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Abstract: The operation of large-scale water distribution networks (WDNs) is a complex
control task due to the size of the problem, the need to consider key operational, quality
and safety-related constraints as well as because of the presence of uncertainties. An efficient
operation of WDNs can lead to considerable reduction in the energy used to distribute the
required amounts of water, leading to significant economic savings. Many model predictive
control (MPC) schemes have been proposed in the literature to tackle this control problem.
However, finding a control-oriented model that can be used in an optimization framework, which
captures nonlinear behavior of the water network and is of a manageable size is a very important
challenge faced in practice. We propose the use of a data-based automatic clustering method
that clusters similar nodes of the network to reduce the model size and then learn a deep-learning
based model of the clustered network. The learned model is used within an economic nonlinear
MPC framework. The proposed method leads to a flexible scheme for economic robust nonlinear
MPC of large WDNs that can be solved in real time, leads to significant energy savings and is
robust to uncertain water demands. The potential of the proposed approach is illustrated by
simulation results of a benchmark WDN model.
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1. INTRODUCTION

Water distribution networks (WDNs) are large-scale in-
terconnected systems that need to be operated reliably,
while complying with operational constraints as well as
water supply and quality standards, under varying climate
and demand conditions. Water resources have the largest
energy intensity in the urban metabolism of cities (Chini
and Stillwell, 2018), with the water distribution phase
often contributing the largest energy intensity share of
water provision (Spang and Loge, 2015). Energy-related
costs can constitute up to 65% of a utility’s operating
budget (Boulos et al., 2001).

The optimal management of WDNs can lead to consid-
erable energy reduction and related economic savings. A
case study in Valencia (Spain), for instance, demonstrated
that potential savings of approximately 17% of the opera-
tional costs could be obtained via optimal pump schedul-
ing and valve control, while a similar example in Wallan
(Victoria, Australia) estimated a reduction in the average
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daily pumping costs of 20.6% with optimal operation of
the WDNs (Broad et al., 2010). However, the optimal
operation of such systems is a challenging task of increas-
ing complexity and importance, due to the growing size
of urban areas and the presence of multiple, potentially
conflicting objectives.

Model predictive control (MPC) is an advanced control
technique that can deal with nonlinear multivariable sys-
tems, including constraints and other control goals differ-
ent than traditional set-point tracking (Mayne and Rawl-
ings, 2009). For these reasons, it is an increasingly popular
control method applied in many different fields and case
studies and it has been already widely studied in the
context of water distribution networks (Biscos et al., 2003;
Cembrano et al., 2011; Ocampo-Martinez et al., 2012).

The application of MPC for WDNs faces two important
challenges: (i) the presence of uncertainty and (ii) the size
of the model for real-world networks. To deal with the
uncertainty of the model parameters and water demands,
different approaches based on chance constraints (Grosso
et al., 2014), Gaussian processes (Wang et al., 2016) or
scenario-tree methods (Sampathirao et al., 2018) have
been recently proposed.
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Possible solutions to obtain computationally tractable
MPC schemes for large-scale networks include the consid-
eration of hierarchical (Duzinkiewicz et al., 2005; Grosso
et al., 2013) and decentralized MPC schemes (Ocampo-
Martinez et al., 2012) that avoid the centralized detailed
optimization of all network elements at the same time.
Alternatively, surrogate models that simplify the hydraulic
equations used in the modeling of the WDNs can be
used. Surrogate models based on quadratic functions were
presented by Nowak et al. (2018) while linear models were
used by Sampathirao et al. (2018). Some works have used
artificial neural networks (ANNs) to obtain models to
be coupled with genetic optimization algorithms (Broad
et al., 2005), or deep learning techniques (Wu and Rah-
man, 2017) to derive predictive models. However, non-
linear surrogate models based on deep learning have not
been exploited to be used in a gradient-based optimization
framework typical of nonlinear MPC schemes, which is one
of the main contributions of our work.

Obtaining a surrogate model for each relevant node in
a large network can still be a difficult task, since often
the main challenge is the amount of nodes considered
in the network and not the complexity of the model.
A reduction of the network nodes often requires the use of
heuristics (Broad et al., 2005) or detailed system knowl-
edge (Wang et al., 2017). As an additional contribution
of this work, we propose the use of data-based clustering
techniques to simplify the network model that needs to
be learned. Clustering techniques in the context of WDNs
have been previously studied (e.g. Di Nardo et al., 2015;
Kirstein et al., 2015), but were not used for the design
of MPC controllers. A clustering method is especially
convenient in an MPC setting as it mitigates the effect
of uncertain water demand predictions, as we illustrate in
the simulation results.

Compared to similar works, such as Wang et al. (2017),
we propose the combination of clustering, surrogate mod-
eling and nonlinear MPC, showing the advantages of deep
learning compared to traditional ANNs. Our method is
available with an open source implementation 1 , does not
rely on the detailed knowledge of the underlying model
equations and does not need control-oriented models, but
just requires a simulator of the water distribution network.
We show the potential for energy savings of an economic
nonlinear MPC scheme compared to a simple rule-based
controller for the benchmark case study of the C-Town
WDN. Finally, our proposed clustering method mitigates
the effects of uncertain demands and the proposed con-
troller is able to robustly control the system even when an
error up to 20% affects the prediction of water demands.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the considered WDN and its modeling
assumptions. The proposed clustering method is described
in Section 3, while the surrogate modeling based on deep
learning is presented in Section 4. The economic NMPC
formulation is explained in Section 5, the simulation re-
sults for a benchmark WDN are presented in Section 6
and the paper is concluded in Section 7.

1 Source code available at: https://github.com/4flixt/2019_

WNTR_Surrogate_Model

2. OPTIMAL OPERATION OF LARGE-SCALE
WATER DISTRIBUTION NETWORKS

The problem of optimal operation of large-scale WDNs
has been investigated in the literature in the last 50 years
(Mala-Jetmarova et al., 2017), with primary focus on
optimal pump operation to target savings in energy use
and related cost, while ensuring that demands and water
quality standards in the network are satisfied.

In general, a discrete-time model of a drinking water
network includes difference and algebraic equations, based
on mass continuity and energy, which can be written as:

x(k + 1) = f(x(k), z(k), u(k), d(k)), (1a)

z(k) = h(x(k), u(k), d(k)), (1b)

where the dynamic states x(k) describe the levels of the
tanks that form part of the water network at time step k.
The control inputs u(k) include the operation conditions
for the valves and pumps. The algebraic states z(k) include
the pressure in all nodes of the network, resulting from flow
balances. The equations are strongly affected by the water
demands in each node, denoted by d(k).

Several detailed simulators for large-scale water networks
exist in the literature. Arguably, the most widely used
software application for modelling drinking water distribu-
tion systems is EPANET, developed by the United States
Environmental Protection Agency. EPANET can perform
extended period simulation of pressurized pipe networks,
computing both hydraulic and water quality simulation
(Rossman et al., 2000). More recently, EPANET exten-
sions have also been developed to enhance EPANET
modeling capabilities for water security, resilience mod-
eling, and hydraulic response to cyber-physical attacks
(Taormina et al., 2019).

Yet, EPANET models are not control-oriented models
and often include several switches and discrete operation
conditions that make them not suitable for the direct
application of gradient-based optimization approaches,
which are necessary to solve large-scale problems.

2.1 C-Town benchmark problem

We formulate the optimal operation problem for the WDN
of C-Town. C-Town is a benchmark medium-sized network
first introduced by Ostfeld (2012) and later used in other
state-of-the-art studies (e.g. Sousa et al., 2016; Taormina,
2018). The original C-Town WDN features one reservoir
providing water to a network composed of 429 pipes,
388 junctions, 7 storage tanks, 5 pump stations with
a total of 11 pumps, and 4 valves. In this study, we
simplified the original structure of C-Town to reduce the
amount of control inputs. The simplification consisted
in removing redundancy in pumping stations, i.e. each
pumping station is assumed to include only one pump.
The resulting modified C-Town WDN, which we use here
as a demonstrative case study, is composed of 419 pipes,
378 junctions, 7 storage tanks, 5 pumps, and 4 valves (see
Fig. 1).

The C-Town WDN is described by the following variables,
summarized in (2a) to (2d): tank levels (b), node pressure
(p), node demand (d), valve setting (v), i.e. minor loss
coefficient set for Throttle Control Valves and pressure
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Fig. 1. Overview of the modified C-Town water distri-
bution network, with highlighted pumps and valves
(control inputs), tanks (system states) and reservoir.

setting of Pressure Reducing Valves, and relative pump
speed (q):

x = [b0, . . . , bntanks
] ∈ R7, (2a)

z = [p0, . . . , pnjunctions ] ∈ R378, (2b)

u = [v0, . . . , vnvalves
, q0, . . . , qnpumps

] ∈ R9, (2c)

d = [d0, . . . , dnjunctions
] ∈ R378. (2d)

Tank levels in x are the observable state of the C-Town
network, while pump and valve settings in u are the control
inputs of the system.

In this study, we modeled C-Town in EPANET and
simulate it as a demand-driven system. According to the
EPANET engine, demand-driven simulation implies that
node demands are always satisfied.

2.2 Summary of the proposed algorithm

To deal with the large-scale nature of WDNs, we propose
to use, first, a clustering method that leads to a significant
reduction of the number of node pressure (2b) and de-
mands (2d) that are explicitly considered in the prediction
model. Second, we generate a surrogate model via deep-
learning, to obtain a control-oriented model which is used
as a prediction model in an NMPC scheme. The data
obtained from subsequent NMPC simulations can be used
again to improve the quality of the surrogate model in an
iterative scheme, as summarized in Algorithm 1.

3. CLUSTERING ALGORITHM

The investigated network in Fig. 1 has a total of 378
distinct junctions with individual demands and pressures.
Obtaining a control-oriented surrogate model for such an
extensive system is challenging and does not scale well. We
therefore propose a clustering-based approach to simplify
the problem significantly. Among the existing techniques
for clustering, the hierarchical approach with connectivity
constraints appears most suited for water networks. The
approach is purely data-driven, but considers structural

Algorithm 1 Clustering and surrogate-based economic
NMPC of large-scale WDNs

Input: Obtain initial training data (tank levels, junction
pressure, demands, pump speed and valve setting) from
simulations of available EPANET models or from histori-
cal real data.

1. Run hierarchical clustering algorithm (Section 3) to
obtain current cluster.

2. Obtain deep learning-based surrogate model using
current training data and current clustering (Sec-
tion 4).

3. Run economic nonlinear MPC using the surrogate
model from Step 2 as model for the predictions and a
detailed EPANET simulator as reality based emulator
(Section 5).

4. If performance not as desired, include the data ob-
tained from Step 3 in your new training data and
GOTO Step 1.

information of the network in the form of connectivity
constraints. The connectivity matrix A ∈ Rnjunc×njunc

can be derived from the EPANET model structure and
represents the connections between nodes such that:

Aij =

{
1 if junction i and j are connected.

0 if junction i and j are not connected.
(3)

Nodes are joined based on a variance-minimizing linkage
criteria (Ward Jr, 1963) which minimizes the variance of
the chosen features. The algorithm stops when the number
of clusters matches the user defined parameter nclusters.
At each step of the recursive algorithm, clusters Ci and
Cj are merged, if for any Ck, k 6= i, j the variance of the
features of the resulting cluster is such that var(Ci

⋃
Cj) <

var(Ci
⋃
Ck). We denote the final clusters as:

Cj , j = 1, . . . , nclusters, (4)

where each cluster contains a number of |Cj | junctions.
As features we use normalized pressures in the individual
nodes at various time steps k. We normalize the pressure
at each node with an individual parameter according to:

p̃i(k) =
pi(k)

fp,i
, ∀i = 1, . . . , njunc. (5)

To compute the scaling factors fp,i in (5) we use the mean
value of the pressure for each junction from the samples
used for training. Normalizing the pressure was found to
be an important element to achieve a successful clustering.
The scaling is motivated as connected nodes experience
head loss on their linkage but will qualitatively follow
the same pressure patterns. In Fig. 2, we showcase the
pressure over time for two exemplary clusters, which can
be identified in Fig. 3, as well as the computed normalized
pressure according to (5). Fig. 2 shows that the average
normalized pressure of the cluster is a good representation
of the normalized pressure of each individual node. We
compute the average normalized pressure for cluster j at
each point in time k as:

p̄j(k) =
1

|Cj |
∑
i∈Cj

p̃i(k). (6)

The computed mean is used as a condensed representation
of the original variables (2b). We evaluate the clustering
performance by computing the normalized pressure vari-
ance σ2

j (k) = Var(p̃i(k)) with i ∈ Cj for clusters j for all
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Fig. 3. Overview of the clustered junctions for the modified
C-Town network.

times k. To obtain a global performance indicator we com-
pute the mean of σ2

j (k) over all clusters j and times k. We
choose nclusters = 25 clusters. It shows that performance
deteriorates with less individual clusters, while increasing
the number has only a marginal effect. Clustering was per-
formed in Python with scikit-learn (Pedregosa, 2011) with
the feature agglomeration method. The resulting clustered
nodes are presented in Fig. 3. We furthermore used the
obtained clusters based on pressure similarities to group
the demands in our network:

d̄j(k) =
∑
i∈Cj

di(k). (7)

This is motivated because sections of the network which
experience similar pressure patterns are likely to be af-
fected by the same pump and valve actions, as well as tank
levels. We are thus able to control these sections simulta-
neously and are interested in their aggregated demand.
While junction pressure and demand are clustered we
investigate tank levels (b), valve setting (v) and pump
speed (q) individually. In summary the relevant variables
and their respective dimensions for the dynamic system
used in the remainder of the paper are:

x = [b0, . . . , bntanks
] ∈ R7, (8a)

z̄ = [p̄0, . . . , p̄nclusters
] ∈ R25, (8b)

u = [v0, . . . , vnvalves
, q0, . . . , qnpumps ] ∈ R9, (8c)

d̄ = [d̄0, . . . , d̄nclusters
] ∈ R25. (8d)

The clustering method significantly reduces the dimension
of the algebraic states and demands as can be seen by
comparing (2) and (8).

4. SURROGATE MODELING USING DEEP
LEARNING

Artificial neural networks have been widely used as basis
functions for surrogate modeling. Traditionally, shallow
networks with only one intermediate (or hidden) layer
are used, because under mild conditions they can approx-
imate arbitrarily well any continuous function (Barron,
1993). Recently, the use of deep neural networks (DNNs)
with several hidden layers has been very successful as
an efficient approximation method for complex functions,
mainly in the field of computer science and artificial intel-
ligence (Silver et al., 2016). The choice of deep networks as
opposed to shallow ones is motivated by recent theoretical
results that support the increased representation power of
deep networks (Safran and Shamir, 2017).

A standard DNN with fully connected layers is a simple
sequence of function compositions of an affine transfor-
mation and a nonlinear function. A neural network N :
Rnin → Rnout can be written as:

N (ζ;λ) =
{
αL+1 ◦ βL ◦ αL ◦ · · · ◦ β1 ◦ α1(x) for L ≥ 2,
αL+1 ◦ β1 ◦ α1(x), for L = 1,

(9)

where the input of the network is ζ ∈ Rnin and the output
is η ∈ Rnout , and λ denotes the network parameters. The
number of hidden layers L and of neurons in each layer
M determine the size of the neural network. If L = 1, the
neural network is denoted as shallow, while deep neural
networks have L ≥ 2. Each hidden layer is composed of an
affine function

αl(ξl−1) = Wlξl−1 + bl, (10)

where ξl−1 ∈ RM is the output of the previous layer and
ξ0 = ζ, as well as a nonlinear nonlinear activation function
βl. The nonlinear activation function is a design parameter
and usual choices include the rectifier linear units (ReLU ),
the sigmoid function and the hyperbolic tangent (tanh)
which is used in this work:

βl(αl) =
eαl − e−αl
eαl + e−αl

. (11)

The parameters of all layers are summarized in λ =
{λ1, . . . , λL+1} with

λl = {Wl, bl} ∀l = 1, . . . , L+ 1, (12)

where Wl are the weights and bl are the biases describing
the corresponding affine functions. The neural network is
trained using a set of training input-output data pairs
{(ζ(1), η(1)), . . . , (ζ(Ns), η(Ns))} where Ns is the number of
training data points. The training consists of finding the
parameters Wl, bl that minimize the mean squared error,
by solving the following optimization problem for a fixed
value of L and M :

λ∗ = arg min
λ

1

Ns

Ns∑
i=1

(η(i) −N (ζ(i);λ))2. (13)
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4.1 Input and output structure

In our proposed Algorithm 1, we use DNNs to jointly learn
the discrete-time and algebraic equations in (1) for the
clustered variables (8). Fig. 4 illustrates the structure of
the proposed model. We use as inputs the current clustered
junction demands d̄(k), the tank level b(k), the current
pump speed q(k) and valve position v(k). As output we
have the current mean value of the normalized pressures at
each junction p̄(k), the current pump energy consumption
e(k) and the change of tank level ∆b(k). This allows to
compute the tank level at the next time step as:

b(k + 1) = b(k) + ∆b(k). (14)

Choosing the change of tank level versus the next tank
level was found to be beneficial for the model accuracy
and can be seen as an adaptive normalization. In practice
it leads to smoother, more realistic predictions.
In summary, we have:

ζ =
[
d̄(k), b(k), q(k), v(k)

]
∈ R41 (15a)

η = [p̄(k),∆b(k), e(k)] ∈ R37 (15b)

Note that we can compute approximate values of the
pressure in each junction i by rescaling the normalized
pressure in cluster j value with its respective scaling factor:

pi ≈ fp,ip̄j , i ∈ Cj (16)

In many cases we are only interested in the lowest pressure
within one cluster, for which we compute:

fmin,j = min({fi | i ∈ Cj}), (17a)

pclustmin,j ≈ fmin,j p̄j . (17b)

The learned model can be evaluated recursively to achieve
the desired prediction horizon in an MPC framework.

4.2 Training and model comparison

All data points used for training are obtained by running
EPANET simulations with randomized demand scenar-
ios and different controllers. The training is done using
Tensorflow (Abadi, 2015) via Keras (Chollet et al., 2015).
We are choosing Adam (Kingma and Ba, 2014), a variant
of stochastic gradient descent, as optimizer to solve the
problem (13). Training data was normalized, such that
|ζ̄(i)| ≤ 1 and |η̄(i)| ≤ 1 ∀i = 1, . . . , ntrain. We investigated

0 1000 2000 3000 4000 5000
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n
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g
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ss
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1x200 Neurons

Fig. 5. Comparison of training loss for two investigated
neural network architectures with the same number
of neurons (nonlinear activations). Model 1 (L = 4,
M = 50) with 11,637 weights and Model 2 (L = 1,
M = 200) with 15,837 weights.

a number of models with different hyper parameters but
limited our search space to architectures that are still
feasible to optimize in real time. The training progress
(mean squared error in (13)) for two investigated models
that fulfil this criteria are displayed in Fig. 5. We showcase
a shallow vs. a deep architecture with the same number of
neurons. The deep architecture with L = 4, M = 50 has a
total of 11,637 weights, whereas the shallow architecture
with L = 1, M = 200 results in 15,837 weights. The
training progress in Fig. 5 shows that the deep architecture
achieves a significantly better performance. Similar differ-
ences between deep and shallow architectures are observed
with a smaller number of neurons, leading to worse overall
performance. On the other hand, larger architectures only
show marginal improvements.
We also investigated a simple linear model for the same
input structure and data as for the neural networks. The
resulting loss was 3.67× 10−3, which is one order of mag-
nitude larger than the the best obtained neural network.
Because of the higher training and validation accuracy,
we choose the deep learning model as prediction model
embedded in the economic NMPC framework explained
in the next section.
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5. ECONOMIC NONLINEAR MODEL PREDICTIVE
CONTROL FORMULATION

For the energy optimal control of the investigated WDN
we propose the following economic nonlinear MPC formu-
lation:

minimize
u(0),...,u(N−1)
x(0),...,x(N)
ε(0),...,ε(N−1)

N−1∑
k=0

αee(x(k), u(k), d̄(k))

+ αεε(k) + αu∆u(k) (18a)

subject to: x(k + 1) = f(x(k), z(k), u(k), d̄(k)), (18b)

z(k) = h(x(k), u(k), d̄(k)), (18c)

g(x(k), z(k), u(k), d̄(k), ε(k)) ≤ 0, (18d)

x0 = xinit, (18e)

for k = 0, . . . , N − 1. (18f)

The first term in the mixed objective cost function in (18a)
denotes the energy consumption of the pumps. If available,
time-varying electricity prices can be incorporated in the
formulation. In this work, we consider constant prices so
that the economic operation cost is determined by the
pump energy consumption which is part of the DNN
output (15). Furthermore, we include slack variables ε to
allow for soft constraints in (18d). The complete set of
constraints is defined in (20). The last term of the cost
function in (18a) penalizes rapid changes of the control
input ∆u(k). We introduce the tuning factors αe, αε, αu
to balance the different terms of the objective function.
The difference equation (18b) and the algebraic equa-
tions (18c) that describe the dynamic and algebraic states
are described by the surrogate model of the clustered
network described in the previous subsection. A DNN as
depicted in Fig. 4 computes the next state x(k + 1) and
the algebraic states z(k) as

[x(k + 1)T , z(k)T ]T = N (d̄(k), x(k), u(k)). (19)

The constraints in (18d) describe the maximum and min-
imum tank levels, as well as the input constraints for
pumps and valves for all steps in the prediction horizon
k = 0, . . . , N − 1:

bmin,i ≤ bi(k) + εtank(k) ≤ bmax,i, ∀i = 1, . . . , ntanks, (20a)

pmin,i ≤ pclustmin,i(k) + εclustmin,i(k) ∀i = 1, . . . , nclusters, (20b)

vmin,i ≤ vi(k) ≤ vmax,i, ∀i = 1, . . . , nvalves, (20c)

qmin,i ≤ qi(k) ≤ qmax,i, ∀i = 1, . . . , npumps, (20d)

0 ≤ e(k), (20e)

0 ≤ ε(k). (20f)

As described in Section 3 and 4, we can compute the
minimal pressure in each cluster from (17), which implic-
itly considers the constraint for all 378 junctions while
only incorporating nclusters = 25 constraints. The above
mentioned slack variables for soft constraints are used
for the tank level as well as the minimal pressure for
each cluster. Since we are following an economic MPC
formulation, softening these constraints is necessary as
we are usually in their proximity. Having soft constraints
on tank levels and pressures is unintuitive, but results
from the demand-driven simulation that is implemented
in EPANET. This modelling approach ensures that de-
mands are satisfied, even when water cannot be supplied,
thus resulting in negative pressures. Especially, when tank
levels are close to zero, this scenario is bound to happen

Table 1. Comparison of different MPC solu-
tions with the reference controller for different

lower bounds of the tank levels.

MPC for different bmin Ref.

1.5 0.5 0.0

energy [MWh] 106.49 105.56 99.97 111.57
energy saved [%] 4.55 5.39 10.39 -

cons. viol. [%] 0.05 0.13 0.51 0.0
avg. cons. viol. [m] 2.13 5.12 5.17 0.00

as tanks are the only storage terms in the network. For
all other nodes, EPANET assumes stationary conditions
under all circumstances. Therefore, we have to interpret
negative pressures as not fully satisfied demand, which is
undesirable but acceptable on rare occasions. To deal with
unavoidable model uncertainty, and following ideas from
tube-based MPC Mayne and Rawlings (2009), we tighten
the constraints on the tank levels by increasing the lower
bounds (bmin).

6. RESULTS

Due to the economic formulation of the MPC objective
function in (18a), the main focus of investigating the
proposed controller is energy consumption, while ensuring
that the demand is satisfied under varying conditions. This
can be realized by introducing a constraint tightening, i.e.
increasing the lower bound on the tank levels in the form
of a soft constraint. We investigate several options for the
lower bound bmin, which is applied to all tanks. The effect
of this lower bound for the tank levels is demonstrated
in Fig. 6, where we compare two different bmin values for
the proposed MPC approach with the original rule-based
controller. In this rule-based controller originally included
in C-Town, pumps and valves are opened (closed) only
when tank levels reach minimum (maximum) threshold
values to guarantee the system can satisfy the expected
demand. As expected, economic operation of the system
leads to lower tank levels in general. At least one tank level
(T1) remains close to zero. The effect of the increased lower
bound bmin is visible in the mean values of the tank levels
over time (horizontal lines in Fig. 6).
In Table 1 we showcase the energy consumption of the

pumps over the simulation period of one month for the
three investigated MPC controllers, as well as the rule-
based reference controller. The computed energies are also
expressed as relative savings in comparison to the reference
controller. Furthermore, we display the constraint viola-
tion, expressed as percentage of instances where pi < 0
over all nodes and time steps, as well as the mean con-
straint violation.

As we can see in Table 1, our proposed MPC controller
leads to energy savings as high as 10.39% if no tightening
of constraints is used (bmin = 0). This comes at the cost
of increased constraint violations, meaning that we cannot
satisfy the demand in isolated instances. Nevertheless, con-
straint violations occur only during 0.51% of the operating
time for each node. Constraint violations can be further
reduced by tightening the lower bound of the tank level as
shown in Table 1, achieving a trade-off between constraint
violations and energy savings.
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Fig. 6. Temporal evolution of the tank levels (system states) over the course of the simulation time (one month).
Comparison of different values for the lower bound (soft constraint) for two EMPC solutions with the original
rule-based controller. The mean value of the tank levels over time is marked with a horizontal line.

Table 2. MPC performance with bmin = 0.5 m
with error in the water demand predictions.

Error demand predictions

0% ±20%

energy [MWh] 105.56 105.11
energy saved [%] 5.39 5.80

cons. viol. [%] 0.13 0.32
avg. cons. viol. [m] 5.12 9.59

Solving our proposed nonlinear MPC problem at each time
step requires on average 2.5 s on a standard laptop, which
enables the real-time implementation of the method.

6.1 Robust economic NMPC

Another feature of the proposed algorithm is its implicit
robustness to demand uncertainty, which is a common
problem for WDN. This features arises from the applied
clustering method, where the demand for each node in
a given cluster is summed to form an aggregated cluster
demand. Fluctuations of individual nodes within a cluster
are likely to compensate each other, especially for larger
clusters. We investigate the robustness of our approach by
disturbing the demand prediction with uniform noise in
the range of ±20 %. The comparison of energy consump-
tion and constraint satisfaction for the case of bmin = 0.5 m
are given in Table 2. The results show that the proposed
NMPC scheme is able to robustly control the system even
under the presence of significant uncertainty in the water
demand forecasts.

7. CONCLUSIONS

Optimal operation of distribution water networks is a
challenging problem due the large-scale and nonlinear
nature of the system as well as the presence of important
uncertainty and constraints. To deal with this problem,
this paper proposes first to perform a clustering based on
normalized pressures to reduce significantly the number of
nodes that need to be explicitly considered in the model.
We then obtain a control-oriented surrogate model based

on the EPANET simulator, any other available simulator
or real data and show that the use of deep learning
networks leads to a better surrogate accuracy compared
to standard shallow networks or linear models.

The deep learning-based surrogate model is embedded in
an efficient nonlinear model predictive control framework
that directly optimizes the economic performance of the
system. By means of a simulation study of the C-town
benchmark, we show that the proposed strategy leads to
energy savings over 10% and, because of the proposed
clustering, it is very robust to uncertain water demand
predictions and it can be used in real time. The frame-
work and the data used to obtain the results are openly
available.

Future work includes the analysis of more advanced robust
MPC strategies Lucia et al. (2013); Sampathirao et al.
(2018) and stochastic approaches Lorenzen et al. (2017)
that can consider other sources of uncertainty explicitly.
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