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Abstract: A problem of optimal node activation in large-scale sensor networks is considered.
The resulting measurements are supposed to be used to estimate unknown parameters of a
spatiotemporal process described by a partial differential equation. In this setting, the sensor
subset selection problem may quickly become computationally intractable when an excessively
complex sensor location algorithm is employed. The is even more pronounced when the design
criterion is nondifferentiable. A vital example of this criterion is the sum of an arbitrary number
of smallest eigenvalues of the Fisher information matrix, being a generalization of the well-known
E-optimality criterion. A simple branch-and-bound algorithm is exposed here to maximize
this criterion. Its key component to produce upper bounds to the maximum of the objective
function implements a relaxation procedure for solving semi-infinite programming problems. It
alternates between solving a linear programming subproblem and evaluation of the eigenvalues
and eigenvectors of the current information matrix, which makes it extremely easy to implement.
The paper is complemented with a numerical example of computing actual sensor locations.

Keywords: distributed parameter systems, parameter estimation, optimal experiment design,
sensor systems, global optimization.

1. INTRODUCTION

The importance of the sensor location problem for dis-
tributed parameter systems (DPSs) has been recognized
in many application domains, cf. Kubrusly and Male-
branche (1985), Uciński (2005). One of them is parameter
estimation whose accuracy conditions the quality of the
underlying mathematical model, which is most often a
partial differential equation (PDE).

Technical limitations make it desirable to determine best
sensor positions prior to the actual data collection. This
makes statistical experimental design, see Atkinson et al.
(2007) or Pronzato and Pàzman (2013), the most appropri-
ate framework to formulate the problem mathematically.
Therefore, various scalar performance measures defined on
the Fisher information matrix (FIM) associated with the
estimated parameters are traditionally used to quantify
the estimation accuracy. The approach has been followed
in the bulk of the literature since the seminal works by
Rafaj lowicz (1981). For overviews of this active research
area till the 2010s, see the monographs by Uciński (2005)
and Patan (2012).

In the last decade considerable progress has been made
via inclusion of the unknown initial state as an additional
unknown parameter. This makes the resulting parameter
space infinite dimensional and the overall inverse problem
ill-posed, which is reflected by extreme unstability of the
estimates even for very low noise in the data. A panacea is
the Bayesian framework which takes account of prior sta-

tistical information about the unknown parameters and/or
states, see, e.g., works by Alexanderian et al. (2014), Haber
et al. (2010), Gejadze and Shutyaev (2012). At present,
however, a considerable inconvenience caused by this ap-
proach are still the attendant large-scale computations.

Most methods of sensor location carry out a search of a
predefined finite (but possibly very large) set of candidate
locations. This can also equivalently be interpreted as the
sensor selection problem in which the observation system
comprises a large number of candidate sensors whose
positions are already specified and only a subset from
among them are supposed to be activated, while keeping
the other sensors dormant. This setting corresponds to the
operation of sensor networks, see Tricaud and Chen (2012).
With no loss of generality, this setting will be adopted in
what follows.

The main impediment to progress in sensor selection is
its combinatorial nature. For moderate-size problems, a
branch-and-bound technique was proposed by Uciński and
Patan (2007) to reduce the search space. On the other
hand, for large-scale sensor networks continuous relax-
ations were advocated. Specifically, Patan and Uciński
(2016) looked for an optimal density of active sensors
instead of the individual positions of active sensors. But
in most approaches, however, the 0–1 constraints on the
decision variables indicating whether or not the sensors
are active are relaxed by allowing them to additionally
take any fractional values in the interval [0, 1]. In this way,
a convex optimization problem is obtained, which paves
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the way for application of a plethora of computationally
efficient algorithms. These include primarily interior point
methods as described by Joshi and Boyd (2009), which
are usually applied to problems cast as semidefinite pro-
gramming ones, cf. Chepuri and Leus (2015), or polyhedral
approximation methods, see Uciński and Patan (2007) and
Herzog et al. (2018). In addition, efficient algorithms of
constrained optimum experimental design can be almost
directly applied here, see Harman and Benková (2017).
When combined with some sparsity-enhancing schemes
and rounding, cf. Chepuri and Leus (2015) and Patan
and Uciński (2017), they can be used to produce approx-
imations to the solutions of the original NP-hard discrete
sensor selection problem.

The above-mentioned methods are primarily focused on
smooth optimality criteria. An important criterion which
does not fall into this class is the E-optimality criterion
(the minimum eigenvalue of the FIM). Maximizing it with
respect to the sensor locations, we minimize the length
of the largest axis of the uncertainty ellipsoid for the
estimates. This criterion turns out to be nondifferentiable
when the minimum eigenvalue of the FIM is multiple. It
is easy to show, see Joshi and Boyd (2009) or Uciński
(2005, p. 61), that the corresponding relaxed problem can
be reformulated in terms of an LMI-constrained convex
minimization problem, but when the number of candidate
sensors grows, solving SDP problems becomes computa-
tionally demanding and the interior-point solvers quickly
run into time and memory issues on mediocre computers.

Instead, Pronzato and Pàzman (2013, p. 326) made use of
the formulation in terms of a semi-infinite programming
problem and applied the relaxation algorithm set forth
by Shimizu and Aiyoshi (1980), which resulted in an ex-
tremely simple computational scheme alternating between
computing the eigenvalue of a matrix and solving a linear
programming problem. The approach has then extended
by Burclová and Pázman (2016) for the case of the Ek-
optimality criterion (the sum of k smallest eigenvalues of
the FIM). These results remain, however, quite obscure in
the engineering literature.

This paper is aimed at adopting the algorithm of Bur-
clová and Pázman (2016) for Ek-optimality to the sensor
selection problem. To this end, this algorithm is combined
with the branch-and-bound scheme, whose structure was
set forth by Uciński and Patan (2007), to compute Ek-
optimal locations of active sensors. Thus, applicability
of the methodology of Burclová and Pázman (2016) has
substantially been extended. The resulting extremely effi-
cient scheme based on a sequence of linear programming
problems serves here as tool to produce upper bounds to
the maximum of the objective function in traversing the
branch-and-bound tree.

2. Ek-OPTIMAL SENSOR ACTIVATION

Consider a bounded spatial domain Ω ⊂ Rd with a
sufficiently smooth boundary Γ, and a bounded time
interval T = (0, tf ]. Over the spatiotemporal domain Ω×T
a DPS is defined, which is decribed by a PDE. Its scalar
state at a spatial point x ∈ Ω̄ ⊂ Rd and a time instant
t ∈ T̄ is denoted by y(x, t;θ) (the bar over a set denotes
its closure). Here θ ∈ Rm stands for a vector of unknown

parameters in the PDE which must be estimated using
observations of the state.

Let xi, i = 1, . . . , N be given spatial positions of candidate
sensor network nodes. It is assumed here that, over the
time interval T , the state y is observed continuously in
time by n < N active sensors selected from among N
candidate points (N − n nonselected sensors will remain
dormant). Introducing for each location xi a variable vi
which takes the value 1 or 0 depending on whether or not
a sensor located at xi is active over T , respectively, we can
represent the observations obtained from network nodes as
follows:

zi(t) = vi
[
y(xi, t;θ) + ε(xi, t)

]
, i = 1, . . . , N (1)

for t ∈ T , where ε(xi, t) denotes the measurement noise.
It is customary to assume that the noise is zero-mean,
Gaussian and white.

The accuracy of the resulting least-squares estimates of
θ depends on the selection of gauged sites. A quanti-
tative measure Φ of the ‘goodness’ of particular sensor
configurations is customarily based on the concept of the
Fisher Information Matrix (FIM) which is widely used in
optimum experimental design theory for lumped systems,
cf., Atkinson et al. (2007) or Pronzato and Pàzman (2013).
In our setting, the FIM is given by

M(v) =

N∑
i=1

viM i, (2)

where v = (v1, . . . ,vN ),

M i =

∫
T

g(xi, t)g(xi, t)> dt, i = 1, . . . , N. (3)

Here

g(x, t) =

[
∂y(x, t;ϑ)

∂ϑ1
, . . . ,

∂y(x, t;ϑ)

∂ϑm

]>
ϑ=θ0

(4)

stands for the sensitivity vector (see (Uciński, 2005,
Ch. 2.6) for its computation for a given PDE), θ0 being
a prior estimate to the unknown parameter vector θ, cf.
Uciński (2005). It is easy to check that the m×m matrices
M i are nonnegative definite and, therefore, so is M(v).

As for a specific form of Φ, we are focused on the Ek-
optimality criterion of Burclová and Pázman (2016),

Φ(M) =

k∑
`=1

λ`(M), (5)

where λ1(M) ≤ · · · ≤ λm(M) denote the eigenvalues
of M in increasing order. For k = 1 (5) simplifies to
the well-known E-optimality criterion. Note that (5) is
isotonic, i.e., it preserves Loewner’s ordering (this means
that M1 � M2 implies Φ(M1) ≥ Φ(M2)), and concave
over the cone of nonnegative definite matrices (Marshall
et al., 2011, Fact F.3, p. 688).

Our design problem is thus formulated as follows:

Problem P: Find a sequence v = (v1, . . . , vN ) ∈ RN to
maximize

P(v) = Φ
(
M(v)

)
(6)

subject to the constraints
N∑
i=1

vi = n, vi ∈
{

0, 1
}
, i = 1, . . . , N. (7)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7630



3. BRANCH-AND-BOUND SCHEME

3.1 General Idea

The branch-and-bound (BB) is a general technique for
finding optimal solutions of combinatorial optimization
problems. Set I =

{
1, . . . , N

}
. We then partition the

feasible set

V =

{
v ∈ [0, 1]N

∣∣∣ N∑
i=1

vi = n, vi = 0 or 1, ∀i ∈ I
}
,

(8)
into subsets

V (I0, I1) =
{
v ∈ V | vi = 0, ∀i ∈ I0, vi = 1, ∀i ∈ I1

}
,

(9)
where I0 and I1 are disjoint subsets of I. Consequently,
V (I0, I1) is the subset of V such that sensors are active
at the locations with indices in I1, sensors are dormant at
the locations with indices in I0, and sensors may be active
or dormant at the remaining locations.

Each subset V (I0, I1) is identified with a node in the BB
tree. The key assumption in the BB method is that for
every nonterminal node V (I0, I1), i.e., the node for which
I0∪I1 6= I, there is an algorithm that determines an upper
bound P(I0, I1) to the maximum value of design criterion
over V (I0, I1), i.e.,

P(I0, I1) ≥ max
v∈V (I0,I1)

P(v), (10)

and a feasible solution v ∈ V for which P(v) can serve as a
lower bound to the maximum design criterion over V . We
may compute P(I0, I1) by solving the following relaxed
problem:

Problem R(I0, I1): Find a sequence v to maximize (6)
subject to the constraints

N∑
i=1

vi = n, (11)

vi = 0, i ∈ I0, (12)

vi = 1, i ∈ I1, (13)

0 ≤ vi ≤ 1, i ∈ I \ (I0 ∪ I1). (14)

In Problem R(I0, I1) all 0–1 constraints on the variables
vi are relaxed by allowing them to take any value in the
interval [0, 1], except that the variables vi, i ∈ I0 ∪ I1 are
fixed at either 0 or 1. A simple and efficient method for its
solution is given in Section 4. As a result of its application,
we set P(I0, I1) = P(v).

As for v, we can specify it as the best feasible solution
(i.e., an element of V ) found so far. If no solution has been
found yet, we can either set the upper bound to −∞, or
use an initial guess about the optimal solution (experience
provides evidence that the latter choice leads to much more
rapid convergence).

3.2 Branching Rule and BB Algorithm

The result of solving Problem R(I0, I1) can serve as a
basis to construct a branching rule for the binary BB tree.
We adopt here the approach in which the tree node/subset
V (I0, I1) is expanded (i.e., partitioned) by first picking out
all fractional values from among the values of the relaxed

variables, and then rounding to 0 and 1 a value which is
the most distant from both 0 and 1. Specifically, we apply
the following steps:

(i) Determine

i? = arg min
i∈I\(I0∪I1)

|vi − 0.5|. (15)

(In case there are several minimizers, randomly pick
one of them.)

(ii) Partition V (I0, I1) into sets V (I0 ∪
{
i?
}
, I1) and

V (I0, I1∪
{
i?
}

) whereby two descendants of the node
in question are defined.

A recursive application of the branching rule starts from
the root of the BB tree, which corresponds to the trivial
subset V (∅, ∅) = V and the fully relaxed problem. Each
node of the BB tree corresponds to a continuous relaxed
problem, R(I0, I1), while each edge corresponds to fixing
one relaxed variable at 0 or 1.

The above scheme is complemented with the depth-first
search strategy to incrementally explore all the nodes of
the BB tree implemented as Algorithm 1. The operators
involved in this implementation are as follows:

• Singularity-Test(I0, I1) returns true only if ex-
pansion of the current node will result in a singular
FIM, see Uciński and Patan (2007) for details.

• Relaxed-Solution(I0, I1) returns a solution to
Problem R(I0, I1).

• Phi-FIM(v) evaluates the design criterion Φ at the
FIM corresponding to v.

• Integral-Test(v) returns true only if the current
solution v is integral.

• Index-Branch(v) returns the index defined by (15).

4. ALGORITHM FOR THE RELAXED PROBLEM

Let r = n−|I1|, q = I−|I1∪I0| (for a set A the notation
|A| means its cardinality). Consider any bijection π from
{1, . . . , q} to I\(I1∪I0) such that wj = vπ(j), j = 1, . . . , q.

Accordingly, we obtain the following formulation:

Problem R′(I0, I1): Find a sequence w = (w1, . . . , wq) ∈
Rq to maximize

Q(w) = Φ
(
G(w)

)
(16)

subject to the constraints
q∑
j=1

wj = r, 0 ≤ wj ≤ 1, j = 1, . . . , q, (17)

where

G(w) = A+

q∑
j=1

wjSj , A =
∑
i∈I1

M i, (18)

Sj = Mπ(j), j = 1, . . . , q. (19)

(Note that |I1| sensors have already been activated at
locations xi, i ∈ I1, and thus a decision about the
activation of r remaining sensors has to be made.)

In the sequel, W will stand for the set of all vectors w
satisfying (17). Note that it forms a polyhedral set in Rq.

Using the minimum principle (see Appendix A), we can
express (16) as

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7631



Algorithm 1 A recursive version of the depth-first
branch-and-bound method. It uses two global variables,
LOWER and v best, which are respectively the maximal
value of the design criterion over feasible solutions found
so far and the solution at which it is attained.
1: procedure Recursive-DFBB(E0, E1)
2: if I0 ∪ I1 = I then . Deepest level of the BB

tree has been attained
3: phi v← Phi-FIM(v(E0, E1) )
4: if phi v > LOWER then
5: v best← v(I0, I1)
6: LOWER← phi v
7: end if
8: return
9: end if

10: if Singularity-Test(I0, I1) then
11: return . Only singular FIMs can be expected
12: end if
13: v relaxed← Relaxed-Solution(I0, I1)
14: phi relaxed← Phi-FIM(v relaxed )
15: if phi relaxed ≤ LOWER then
16: return . Pruning
17: else if Integral-Test(v relaxed ) then
18: v best← v relaxed
19: LOWER← phi relaxed
20: return . Relaxed solution is integral
21: else
22: i? ← Index-Branch(v relaxed ) . Partition

into two descendants
23: Recursive-DFBB(I0 ∪

{
i?
}
, I1)

24: Recursive-DFBB(I0, I1 ∪
{
i?
}

)
25: end if
26: end procedure

Q(w) = min
S∈S

trace(S>G(w)S)

= min
S∈S

q∑
j=1

wj trace(S>M iS)
(20)

where S =
{
S ∈ Rm×k | S>S = Ik

}
. In this way, maxi-

mization of Q(w) becomes a maximin optimization prob-

lem, as we seek w? = arg maxw∈W minS∈S trace(S>BS).
Specifically, it can be formulated as the following semi-
infinite programming (SIP) one: Find w ∈ W and an
auxiliary scalar α so as to maximize α subject to the
infinite set of constraints{

q∑
j=1

wj trace(S>M iS) ≥ α, S ∈ S

}
. (21)

Various numerical approaches to solving SIP problems are
characterized, e.g., in (Hettich and Kortanek, 1993). In
practice, however, the simple relaxation algorithm pro-
posed by Shimizu and Aiyoshi (1980), as was also sug-
gested by Burclová and Pázman (2016), turns out to per-
form very well. It consists in relaxing the problem by tak-
ing account only of a finite number of constraints (21). The
tailored version of the relaxation procedure is presented as
Algorithm 2. Note its striking simplicity, as it alternates
between computing the eigenvalues and eigenvectors of a
matrix and solving a linear-programming problem. Thus
it can be implemented with great ease. What is more, it is
naturally applicable to large-scale problems.

Algorithm 2 Algorithm solving the SIP problem.

Step 0: (Initialization)
Set

w(0) = (r/q, . . . , r/q︸ ︷︷ ︸
q times

).

and S(0) = ∅. Select 0 < ε� 1, a parameter used in the
stopping rule, and set τ = 0.

Step 1: (Solution of the eigenproblem)
Determine

S(τ) = arg min
S∈S

trace(S>G(w(τ))S)

=
[
q1(G(w(τ))) . . . qk(G(w(τ)))

]
,

(22)

where q1(G(w(τ))), . . . , qk(G(w(τ))) are orthonormal
eigenvectors of G(w(τ)) corresponding to the eigenval-
ues λ1(G(w(τ))), . . . , λk(G(w(τ))).

Set S(τ+1) = S(τ) ∪
{
S(τ)

}
.

Step 2: (Solution of the linear programming problem)
Find (w(τ+1), α(τ+1)) to maximize α(τ+1) subject to the
constraints

q∑
j=1

w
(τ+1)
j trace(S>M iS) ≥ α(τ+1), S ∈ S(τ+1).

(23)
Step 3: (Termination check)

If
Φ(G(w(τ))) ≥ α(τ+1)(1− ε) (24)

then w(τ) is an approximation to the sought maximin
solution. Otherwise, increment τ and go to Step 1.

5. NUMERICAL EXAMPLE

Consider the heat equation modelling the temperature
evolution in an anisotropic rectangular square copper plate

∂y(x, t)

∂t
=

∂

∂x1

(
µ(x;θ)

∂y(x, t)

∂x1

)
+

∂

∂x2

(
µ(x;θ)

∂y(x, t)

∂x2

)
+ u(x, t),

x ∈ Ω = (0, 1)× (0, 1), t ∈ (0, 1) (25)

subject to the homogeneous initial and boundary condi-
tions. The diffusion coefficient to be identified has the
form µ(x;θ) = θ1 + θ2x1 + θ3x2 + θ4x

2
1 + θ5x1x2 + θ6x

2
2.

The assumed nominal value θ0 necessary to determine the
sensitivity coefficients is

θ0 = (0.2,−0.05, 0.2,−0.1, 0.05,−0.2). (26)

It defines the quadratic surface displayed in Fig. 1.

As regards the forcing term in our model, it has the form

u(x, t) = 20 exp
(
−50(x1 − t)2

)
. (27)

It models the action of a line heat source which is oriented
parallely to the x2-axis and moves with a constant speed
from the left to the right boundary of square domain Ω.
The corresponding evolution of the state variable y(x, t)
is shown in Fig. 2.

A uniform mesh of N = 31 × 31 = 961 candidate points
was assumed as the set of sites where sensor network nodes
are placed (they are marked with dots in Fig. 3). Our
purpose is activate best n = 100 sensors from among them,
as quantified by the Ek-optimality criterion, in order to
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estimate µ (i.e., the parameters θ1–θ6) as accurately as
possible.

Basically, the number of eigenvalues strongly influences
the results. When the number of eigenvalues included in
the criterion is low, the active sensors attempt to cluster in
regions where the value of µ(x) is low, as the sensitivity to
changes in the value of this coefficient is the highest there.
An increase in the number k of the eigenvalues included
in the criterion results in a decrease in the number of
sensor clusters. If all the eigenvalues are included, which
corresponds to maximizing the trace of the FIM, only one
group of sensors is formed.

The size of the solutions space is
(
961
100

)
> 9 × 10137.

The optimal solutions displayed in Fig. 3 were obtained
in no more than 30 seconds on a decent laptop (In-
tel(R) Core(TM) i7-6700HQ 2.60GHz, 24 GB RAM) run-
ning Windows 10 and Matlab 2016b. The state and
sensitivity equations were solved using the Partial Dif-
ferential Equation Toolbox. The parameter required by
Algorithm 2 was set as ε = 10−5. This fine performance
was possible owing to a good initial lower bound to the
optimal solution. It was obtained by solving a fully relaxed
problem and activating sensors which corresponded to the
largest relaxed weights. Otherwise, the solutions obtained
by literally following Algorithm 1 consumed about five
minutes of the CPU time, which is not bad, either.

6. CONCLUDING REMARKS

An alternative approach to select a best n-element subset
of active sensors from among a given N -element set
of all candidate sensors could be to employ a greedy
exchange algorithm, see, e.g., (Uciński, 2005, p. 105).
This strategy is very popular in practice. Such algorithms
begin with an n-point starting sensor configuration which
then sequentially evolves through addition of new elements
selected from among dormant sensors and deletion of sites
at which active sensors have provisionally been planned,
in an effort to maximally increase the value of the Ek-
optimality design criterion. It goes without saying that
such an approach would outperform the BB technique
proposed here as far as the running time is concerned.
Note, however, that greedy exchange algorithms are only
capable of finding globally competitive solutions (i.e.,
nearly optimal ones), with an explicit trade-off between
global optimality and speed. The approach presented here
is superior in the sense that it always produces global
maxima and, what is more, does it within tolerable time.
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Patan, M. and Uciński, D. (2016). Cost-constrained
D-optimum node activation for large-scale monitoring
networks. In 2016 American Control Conference (ACC),
1643–1648. doi:10.1109/ACC.2016.7525152.
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Fig. 2. Temperature at consecutive time moments.
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Fig. 3. Ek-optimal locations of activated sensors.
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Appendix A. MINIMUM PRINCIPLE

The following result can be found, e.g., in (Harville, 1997,
Theorem 21.12.4,p. 556):

Theorem 1. Let B ∈ Rm×m be symmetric with (not
necessarily distinct) eigenvalues λ1 ≤ · · · ≤ λm. Then for
all k = 1, . . . ,m we have

k∑
`=1

λ`

= min
{

trace(S>BS) | S ∈ Rm×k and S>S = Ik
}
,

(A.1)

where Ik is the k × k identity matrix. The minimum
on the right-hand side is attained if the columns of
S are orthonormal eigenvectors of B corresponding to
λ1, . . . , λk, respectively.
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