption 2 hold. Then, for any x in X, there exist neigh-
borhoods B(x, r̃x) of x and B(z̄(x), r̃z) of z̄(x), such that

the GE (8) has a unique solution in B(z̄(x), r̃z) for any
x′ ∈ B(x, r̃x). Moreover, there exists a positive constant
γ ≥ 0 such that the following holds:

‖z̄(x′)− z̄(x)‖ ≤ γ‖x′ − x‖, ∀x′, x ∈ B(x, r̃x). (10)

Following (Zanelli et al., 2019) we can analyze real-time
methods for the parametric NLP (2) independently of the
concrete numerical scheme used to solve P (x) associated
with a fixed parameter value x. For this we require the use
of algorithms that calculate an element of Z̄(x) for some
x that have at least local Q-linear convergence.

We denote z̄k := z̄(xk), and the associated error as
ek := zk − z̄k. When we solve repeatedly (8) for some
fixed xk we will equip the iterations with a second index
zkj , j ≥ 0, which counts the number of iterations for

a fixed xk. Regarding AS-RTI, this corresponds to the
inner iterations and the corresponding error reads as
ekj := zkj − z̄k. If we use a predicted parameter x̃k+1, we

denote the corresponding iterate as z̃k+1
j and the error

as ẽk+1
j := z̃k+1

j − z̄(x̃k+1), j ≥ 0. Properties of a
Q-linearly convergent algorithm are summarized in the
following assumption.

Assumption 4. (Q-linear Convergence). There exists a ra-
dius r̂z such that, for any given z̄(xk) ∈ Z̄(xk), any
xk ∈ X, and any zkj in B(z̄(xk), r̂z), the algorithm used

to solve (8) can produce zkj+1 such that

‖ekj+1‖ ≤
(
κ+

ω

2
‖ekj ‖

)
‖ekj ‖, (11)

for some positive constants 0 ≤ κ < 1 and 0 ≤ ω <∞.

From now on, we denote αkj := (κ + ω
2 ‖e

k
j ‖), and analo-

gously for the predicted parameter we adapt the notation
α̃kj := (κ+ ω

2 ‖ẽ
k
j ‖). This assumption covers many standard

algorithms for solving (8), or equivalently, to solve the NLP
(2). Examples are the generalized Newton-type methods
(Tran-Dinh et al., 2012; Izmailov et al., 2013; Zanelli et al.,
2019). This abstraction covers also the SQP method from
Section 2 (Izmailov et al., 2013). Other examples of Q-
linearly convergent algorithms are Sequential Convex Pro-
gramming (Tran-Dinh et al., 2012) and ADMM (Zanelli
et al., 2019).

The next lemma provides a bound on the numerical error
due to performing a single iteration of a Q-linearly con-
vergent algorithm for solving (8) for each new parameter
xk.

Lemma 5. (Lemma 1, (Zanelli et al., 2019)). Suppose As-
sumptions 2 and 4 hold. Then there exist some constants
rz > 0 and rx > 0, such that, for any zk in B(z̄k, rz), and
any xk+1 in B(xk, rx), the following inequality holds

‖ek+1‖ ≤ κ‖ek‖ + c1‖ek‖‖xk+1 − xk‖ + c2‖ek‖2

+ c3‖xk+1−xk‖ + c4‖xk+1−xk‖2,
(12)

with c1 := ωγ, c2 := ω
2 , c3 := κγ, c4 := ωγ2

2 .

Now we have all the tools to state sufficient conditions for a
bounded numerical error for tracking the optimal solution
manifold z̄(x).

Theorem 6. (Theorem 1, (Zanelli et al., 2019)). Suppose that
that Assumptions 2 and 4 hold. There exists a positive
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constant 0 < rsx < rx (same as in Lemma 5), such that, if
‖xk+1 − xk‖ ≤ rsx for all k ≥ 0 and ‖e0‖ ≤ rz, then

‖ek+1‖ ≤ rz, ∀k ≥ 0, (13)

where

rx :=

{√
(c3+rzc1)2−4c4(κ−1−c2rz)rz−(c3+rzc1)

2c4
if c4 > 0,

(1−κ−c2rz)rz
c3+rzc1

if c4 = 0.

(14)

Similar results on the boundedness of the numerical error
for truncated Newton methods, i.e. where the linearization
of the GE (8) is solved approximately can be found in
(Zavala and Anitescu, 2010).

4. CONTRACTION PROPERTIES

In this section we present the main theoretical results of
this paper. We derive sufficient conditions for the contrac-
tion of the iterates of the AS-RTI scheme if the inner and
outer iterations are carried out with Q-linearly convergent
algorithms. Furthermore, we provide sufficient conditions
for the boundedness of numerical error. In (Nurkanović
et al., 2019b) we proved similar results for Newton-type
methods under the simplifying assumption of a fixed
active-set. Using the tools from the previous section, it
turns out that the proofs follow similar reasoning as in
(Nurkanović et al., 2019b). These results hold for general
parametric NLPs as P (x) in (2).

First, we will make an assumption regarding the initializa-
tion of a Q-linearly convergent algorithm. This will ensure
that the numerical error ekj for a fixed xk gets smaller if we
perform further iterations of the algorithm. This is needed
in the proof of the next theorem.

Assumption 7. (Initialization) Suppose that the following
condition holds at an initial point z0 and a solution z̄0:

‖z0 − z̄0‖ ≤ r̂z < r̂sz := 2(1− κ)/ω. (15)

Furthermore, we assume to always have a reasonably good
parameter prediction, so that we can use the results of
Theorem 6.

Assumption 8. (Predicted Parameter) In all iterations of
Algorithm 1 the parameter predictions x̃k+1 satisfy:

‖xk+1 − x̃k+1‖ ≤ rsx and ‖x̃k+1 − xk‖ ≤ rsx, ∀k ≥ 0,
(16)

where the positive constant rsx is the same as in Theorem 6.

When we use different Q-linearly convergent algorithms
for inner and outer iterations, we equip the corresponding
constants from Assumption 4 or Lemma 5 with a super-
script in and out, respectively. For example, in Assumption
4 we distinguish between κin and κout for inner and outer
iterations, respectively. With the next theorem we provide
a general contraction estimate for an iteration of the AS-
RTI scheme described in Section 2.

Theorem 9. Suppose that Assumptions 2, 4, 7 and 8 hold.
Moreover, assume that we make j ≥ 0 inner iterations on
an advanced problem P (x̃k+1) in the preparation phase
of AS-RTI and that rz = min(rout

z , rin
z ). Then, for the

sequence of errors {ek}, the following inequality holds:

‖ek+1‖ ≤ (α̃k+1
0 )

j[
νk‖ek‖+ ζk‖x̃k+1 − xk‖

]
+ ηk‖xk+1 − x̃k+1‖,

(17)

where we have defined the positive constants ν̂k, νk, ζk, ηk,
respectively, as:

ν̂k := κout + cout
1 ‖xk+1 − x̃k+1‖+ cout

2 (α̃k+1
0 )

j‖ẽk+1
0 ‖,

(18)

νk := ν̂k
(
κin + cin1 ‖x̃k+1 − xk‖+ cin2 ‖ek‖

)
, (19)

ζk := ν̂k
(
cin3 + cin4 ‖x̃k+1 − xk‖

)
, (20)

and

ηk := cout
3 + cout

4 ‖xk+1 − x̃k+1‖. (21)

Proof: To use the same rz for inner and outer iterations we
set rz = min{rout

z , rin
z }. For the first inner iteration, due

to Assumptions 2 and 4 there exist some constants rz > 0
and rx > 0, such that, for any zk in B(z̄k, rz). Moreover,
due to Assumption 8, it holds that x̃k+1 in B(xk, rx). Using
Lemma 5, it holds that

‖ẽk+1
0 ‖ ≤

(
κin + cin1 ‖x̃k+1 − xk‖+ cin2 ‖ek‖

)
‖ek‖

+
(
cin3 + cin4 ‖x̃k+1 − xk‖

)
‖x̃k+1 − xk‖.

(22)

Due to Assumption 8 and Theorem 6, it holds that
‖ẽk+1

0 ‖ ≤ rz ≤ r̂z. Assuming we made j ≥ 0 iterations, due
to Assumptions 4 and 7 the following holds

α̃k+1
1 = κin + cin1 ‖ẽk+1

1 ‖
(11)

≤ κin + cin1 α̃k+1
0︸︷︷︸
<1

‖ẽk+1
0 ‖

< κin + cin1 ‖ẽk+1
0 ‖= α̃k+1

0 .

Moreover, applying this inductively we have

‖ẽk+1
j ‖ ≤ (α̃k+1

0 )j‖ẽk+1
0 ‖ < rz. (23)

Furthermore, due to the last inequality it holds that
z̃k+1
j ∈ B(z̄(x̃k+1), rz) and xk+1 in B(x̃k+1, rx) (holds due

to Assumption 8). Therefore, we can use Lemma 5 for the
outer iteration which yields

‖ek+1‖ ≤
(
κout + cout

1 ‖xk+1 − x̃k+1‖+ cout
2 ‖ẽk+1

j ‖
)
‖ẽk+1
j ‖

+
(
cout
3 + cout

4 ‖xk+1 − x̃k+1‖
)︸ ︷︷ ︸

(21)
= ηk

‖xk+1 − x̃k+1‖.

Using the estimate for ‖ẽk+1
j ‖ from (23), from the last

equation we get

‖ek+1‖ ≤
(
κout + cout

1 ‖xk+1 − x̃k+1‖+ cout
2 (α̃k+1

0 )
j‖ẽk+1

0 ‖
)︸ ︷︷ ︸

(18)
= ν̂k

· (α̃k+1
0 )

j‖ẽk+1
0 ‖+ ηk‖xk+1 − x̃k+1‖.

Now, if we replace ‖ẽk+1
0 ‖ with its upper bound (22), we

obtain

‖ek+1‖ ≤ (α̃k+1
0 )

j
ν̂k
[(
κin + cin1 ‖x̃k+1 − xk‖+ cin2 ‖ek‖

)
‖ek‖

+
(
cin3 + cin4 ‖x̃k+1 − xk‖

)
‖x̃k+1 − xk‖

]
+ ηk‖xk+1 − x̃k+1‖.

(24)

Using the definitions of νk in (19) and ζk in (20) the
inequality (17) follows from the last inequality. This com-
pletes the proof. 2

Similar to Theorem 6, we give sufficient conditions for the
boundedness of the numerical error of the AS-RTI.
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Lemma 10. Suppose that Assumptions 2, 4, 7 and 8 hold.
Moreover, assume that we perform j ≥ 0 inner itera-
tions on an advanced problem P (x̃k+1) in the prepara-
tion phase of AS-RTI. Then there exists a positive con-
stant 0 < rsx < rx (same as in Theorem 6), such that, if
‖xk+1 − xk‖ ≤ rsx for all k ≥ 0 and ‖e0‖ ≤ rz, then

‖ek+1‖ ≤ rz, ∀k ≥ 0, (25)

where rsx is given by (14) and rz = min(rout
z , rin

z ).

Proof: Taking rz = min(rout
z , rin

z ) we can use the same
rz for both inner and outer iterations. Since the assump-
tions of Theorem 6 are satisfied, for the first inner itera-
tion corresponding to P (x0) and P (x̃1) we conclude that
‖ẽ1

0‖ ≤ rz ≤ r̂z (cf. also proof of Lemma 1 in Zanelli
et al. (2019)). Using this inequality and Assumptions 4
and 7, we conclude, that for a fixed parameter (further
inner iterations) α̃1

j < 1 for all j ≥ 0 (the errors shrinks),

i.e. it holds that ‖ẽ1
j‖ < rz, ∀j ≥ 0. For the outer itera-

tion corresponding to P (x̃1) and P (x1), since ‖ẽ1
j‖ < rz

and ‖x1 − x̃1‖ ≤ rsx, by applying Theorem 6 we obtain
that ‖e1‖ ≤ rz. Applying this argument inductively, we
conclude that (25) holds ∀k ≥ 0. 2

Following (Nurkanović et al., 2019b), from the results of
Theorem 9 we can make several observations regarding
a new iterate zk+1: (1) having a better parameter guess,
i.e. having smaller ‖xk+1 − x̃k+1‖, decreases the distance
to z̄k+1, (2) being closer to the solution in the previous
iterate, i.e. smaller ‖ek‖, also improves the solution, (3)
increasing the number of inner iterations j further de-
creases the error ek+1, (4) the distance between the two
parameters also ‖xk+1−xk‖ affects the numerical error, (5)
the value of the constant κin for the inner iterations affects
the solution since for smaller κin the term (α̃k+1

0 )j shrinks
faster. Having several inner iterations will make the first
term on the r.h.s of (17) become very small thus the error
is also small. Furthermore, having j → ∞ in the limit
and x̃k+1 = xk+1 we obtain ideal NMPC in the nominal
case. Obviously, in the context of NMPC the number of
inner iterations we can make depends on the available time
determined by the sampling time Ts. On the other hand, if
Ts is fixed and larger, the distance between two subsequent
parameter grows (‖xk+1−xk‖ = O(Ts)). This also implies
the growth of the numerical error. We can compensate
this with further inner iterations. A natural extension is
to perform more corrector steps in the feedback phase for
a fixed new parameter and reduce the numerical error,
cf. (Dontchev et al., 2013). However, in the context of
NMPC, such a control input becomes outdated and, due
to the feedback delay, the controller performance can be
degraded.

5. NUMERICAL EXAMPLE

As a numerical benchmark we consider a diesel generator
(DG) which is connected with a power line to a time-
varying load. A similar example, with an additional photo-
voltaic source was considered in (Scholz et al., 2019).
A typical DG consists of a synchronous generator (SG)
with governor (GOV) and an automatic voltage regulator
(AVR), as depicted in Fig. 3, for more details see (Kundur,
1993). In this paper we consider an SG model with 5
differential and 11 algebraic states (Kundur, 1993). The

goal of the GOV is to control the power generation P1 of
the DG by controlling the diesel engine. The input of the
GOV is the generator frequency ω, as well as the reference
power Pref. We use a standard IEEE DEGOV1 model,
which consists of 8 differential and 2 algebraic states.
The AVR controls the terminal voltage of the generator
through the field winding voltage Efd from the exciter.
The inputs to the AVR are the reference voltage Vref and
the DG voltage V1. For the AVR we use the standard
IEEE AC5A model, which consists of 5 differential and one
algebraic state. Due to page limits we omit a more detailed
description of the models, for details on DG and general
microgrid modeling we refer to (Kundur, 1993; Nurkanović
et al., 2020).

The DG has a nominal power of SN = 325 kVA and
the control variables are u(t) = (Pref(t), Vref(t)). The ad-
mittance of the power line is Y12 = 137.93− 344.83i Ω−1

and it connects the DG at node 1 with the load at node
2. The load is modeled as time varying parameter. The
DG, the power line and load, where the connection is
modeled via power-flow, cf. (Kundur, 1993), result in a
Differential Algebraic Equation (DAE) of index-1 with 17
differential states x(t) and 18 algebraic states z(t). Our
goal is to regulate the voltage at the load V2 and the
electric frequency ω of the DG at 1 per unit (p.u.). We
express this with the objective

L(x(t), z(t), u(t)) = ρ(‖ω(t)− 1‖2 + ‖V2(t)− 1‖2), (26)

where ρ is a penalty factor which we fix to 102. Moreover,
we require the voltages at the DG (V1) and load (V2), and
the frequency ω to be in specific ranges:

0.9 p.u. ≤ Vi ≤ 1.1 p.u., i = 1, 2, (27a)

0.95 p.u., ≤ ω ≤ 1.05 p.u.. (27b)

Additionally, the production of active and reactive power
by the DGs is limited by its nominal power

P 2
1 +Q2

1 ≤ S2
N . (28)

Together with the objective (26), the discretized DAE
model of the DG, and the constraints (27) and (28)
evaluated at the discretization grid we obtain an OCP of
the form POCP(x) in (1). To discretize the continuous-
time dynamics we use direct multiple shooting (Bock
and Plitt, 1984) with the Gauss-Legendre Implicit Runge-
Kutta scheme of order four with a fixed step-size h = T/N .
For the NMPC prediction horizon we chose T = 10
s.We perform the numerical benchmark with two different
discretization grids, where the trajectories are discretized
using N = 50 and N = 40 multiple shooting nodes,
which results in a sampling time of Ts = 200 ms and
Ts = 250 ms, respectively. We use a time-varying load
profile at node 2 with P2 = 300 kW and Q2 = 100 kVAr
with a scheduled load increase at t = 4 s to P2 = 305 kW
and Q2 = 100 kVAr which is also in the NMPC prediction.
At t = 1 s an unforeseen load drop to P2 = 30 kW and
Q2 = 10 kVAr occurs until the scheduled load increases.
After noticing the load drop, the prediction is adapted to
the new value after one sampling time.

We implement the AS-RTI in acados through its MAT-
LAB interface (Verschueren et al., 2019). We use HPIPM
(Frison and Diehl, 2020), an interior-point based QP solver
for the SQP subproblems. In all experiments we use a
Gauss-Newton (GN) Hessian approximation. In the sim-
ulation we compare the following different schemes: 1)
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AS-RTI with k inner GN-SQP iterations denoted as AS-
RTI-k and, 2) the RTI. We observed that the solution
does not improve with further inner iterations even when
solving the advanced problem to convergence. The simu-
lation results for the two schemes with Ts = 250ms are
depicted in Fig. 4. Both schemes are able to stabilize
the system and bring ω and V2 to 1. Observe that the
overshoot at t = 1 s remains the same for all schemes,
since the load drop is not predicted, and the NMPC
controller can react only after noticing it, i.e. after the
time Ts has passed. The load changes both unpredicted
(t = 1s) and predicted (t = 4 s) for more than 90%
compared to the initial load value. Compared to the AS-
RTI, the voltage oscillations with the RTI last longer
after the predicted load change. The CPU times of all
schemes in this experiments are provided in Table 1.
We compare the schemes by the resulting running cost,

defined as J(Tsim) :=
∫ Tsim

0
L(x(τ), z(τ), u∗NMPC(τ)) dτ ,

where u∗NMPC(t) is the resulting NMPC closed loop input
fed back to the system over the simulation time Tsim. All
considered schemes are real-time feasible, however with
the AS-RTI with few additional computations we improve
the running cost J(·) and the improvement is larger with
a larger sampling time. With more inner iterations the
computational load in the preparation phase is increasing,
however in the feedback phase we still solve only a single
QP and thus the feedback delay stays small. All simu-
lations are run on a HP Z-book equipped with an Intel
i7-6820HQ CPU with 2.70 GHz and 16 GB RAM under
Windows 10.

Fig. 3. Outline of a DG model. It consists of a synchronous
generator (SG), automatic voltage regulator and ex-
citer (AVR), and of a diesel engine (DE) and governor
model (GOV).
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Fig. 4. Frequency of the DG (top) and voltage at the load
(bottom) for two different schemes with Ts = 250ms:
1) AS-RTI with one inner iterations (blue), 2) RTI
(red).

Algorithm N J
Prep. Ph. Feedback Ph.

max min mean max min mean

RTI 50 8.04 16.01 11.00 12.19 4.00 1.96 2.50
AS-RTI-1 50 7.69 40.97 24.03 26.85 4.00 1.97 2.53
AS-RTI-2 50 7.69 58.99 37.00 41.42 3.02 2.00 2.61
AS-RTI-3 50 7.69 67.03 50.98 55.18 4.00 1.97 2.55

RTI 40 12.28 12.03 8.03 9.94 2.96 0.99 1.76
AS-RTI-1 40 11.76 23.04 19.00 20.30 2.04 0.97 1.70
AS-RTI-2 40 11.77 41.01 29.99 32.44 3.23 0.98 1.85
AS-RTI-3 40 11.77 54.02 38.99 43.20 2.03 0.93 1.68

Table 1. CPU times of different NMPC
schemes in milliseconds.

6. CONCLUSION

In this paper we derived a contraction estimate for the
AS-RTI under active-set changes. Our result holds for
general algorithms with at least Q-linear convergence,
including the setting where different algorithms for inner
and outer iterations are used. This abstraction covers a
broad spectrum of methods used in practice. Furthermore,
we provided sufficient conditions for boundedness of the
numerical error of the AS-RTI. The efficacy of the AS-
RTI is demonstrated on a complex numerical benchmark
showing that a few additional computations can improve
the controller performance confirming our theoretical find-
ings.
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