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Abstract: We investigate an adaptive path following problem for a nonholonomic mobile
manipulator system and closed planar curves. As opposed to adapting to uncertain or unknown
dynamics in the plant, we apply an adaptation approach with respect to an unknown path.
First, we present a solution to the non-adaptive path following problem using the concept of
a path following output. Then, we use an indirect adaptive control approach to design path
following controllers for a feasible class of strictly convex paths.
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1. INTRODUCTION

In robotic applications, path following problems involve
the design of feedback controllers that drive a certain
physical feature of a robotic system towards a known
geometric path with a predetermined desired motion about
the path (Hladio et al. (2013)). In many of these applica-
tions, the robotic system lacks global information about
the path to follow. For example, an autonomous car when
driving on an unknown road may not know more than
the next 20 or so metres of the road, or in a warehouse
setting, where the routes the automated ground vehicles
follow may change frequently in real-time.

Lack of complete global information about the path to
follow introduces interesting challenges to the research and
development of path following control. Motivated by these
challenges, in what follows we build up to the adaptive
path following problem and our goal is to design a path
following controller that adapts to unknown and strictly
convex paths for a nonholonomic mobile manipulator. This
stands in contrast to the classical adaptive motion control
approach of designing controllers that adapt to uncertain
parameters present in the system’s model (Li et al. (2008,
2010); Wang et al. (2010); Meng et al. (2012)), i.e., in our
case we assume our dynamics are known but take the path
to be unknown.

We begin by proposing a solution to the non-adaptive path
following problem for a nonholonomic mobile manipulator
using the notion of a path following output (Li and Nielsen
(2016)) to design an input-output feedback linearizing
controller with its associated normal form for arbitrary,
smooth, closed paths; we apply it to the circular path
case. There are drawbacks associated with our proposed
controller when applied to arbitrary closed paths; to over-
come these drawbacks for strictly convex paths we apply a
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of Mexico.

circular approximation to the path by means of an osculat-
ing circle representation and under some mild assumptions
propose a second solution to the path following problem
of strictly convex paths by using a modified version of the
circular path following controller.

Then we transition into the adaptive path following prob-
lem. We start by presenting an algorithm for circular path
parameter estimation that in addition to estimating the
center of a desired target circle, aligned with distance-
measurement based target localization studied in (Dan-
dach et al. (2009)), estimates the radius of the target circle.
Thereafter, we design a path following controller with an
indirect adaptive control approach for unknown circular
paths. Lastly, we extend our results to the path following
adaptation of unknown strictly convex paths by estimating
the osculating circle of the path at a point on the path and
apply an indirect adaptive path following control approach
similar to the one developed for circular paths, however,
this time with respect to the estimated osculating circle.

In this paper, the symbol := means equal by definition
and ‖ · ‖ denotes the Euclidean norm of a vector. The
composition of maps s and h is written s ◦ h. The unit
circle is denoted by S1. The differential of a function f
evaluated at x is written as dfx.

2. PROBLEM FORMULATION

2.1 Mathematical Model

We study a mobile manipulator consisting of a two-
link manipulator mounted on a differential drive mobile
base robot. We assume that the manipulator’s links have
their masses concentrated at their endpoints. Referring to
Figure 1, the configuration manifold is Q := S1×S1×R2×
S1 and we choose coordinates q := [θ1 θ2 xb yb θh]>. The
control inputs to our system are taken to be torques τ1 and
τ2 applied at joints 1 and 2 respectively; the translational
acceleration a of the base and the angular acceleration α of
the base’s heading angle θh and define u := [τ1 τ2 a α]>.
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Fig. 1. Schematic diagram of two-link mobile manipulator.

Following standard Euler-Lagrange modelling techniques,
the system’s model can be expressed as

q̇ = G(q)v,

v̇ = −M−1(q)m(q, v) +M−1(q)G>(q)B(q)u,
(1)

where v = [θ̇1 θ̇2 v θ̇h]> ∈ R4, with v equal to the
translational speed of the base, and

B(q) = G(q) =


1 0 0 0
0 1 0 0
0 0 cos(θh) 0
0 0 sin(θh) 0
0 0 0 1

 . (2)

Let `1, `2 be, respectively, length of link 1 and 2, mb is the
mass of base, m1 is the mass of link 1, m2 is the mass of
link 2, and Iz is the moment of inertia of the mobile base
about the axis of rotation at its centre of mass. Then

M(q) =

M11(q) M12(q) M13(q) 0
M21(q) `22m2 M23(q) 0
M31(q) M32(q) mb +m1 +m2 0

0 0 0 Iz

 , (3)

where

M11(q) =`21m1 + `21m2 + `22m2 + 2`1`2m2 cos(θ2),

M21(q) =M12(q) = `22m2 + `1`2m2 cos(θ2),

M31(q) =M13(q) = −`1m1 sin(θ1 − θh)

− `1m2 sin(θ1 − θh)− `2m2 sin(θ1 + θ2 − θh),

M32(q) =M23(q) = −`2m2 sin(θ1 + θ2 − θh).

Lastly,

m(q, v) = [m1(q, v) m2(q, v) m3(q, v) 0]
>

(4)

where

m1(q, v) =− `1`2m2 sin(θ2)(θ̇22 + θ̇1θ̇2) + (`1m1 cos(θ1 − θh)

+`1m2 cos(θ1 − θh) + `2m2 cos(θ1 + θ2 − θh))vθ̇h,

m2(q, v) =`1`2m2 sin(θ2)θ̇21 + `2m2 cos(θ1 + θ2 − θh)vθ̇h,

m3(q, v) =− (`1m1 cos(θ1 − θh) + `1m2 cos(θ1 − θh))θ̇21

− (`2m2 cos(θ1 + θ2 − θh))(θ̇21 + θ̇22)

− 2`2m2 cos(θ1 + θ2 − θh)θ̇1θ̇2.

For this system, for all q ∈ Q, G>(q)B(q) = I4 so if we
apply the preliminary state feedback

u = m(q, v) +M(q)τ, (5)

where τ ∈ R4 is an auxiliary control input yet to be
specified, we obtain the partially compensated system

q̇ = G(q)v,

v̇ = τ.
(6)

The output y of (6) is defined by a function h : Q → Y,
Y := R2 × S1 × S1, as

y1y2y3
y4

 = h(q) :=

 xb + `1 cos(θ1) + `2 cos(θ1 + θ2)
yb + `1 sin(θ1) + `2 sin(θ1 + θ2)

θ2
arctan2 (sin (θ1 − θh), cos (θ1 − θh))

 .
(7)

In (7), (y1, y2) equals the position of the end of link 2,
i.e., the end-effector position in the inertial frame O, while
the third and fourth components are user defined virtual
holonomic constraints that serve to restrict the motion our
system in task space. In particular, when y3 ≡ 0, link 2
is constrained to be aligned with link 1 and when y4 ≡ 0,
link 1 is restricted to be aligned with the heading vector
of the mobile base.

2.2 Admissible Paths and Desired Motion Along Path

We assume that we are given a known 1 path C in the
inertial frame O that is smooth, closed and regular, with
no self intersections represented parametrically as

σ : S1 → R2, σ′(λ) 6= 0 for all λ ∈ S1 . (8)

Assumption 1. In addition to the parametric represen-
tation (8), there exists a known smooth function s : U ⊆
R2 → R, where U is an open and connected set, such that

C = {(y1, y2) ∈ R2 : s(y1, y2) = 0} (9)

and, for all (y1, y2) ∈ C, ds(y1,y2) 6= 0. �

With this assumption, the path in the task space Y of the
two-link mobile manipulator equals the set

γ := {y ∈ Y : s(y1, y2) = y3 = y4 = 0} (10)

which, under Assumption 1, is an embedded submanifold.

The dynamic task in a path following problem to make
the output y along the path γ in a pre-specified way, e.g.,
having the end-effector traverse the entire curve C. To
model this desired motion along C, we invoke the notion of
a timing law generated by an exosystem which we assume
has linear dynamics.
Assumption 2. The desired motion along the assigned
path (8) is described by a timing law λref : R → S1. The
timing law is produced by a known exogenous system

ẇ(t) = Sw(t), w(0) ∈ Rnr , (11a)

λref(t) = arg (exp(jQw(t)) (11b)

with S ∈ Rnr×nr , Q ∈ R1×nr . �

2.3 Problem Statement

We state the two main problems considered in this paper.

Problem 1 (Path following). Consider the mobile
manipulator model (6),(7). Suppose we are given a closed
path C satisfying Assumption 1 and a desired motion along
the path that satisfies Assumption 2. Find a state-feedback
controller τ such that the closed-loop system enjoys the
following properties:

(i) The output is driven towards the path (10). In par-
ticular, there exists an open set in Q× R4 such that
any initial condition in this set results in y(t)→ γ as
t→∞ with (q(t), v(t)) bounded.

1 This stands in contrast to Section 4 where we consider adaptive
control and ease this assumption.
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(ii) The path (10) is output invariant. In particular, if
(q(0), v(0)) ∈ Q × R4, are such that y(0) ∈ γ and
ẏ(0) ∈ Ty(0)γ, then, for all t ≥ 0, y(t) ∈ γ.

(iii) The output asymptotically converges to the desired
motion along the path.

In Section 4 we consider an adaptive version of this
problem for circular paths.

Problem 2 (Adaptive path following). Consider the
mobile manipulator model (6),(7) and a circle C of un-
known radius and unknown location in the plane. Fur-
ther suppose that the controller has access to the signed
distance from the end-effector to C as well as the rate of
change of this distance. Find a dynamic control law τ such
that the closed-loop system enjoys the following:

(i) There exists an open set in Q×R4 such that, for any
initial condition in the set results in

y(t)→ γ as t→∞ (attractivity)

with (q(t), v(t)) bounded.
(ii) The output traverses the entirety of the circular path

in a user defined direction, i.e., either the clockwise
or counterclockwise direction.

3. NON-ADAPTIVE PATH FOLLOWING

3.1 Path Following Output and Control Design

To solve the aforementioned problems, it is convenient to
define the so-called path following output (Li and Nielsen
(2016)) for the mobile manipulator. Let U ⊆ R2 be an
open set containing the curve C with the property that if
(y1, y2) ∈ U , then there exists a (unique) closest point on
C. Without loss of generality, we assume that U equals the
previously defined open set U discussed in Assumption 1.
Next, define a function $ : U ⊂ R2 → S1 by

$(y1, y2) := arg min
λ∈S1

∥∥∥[y1 y2]
> − σ(λ)

∥∥∥ . (12)

Intuitively, $(y1, y2) equals the parameter λ? ∈ S1 with
the property that σ(λ?) is the closest point on the curve
C to (y1, y2). Combining the function (12) with the func-
tion (9) from Assumption 1, we define the path following
output to be hPF : U × S1 × S1 ⊆ Y → R× S1 × S1 × S1,

yPF = hPF(y) :=

 s(y1, y2)
$(y1, y2)

y3
y4

 = hPF ◦ h(q). (13)

Driving the output (7) to the path (10) is equivalent, under
mild technical conditions, to driving yPF,1, yPF,3 and yPF,4

to zero. Converging to the desired motion along the path
is equivalent to driving yPF,2 to λref(t).

Consider the mobile manipulator (6) with the path fol-
lowing output (13). It is straightforward to show that
this system has vector relative degree {2, 2, 2, 2} at each
q ∈ h−1(γ). This means that there is an open set in the
configuration space Q containing h−1(γ), which we take
without loss of generality to be h−1(U ×S1×S1), in which
the input-output feedback linearizing controller

τ :=
(

dhPF|h(q) dhq G(q)
)−1

(
∂

∂q

(
dhPF|h(q) dhq G(q)v

)
G(q)v + vaux

)
, (14)

where vaux ∈ R4 is yet another auxiliary input to be
designed, is well-defined.

It is well-known that if a nonlinear control system has a
well-defined relative degree at a point, then there exists
a local coordinate transformation which puts the system
into the Byrnes-Isidori normal form in a neighbourhood of
that point. In the case of (6),(13), it turns out that the
system can be put into the Byrnes-Isidori normal form on
an open set of its state-space Q × R4 whose image under
h contains the path (10), i.e., the normal form is valid in
a neighbourhood of the entire path.

Define the coordinate transformation

T (q, v) :=

 θh
hPF ◦ h(q)

dhPF|h(q) dhq G(q)v

 . (15)

The last 8 components of the transformation (15) are
simply yPF and ẏPF.
Proposition 1. Let

W := h−1(U × S1 × S1) ∩ {q ∈ Q : |θ1 − θh| < π/2,

|θ2 + θ1 − θh| < π/2}.

The function (15) maps the set W × R4 ⊂ Q × R4

diffeomorphically onto its image.

The proof of this result is omitted but can be found
in (Barrera Perez, O., 2020, Proposition 3.2.1). Proposi-
tion 1 together with the feedback control law (14) show
that on the set W × R4, the system (6),(13) is feedback
equivalent to the input-output feedback linearized system

ż = [0 0 0 1]
(

dhPF|h(q) dhq G(q)
)−1 ξ2η2ζ3

ζ4

 , (16a)

ξ̇ =

[
0 1
0 0

]
ξ +

[
0
1

]
vt, (16b)

η̇ =

[
0 1
0 0

]
η +

[
0
1

]
v‖, (16c)

ζ̇ =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ζ +

0 0
0 0
1 0
0 1

 vζ , (16d)

where we have decomposed the auxiliary input as vaux :=
[vt v‖ v

>
ζ ]>. With respect to Problem 1, property (i) is

equivalent to stabilizing ξ = 0, ζ = 0. Property (ii)
is satisfied if ξ = 0 is an equilibrium point of the ξ-
subsystem (16b) and ζ = 0 is an equilibrium point of the
ζ-subsystem (16d).

The tangential subsystem (16c) governs the portion of the
manipulator dynamics that produces observable motion
along the path. They can be used to express the desired
motion along the path. Define the error

e1 := arg(exp(j(η1 − λref))).
Simple calculations using (16c) and the exosystem model
(11) give that ė1 = η2−QSw, thus letting e = [e1 e2]> :=
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[e1 ė1]> ∈ S1 × R, the tangential dynamics (16c) can be
replaced with

ė =

[
0 1
0 0

]
e+

[
0
1

]
v‖ −

[
0

QS2

]
w

ẇ = Sw (exosystem).

(17)

Driving e(t) to zero is equivalent to tracking the desired
motion along the path.

The transformed manipulator system (17) dynamics sug-
gest the linear control laws

vt = Ftξ, v‖ = F‖e+QS2w, vζ = Fζζ (18)

where Ft : R2 → R, F‖ : R2 → R and Fζ : R4 → R2 are
chosen so that, respectively, the three linear subsystems
in (17) are exponentially stable.
Remark 1. The transformed system (16) allows us to
consider desired motions along C other than the type
described in Section 2.2, e.g., velocity tracking. In that case
the tangential controller v‖ is taken to be v‖ = F‖(η2 −
ηref2 ) +QSw, F‖ < 0. N

In summary, our proposed path following controller con-
sists of Equations (3), (4) and (5) which define the pre-
liminary feedback u, Equation (11) which produces the
desired motion along the path, Equation (14) which input-
output feedback linearizes system (6),(13) and the coordi-
nate transformation (15) which is needed to implement the
linear feedbacks in Equation (18).

3.2 Circular Approximation of Closed Paths

A drawback of the proposed path following controller is
that the functions s(y1, y2) and $(y1, y2) that appear
in the path following output (13) do not, in general,
have closed-form expressions. Furthermore, even when
closed-form expressions are available, the expressions in
the coordinate transformation (15), which are needed in
order to implement the linear feedback laws (18), can
be complicated. In this subsection we propose a path
following controller for arbitrary closed curves that applies
a circular path following controller to the osculating circle
associated to the closest point of the closed curve.

Given a strictly convex curve C with parametric represen-
tation (8), its signed curvature at λ ∈ S1 is

κ(λ) =
σ′′1 (λ)σ′2(λ)− σ′′2 (λ)σ′1(λ)

‖σ′(λ)‖3
. (19)

Since C is assumed to be strictly convex, for all λ ∈ S1,
κ(λ) > 0. The centre of curvature ε(λ) of σ at the point
σ(λ) is defined to be

ε(λ) = σ(λ) +
1

κ(λ)

[
0 −1
1 0

]
σ′(λ)

‖σ′(λ)‖
.

The circle with centre ε(λ) and radius 1/|κ(λ)| is called the
osculating circle to σ at the point σ(λ). It is the unique
circle which is tangent to σ at σ(λ) and has the same
(unsigned) curvature as σ at that point.

Therefore, to each λ ∈ S1, we can uniquely associate a
circle in the plane given parametrically by

σλ(s) :=
1

|κ(λ)|

[
cos (s)
sin (s)

]
+ ε(λ) (20)

and implicitly by

sλ(y1, y2) := ‖ [y1 y2]
> − ε(λ)‖ − |κ(λ)|−1. (21)

The idea proposed in this section is to first compute the
parameter λ? returned by the function (12) for the given
curve C. As mentioned at the start of this subsection,
in general the function $(y1, y2) doesn’t have a closed-
form expression; therefore the calculation of λ∗ ∈ S1 will
normally be done numerically and it can can be done
efficiently using a line search algorithm over the compact
set S1. The parameter λ?(t) = $(y1(t), y2(t)) defines a
circle with parametric representation (20) and implicit
representation (21). To this circle we associate a path
following output

yPF = hPF(y) =


‖ [y1 y2]

> − ε(λ?)‖ − |κ(λ?)|−1
arctan2(y2 − ε2(λ?), y1 − ε1(λ?))

y3
y4

 .
(22)

In (22), λ? is a function of (y1, y2) but in applying the
circular path following controller we neglect this fact. More
specifically, when we compute the differential of hPF we
treat κ and ε as being constant. This results in a simpli-
fied expression for the input-output feedback linearizing
controller (14) and the coordinate transformation (15).

We also modify the definition of the desired motion along
the path because the second component in (22) doesn’t
return a value for the parameter of the actual path C.
In particular, at each moment in time, yPF,2(t)/|κ(λ?(t))|
equals the arclength along the osculating circle from σλ?(0)
to σλ?(yPF,2(t)). Thus, in order to get close to unit-
speed traversal along the path, we take the reference for
η2 ≈ ẏPF,2 to be ηref2 (t) = κ(λ?(t)).

4. ADAPTIVE PATH FOLLOWING

In this section we consider Problem 2; the mobile manip-
ulator is required to follow a circular path of unknown
radius r > 0 and unknown centre c = [c1 c2]> in the plane.

4.1 Circular Path Parameter Estimation

We start by describing a method to estimate r and c given
an agent whose location p(t) ∈ R2 and velocity ṗ(t) are
known for all t.
Assumption 3. The agent’s trajectory p(t) ∈ R2 is a
smooth function of t and the quantities

ξ1(t) := ||p(t)− c|| − r, (23)

ξ2(t) := ξ̇1(t). (24)

are measurable. �

Under Assumption 3, we now derive a parametric model
for our circular path parameter estimation algorithm.
Differentiating the identity

(ξ1(t) + r)
2

= (p(t)− c)>(p(t)− c).
with respect to time and rearranging

p>(t)ṗ(t)− ξ1(t)ξ2(t) = rξ2(t) + c>ṗ(t). (25)

Since the only unknowns in (25) are r and c, it is in linear
parametric model form. Define
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µ(t) := p>(t)ṗ(t)− ξ1(t)ξ2(t) ∈ R, (26)

Ω∗ :=

[
r
c

]
∈ R3, φ(t) :=

[
ξ2(t)
ṗ(t)

]
∈ R3.

so that (25) can be expressed as

µ(t) = Ω∗>φ(t) (27)

The estimation model has the same form as (27), with the
unknown vector Ω∗ replaced with its time-varying estimate
Ω(t) := [r̂(t) ĉ>(t)]>; the estimation model is

µ̂(t) := Ω>(t)φ(t). (28)

Define the estimation error to be

ε(t) :=
µ(t)− µ̂(t)

1 + β‖φ(t)‖2
, β > 0. (29)

Equation (29) defines a signal that indirectly reflects the
difference between Ω(t) and Ω∗.

To update the estimate Ω(t), define an instantaneous cost
criterion for the estimation error (29) as

J(Ω) :=
1

2

(µ(t)− Ω>φ(t))2

1 + β‖φ(t)‖2
. (30)

The approach is to update Ω(t) such that (30) is minimized
so that ε(t)→ 0 as t→∞; we use gradient descent

Ω̇(t) = −Γ∇J(Ω) (31)

where Γ = Γ> ∈ R3×3 is a positive definite gain matrix
and ∇J(Ω) is the gradient of (30) with respect to Ω:

∇J(Ω) = −ε(t)φ(t). (32)

Substituting (32) into (31) leads to the adaptive law

Ω̇(t) = Γε(t)φ(t), Ω(0) = Ω0, (33)

for updating the estimate Ω(t) starting from an arbitrary
initial estimate Ω(0) = Ω0.

4.2 Adaptive Path Following for Circular Paths

Returning to the path following problem, consider a circle
C in the inertial frame O, represented parametrically as

σ(λ) = r

[
cos(λ)
sin(λ)

]
+ c, (34)

where r and c are unknown. The role of p(t) in Assump-
tion 3 and in the algorithm from Subsection 4.1 is played
by the mobile manipulator’s end-effector location.We as-
sume that sensors provide the signals (23) and (24).

The basic idea is to use a circular path following controller
from Subsection 3.1 but use an estimate of the circle’s
radius r and centre c. We run the adaptive law described
by (26), (28), (29) and (33). The path following output is
taken to be

yPF = hPF(y, t) :=


‖[y1 y2]

> − ĉ(t)‖ − r̂(t)
arctan2(y2 − ĉ2(t), y1 − ĉ1(t))

y3
y4

 .
As in Section 3.2, we neglect the time-varying nature of
hPF. Specifically, when we compute the differential dhPF,
the estimates r̂(t) and ĉ(t) are treated as constants. This
results in a simplified expression for the input-output
feedback linearizing controller (14) and for the tangential
η states in the coordinate transformation (15).

In order to satisfy property (ii) in Problem 2, we take
the desired motion along the path to be ηref2 (t) = w0. If
w0 > 0, the desired motion is in the same direction as
increasing λ in the parameterized circle (34). We apply
the linear controllers (18) however, cf. Remark 1, we take
the tangential controller to be v‖ = F‖(η2 − ηref2 ). We
emphasize that in the linear feedback law vt from (18),
the true values of ξ (see Assumption 3) are used.

4.3 Adaptive Path Following for Strictly Convex Paths

Next, we extend the adaptive path following controller of
Section 4.2 to a more general class of paths. Given an
unknown curve C with parametric representation (8) that
is strictly convex, i.e., its signed curvature (19) is strictly
positive, we make the following assumption.
Assumption 4. Sensors provide the values s(y1(t), y2(t))
from (13) and ṡ(y1(t), y2(t)) for the unknown, strictly
convex, path C. �

Under Assumption 4, and following the discussion from
Subsection 3.2, to each λ?(t) = $(y1(t), y2(t)) we associate
the osculating circle to C at the point σ(λ?(t)). It has
a parametric representation σλ?(t)(s) given by (20) and
an implicit representation sλ?(t)(y1(t), y2(t)) given by (21)
where the curvature κ(λ?(t)) and centre of curvature
ε(λ?(t)) are unknown. Let r(λ) := 1/|κ(λ)| denote the
radius of the osculating circle at σ(λ).

Under Assumption 4, we equate the value of s(y1(t), y2(t))
to the distance of the end-effector to the osculating circle

ξ1(t) := ‖[y1(t) y2(t)]
> − ε(λ?(t))‖ − r(λ?(t)).

Similarly we identify ṡ(y1(t), y2(t)) to equal the rate of
change of the distance to the osculating circle

ξ2 :=

(
[y1 y2]

> − ε(λ?)
)>

‖[y1 y2]
> − ε(λ?)‖

([
ẏ1
ẏ2

]
− ε̇(λ?)

)
− ṙ(λ?),

not the curve C. Next we attempt to apply the param-
eter estimator from Section 4.1 keeping in mind that in
the current scenario the unknown parameters Ω?(t) :=
[r(λ?(t)) ε>(λ?(t))]> are no longer constant. Repeating
the calculations performed in Section 4.1 we are led to
the linear parametric model (cf. (27))

µ(t) = Ω?>(t)φ(t) + ε1(t) + ε2(t) (35)

where

µ(t) := [y1(t) y2(t)]

[
ẏ1(t)
ẏ2(t)

]
− ξ1(t)ξ2(t) ∈ R,

Ω∗(t) :=

[
r(λ?(t))
ε(λ?(t))

]
∈ R3, φ(t) :=

[
ξ2(t)
ẏ1(t)
ẏ2(t)

]
∈ R3.

The perturbations ε1(t) and ε2(t) in (35) are given by

ε1(t) = 2
∥∥∥[y1 y2]

> − ε(λ?(t))
∥∥∥ dr(λ)

dλ

∣∣∣∣
λ?(t)

dλ?(t)

dt
, (36)

ε2(t) = 2
(

[y1 y2]
> − ε(λ?(t))

)> dε(λ)

dλ

∣∣∣∣
λ?(t)

dλ?(t)

dt
.

(37)

The expressions (36), (37) show that if r(λ?(t)) and
ε(λ?(t)) are slowly time-varying, then ε1(t) ≈ 0, ε2(t) ≈
0 and it is reasonable to expect that the estimation
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algorithm from Subsection 4.1 will still work. Slow time
variation means that the curve C has almost constant
curvature r′(λ) ≈ 0 and that the closest point on C to the

robot’s end-effector doesn’t change too quickly, λ̇?(t) ≈ 0.
In other words, C can be slightly deformed from a circle
and the robot should not move too fast. The estimation
algorithm for Ω(t) := [r̂(t) ε̂>(t)]> is therefore

Ω̇(t) = Γ

(
µ(t)− Ω>(t)φ(t)

1 + β‖φ(t)‖2

)
φ(t),Ω(0) = Ω0, β > 0.

(38)
With equation (38) as our osculating circle parameter
estimator, we proceed to use the same path following
controller proposed in Section 4.2. The path following
output is taken to be

yPF = hPF(y, t) :=


‖[y1 y2]

> − ε̂(t)‖ − r̂(t)
arctan2(y2 − ε̂2(t), y1 − ε̂1(t))

y3
y4

 .
As in Section 4.2, we neglect the time-varying nature of
hPF. Specifically, when we compute the differential dhPF,
the estimates r̂(t) and ε̂(t) are treated as constants. This
results in the same simplifications to the path following
controller discussed in Section 4.2.

To enforce that the closest-point on the path C to the
end-effector does not change too rapidly, we choose the
reference for the tangential velocity η2 in much the same
way as in Section 3.2. Specifically, we take ηref2 (t) = c‖κ̂(t)
where |c‖| is chosen to be small. We apply the linear
controllers (18) but, since we are doing velocity tracking
in the tangential subsystem, we apply the tangential
controller v‖ = F‖(η2 − ηref2 ). We emphasize that in the
linear feedback law vt from (18), the values of s and ṡ
from Assumption 4 are used in place of ξ1 and ξ2.

5. SIMULATION TESTS

We simulate, in Matlab the adaptive path following
controller from Subsection 4.3 for the ellipse σ(λ) =
[3 cos (λ) sin (λ)]>. The robot and adaptive law are initial-
ized at q(0) = [0 π/4 1 1 0]>, v(0) = 0, Ω(0) = [1 0.2 0]>

with β = 0.8, Γ = 700 I3, we take the reference signal
to be ηref2 (t) = c‖κ̂(λ?(t)) with c‖ = 0.5. We again use a
velocity tracking controller for the tangential control and
the linear feedback matrices (18) are

Ft = [−81 −18 ], F‖ = −28, Fζ =
[−9 −6 0 0

0 0 −9 −6
]
.

The resulting motion of the end-effector and mobile base
are shown in Figure 2 and the parameter estimates are
shown in Figure 3. Figures 2 and 3 reveal that while our
approach does not deliver online parameter convergence
of the osculating circle, it still solves Problem 2 for the
convex curve.

6. FUTURE DIRECTIONS

This preliminary work suggests several avenues of future
research. It would be fruitful to implement the proposed
controllers on a hardware platform. Direct adaptive control
approaches should be investigated as well as a more general
class of paths that includes time-varying paths.
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Fig. 2. (y1, y2) and (xb, yb) for unknown ellipse.
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