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Abstract: In this paper, a novel multi-time scale control technique is applied to a serial dual-
stage nanopositioning system. Dual-stage nanopositioning systems combine a high-speed, short-
range actuator and a low-speed, long-range actuator to achieve long-range and high-speed
positioning. This results in a system that has relatively complicated dynamics due to the physical
interaction between the two actuators and their different time-scales. In addition, models of
these actuators can be ill-conditioned, which can lead to issues with numerical simulations and
controller design. These issues make dual-stage nanopositioning systems well suited to multi-
time scale control algorithms. In the proposed algorithm, the system is split (decoupled) into
a set of subsystems, where each subsystem has an individual time scale and is independently
controlled via state feedback. This alleviates the issues associated with ill-conditioning and
simplifies controller design. This paper introduces the novel multi-time scale control design
concept and its application to single-axis dual-stage nanopositioners – although it can be easily
expanded to more complex systems, e.g., multi-axes, nanopositioning devices. The proposed
control technique is validated through simulations of an experimentally obtained serially coupled
dual-stage nanopositioning model.

Keywords: Modeling, Micro and Nano Mechatronic Systems, Desing Methodologies,
Identification and Control Methods, Applications of Mechatronic Principles.

1. INTRODUCTION

In this paper, dual-stage nanopositioner control is achieved
through the use of a novel multi-time scale approach.
Control of nanopositioning systems has attracted signif-
icant attention due to a wide spectrum of applications in
nanoscale science and technology (Escareno et al., 2019,
Zhang et al., 2018, Fleming, 2011, Butler, 2011, Kalyanam
et al., 2012, Horowitz et al., 2007). Recently, dual-stage
nanopositioning systems have received serious interest be-
cause of their potential to achieve high-precision and high-
resolution displacements over long ranges (Wang et al.,
2018, Tuma et al., 2014, Ito et al., 2017, Zundert et al.,
2018). A typical dual-stage nanopositioning system con-
sists of a low-speed, long-range actuator (LRA), used for
long, coarse displacements, combined with a high-speed,
short-range actuator (SRA), used for shorter, fine displace-
ments. Because the two actuators are separated in terms
of speed (typically by at least an order of magnitude),
dual-stage nanopositioning systems are well suited to a
multi-time scale approach, as studied in this paper.

? This material is based upon work supported, in part, by the Na-
tional Science Foundation Grants No. CMMI 1537983 and 1537722.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation. The
authors thank Dr. Verica Radisavljevic-Gajic for useful suggestions
and valuable support.

Nanopositioning systems present many, well established
control difficulties, such as the presence of lightly damped
mechanical resonances. These can result in large oscilla-
tions, especially when sudden changes in displacement or
high frequency inputs are applied as described in Flem-
ing et al., 2014. This problem is exacerbated in dual-
stage systems because of actuator cross-coupling, where
the resonant response of one actuator (for example the
LRA) affects the response of the other (SRA) – note that
this is most apparent from the LRA to SRA. Since these
resonances are, by design, far from each other in frequency,
the state-space representation of such system can result in
a poorly-conditioned state-space model. This can cause
numerical methods to have difficulty converging to a so-
lution. This issue significantly limits the application of
well-know and well-developed modern control techniques,
such as state feedback, that require a state-space model
representation of a system.

Control algorithms designed for dual-stage nanoposition-
ing systems can be predominantly divided into two cate-
gories. The first category includes the algorithms based on
classical single-input single-output (SISO) design method-
ologies where the controller is designed through a sequence
of two decoupled SISO designs, (Schroeck et al., 2001,
Horowitz et al., 2007). In these methods, system models
are represented as a transfer function. The second category
includes controllers based on optimal design methodologies
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(Rezac et al., 2013). This paper proposes a multi-time scale
control approach, which is well-suited for dual-stage sys-
tems because of their multi-time scale nature and enables
the use of state-space methodologies.

Multi-time scale control addresses issues with realistic
representations of large-scale systems which include inter-
connection and coupling between state variables. Small,
but not negligible parasitic parameters in state-space mod-
els, such as small masses and moments of inertia, can
increase the condition number of a matrix which leads
to computational difficulties, as explained in Ojalvo, 1990
and Peters et al., 1978. This implies that the spectrum of
the matrix is wide and that there are simultaneous phe-
nomena occurrences with different time-scales. Recently,
multi-time scale control techniques developed in Radis-
avljevic et al., 2019 were applied to systems with three-
time scales (Radisavljevic et al., 2017, Milanovic et al.,
2020). In essence, this control technique splits (decouples)
large systems into a set of smaller subsystems, where each
subsystem is controlled independently. By doing so, a
numerically ill-conditioned high-order matrix is avoided,
allowing control design at a subsystem level with well-
conditioned matrices. Within the context of multi-time
scale control, the contributions of this paper include:

• A novel control approach for nanopositioning mecha-
tronic systems, where a multi-time scale control
technique is applied to a piezoactuated dual-stage
nanopositioning system, and
• A composite state feedback construction procedure

that uses observed states of each decoupled single
time-scale subsystem.

The remainder of this paper is organized as follows:
Sec. 2 introduces dual-stage systems and presents the
experimentally obtained dual-stage models of the LRA and
the SRA used to verify the proposed control algorithm.
Sec. 3 describes the multi-time scale controller, followed
in Sec. 4 by simulations results. The main results are
highlighted and conclusions are offered in Sec. 5.

2. DUAL-STAGE NANOPOSITIONER MODELS

To highlight the issues associated with dual-stage posi-
tioner models, a dual-stage system is modeled in the next
section, followed by an experimentally obtained dual-stage
nanopositioning model.

2.1 Dual-stage Systems Modeling

In order to increase the precision and operational band-
width of single-stage nanopositioning systems, a second ac-
tuator can be added in series or parallel, resulting in what

k1 k2

c2c1

x1 x2

F1F2 F2

LRA SRA

m1 m2

Figure 1. Lumped parameter model of the dual stage
nanopositioning system with LRA mass m1, SRA
mass m2, equivalent stiffness k1, k2 and damping
coefficients c1, c2.
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Figure 2. Free body diagram of m1 and m2 lumped mass
elements.

is commonly referred to as dual-stage actuator system.
The modeling and control of dual-stage nanopositioning
systems is challenging due to the presence of nonlineari-
ties such as hysteresis and thermal drift. Lightly damped
mechanical resonances also present a challenge in that they
limit the speed and bandwidth of the system. Mechanical
resonances usually arise from the platform mass interac-
tion with the stiffness of support flexures, actuators and
mechanical linkages, as described in Fleming et al., 2014.

A schematic example of a serial dual-stage nanopositioning
system, on which this paper focuses, is shown in Fig. 1. The
actuators are modeled as two lumped mass elements m1

and m2, interconnected via two springs k1 and k2 and two
dampers c1 and c2. The inputs to the system are force F1,
from the LRA piezoelectric actuator and the force from the
SRA actuator F2, which moves the second mass and results
in a reaction force on the first. The outputs of the system
are the LRA displacement x1 and the SRA displacement
measured as x2 − x1, as shown in Fig. 2.

Based on the free body diagram in Fig. 2, a state-space
model of the form

ẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Du(t), (2)

was found to beẋ1(t)
ẍ1(t)
ẋ2(t)
ẍ2(t)

 =


0 1 0 0

−k1 + k2
m1

−c1 + c2
m1

k2
m1

c2
m1

0 0 0 1
k2
m2

c2
m2

− k2
m2
− c2
m2


x1(t)
ẋ2(t)
x2(t)
ẋ2(t)

+

+


0 0
1

m1
− 1

m1
0 0

0
1

m2


[
F1(t)
F2(t)

]
(3)

y =

[
1 0 0 0
−1 0 1 0

]x1(t)
ẋ2(t)
x2(t)
ẋ2(t)

 =

[
x1(t)

x2(t)− x1(t)

]
. (4)

Intuitively, the LRA has a greater mass than the SRA,
since the SRA is included in the LRA mass, thus we have
a relationship with reasonable ranges of

m1 = αm2, α ∈ [2, 10] . (5)

To compare the stiffness of both actuators, they can be
modeled as uniform bars made of the same material with
elastic modulus E. Assuming the same cross sectional area
A, the stiffness ratio is based on the relative length of
the two actuators L1 and L2. Therefore, the relationship
between stiffness coefficients is given by
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Figure 3. Frequency response of the system provided in
(3)-(4).

Table 1. Parameter values of the generic dual-
stage system

LRA SRA

m [kg] 0.01 0.003 α = 3.33
k [N/m] 2500000 25000000 β = 0.1

c 10 100 γ = 0.1

k1 =
AE

L1
, k2 =

AE

L2
, → k1 = βk2, β ∈

[
1

20
,

1

2

]
(6)

Determining the damping coefficients as an explicit func-
tion is challenging because they depend on the material,
the shape of the structure, the boundary conditions, envi-
ronmental parameters, etc., and is typically an empirically
modeled parameter. Based on the authors’ experience with
these types of systems, it can be assumed that the rela-
tionship between the damping coefficients present in the
dual-stage nanopositioner is captured by

c1 ≈ γc2, γ ∈
[

1

500
,

1

10

]
. (7)

Frequency response (magnitude and phase) of a generic
dual-stage system is shown in Fig. 3. Specifically, the
top plot shows the LRA’s response y1 = x1 to the LRA
input F1 and the bottom plot shows the SRA’s response
y2 = x2−x1 to the SRA input F2. The parameter values of
the generic model are shown in Tab. 2. From the figures,
the resonant peak of the LRA occurs at 10 kHz in Fig. 3
(top), while the SRA has resonant and anti-resonant peaks
at 10 kHz and 20 kHz in Fig. 3 (bottom). This shows
the mechanical coupling between the systems. The SRA
also has a peak at 100 kHz. The coupling effect is to be
expected in this system since any displacement created
in the LRA will cause displacement in the SRA and vice
versa, although the effect of SRA inputs on the LRA are
smaller as seen in the figures. The condition number of the
state matrix A, defined as

cond(A) =
|λmax|
|λmin|

, (8)
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Figure 4. Red dashed line: Experimental frequency re-
sponse. Blue solid line: frequency response of the
fitted transfer function obtained by using least square
fitting tool in MATLAB. Model taken from Mitrovic
et al. (2017).

where λmax is the largest eigenvalue of the matrix A,
and λmin, the smallest, for the values in Table 1 is
1.23×1010. This high condition number is a consequence
of the multiple time scales present in the system.

2.2 Experimental dual-stage model

In this paper, we use an experimentally derived model
of a physical dual-stage nanopositioning system in order
to simulate our response. The experimental frequency
response is shown in Fig. 4 – note that they have a
similar shape to the frequency response in Fig. 3. These
frequency responses were experimentally obtained using
both a capacitive sensor (AD Technologies 4800) and a
laser vibrometer (Polytech CLV 700) and a dynamic signal
analyzer (Stanford Systems SR785). To avoid hysteresis,
the system was excited with sinusoidal inputs with rel-
atively small amplitudes. Creep present in this type of
actuator is minimized by recording frequency responses
in frequency ranges where creep is negligible, specifically
100 Hz - 5 kHz for the LRA and 100 Hz - 20 kHz for the
SRA.

For comparison, the equivalent lumped parameter values
of this model were calculated. The stiffness coefficient k
is calculated from the ”stiffness line” which represents
the asymptote preceding the natural frequency, identified
from the Bode plots shown in Fig. 4, while the damping
coefficient c is calculated using the ”half power” method
(Wu 2015). The identified values are shown in Table 2,
where α, β and γ satisfy the the Eqns. 5, 6 and 7,
respectively.

Transfer function models were fit to the frequency response
having the form

G(s) = K

∏m
i=1 s− zi∏m
j=1 s− pj

, (9)

where s is the Laplace variable, K is the static gain, zi
is one of m zeros and pi is one of n poles. The numerical
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Table 2. Parameter values of the experimental
dual-stage system

LRA SRA

m [kg] 0.05 0.01 α = 5
k [N/m] 2 5.62 β = 0.35

c 0.04 0.45 γ = 0.09

values were identified using a least square fitting method
in MATLAB and are presented in Table 3 and plotted in
blue in Fig. 4.

Table 3. GAINS, POLES AND ZEROS OF
THE DUAL-STAGE SYSTEM

LRA SRA

Gain K 3.06 × 1010 5.91 × 1011

Poles −10.539 ± i1407.9 −966.6 ± i14216
−5000 −8.812 ± i1421.2

−20736
Zeros N/A −7.1561 ± i1837

Note the coupling between the LRA and the SRA, which
is most easily seen in the SRA frequency response in
Fig. 4 (bottom plot). The first resonant peak at 1300 Hz
represents coupling between the two actuators, and comes
from the resonant peak from the LRA, as seen in Fig. 4
(top plot). The second resonant peak at 18 kHz actually
represents the SRA dynamics. Thus, the SRA frequency
response captures the SRA dynamics and the coupling
effects between the actuators. The coupling effects and
the actuator’s actual dynamics have different time scales,
and therefore can be separated using a multi-time scale
approach.

2.3 Condition number

The condition number for the experimental SRA model
was found to be cond(SRA) = 14.5902. The condition
number of a matrix measures how sensitive the output
is to perturbations in the input due to round-off errors
made during the solution seeking process. High condi-
tion numbers may cause problem in numerical solutions,
which are often sought using various software tools, which
use different numerical methods such as Newton-Raphson
and Runge-Kutta. Convergence to a solution for most
algorithms requires mathematical manipulations such as
matrix inversion. As those numerical algorithms are iter-
ative, round-off errors through each iteration accumulate,
which might lead to invalid solutions. Ideally, the condition
number is 1. As the number becomes large, precision of
numerical calculations is reduced. While the condition
number for this system is not overly large, in practice
this can lead to issues, i.e., errors in standard Matlab
algorithms like those used to determine controllability and
observability.

3. MULTI-TIME SCALE CONTROL

Based on the experimental model introduced above, the
SRA represents an ideal system for multi-time scale control
because it includes complicated dynamics, a large matrix
spectrum (e.g., multi-time scales), and coupled dynamics

-a -ib3 3

-a +ib3 3

-a +ib2 2

-a -ib2 2

-a1

Im

Re

Figure 5. Pole locations determine the time scales.

between the LRA and the SRA. The experimentally fitted
SRA transfer function can be represented as a state-
space model, and using this model, the controllability
and observablity of the system can be studied. It is
interesting to see that, even though the physical systems
are in fact controllable and observable, standard numerical
techniques e.g., in Matlab, determine the system to be
neither controllable nor observable due to the system’s
poor-conditioning. Changing the algorithm tolerance can
sometimes solve the issue, but regardless, complex and
coupled dynamics can lead to difficulties when designing
standard controllers.

Multi-time scale techniques developed in Radisavljevic et
al. (2019) are well suited for this type of system. This
technique divides the modal form into several subsystems
that are well-conditioned. In this paper, the technique
is simplified because the SRA transfer function can be
represented in an already decoupled form as three separate
subsystems which can be independently controlled and/or
observed.

The time scales are determined based on pole locations
in the SRA transfer function model, as seen in Fig. 5.
The first time scale, that corresponds to slow dynamics,
is represented with a real pole a1. The second time scale
corresponds to fast dynamics, and is shown with a set of
complex-conjugate poles −a2 ± ib2, while the third time
scale represents very fast dynamics, and is shown with a
second set of complex-conjugate poles −a3 ± ib3.

The modal form of the system is

[
ẋ1(t)
ẋ2(t)
ẋ3(t)

]
=


A1 0 0

0 A2 0

0 0 A3


[
x1(t)
x2(t)
x3(t)

]
+


B1

B2

B3

u(t)

(10)

y(t)=

[
C1 C2 C3

][x1(t)
x2(t)
x3(t)

]
(11)

Note that the SRA system poles are complex values pi =
ai± ibi, given in Table 3, so the general modal form of the
SRA system state matrix A takes the following form

A=


A1 0 0

0 A2 0

0 0 A3

=


a1 0 0 0 0

0 a2 b2 0 0

0 −b2 a2 0 0

0 0 0 a3 b3
0 0 0 −b3 a3

 (12)
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Figure 6. Multi-time scale control architecture. Decoupled SRA block has three subsystems connected in parallel,
where very fast, fast and slow subsystems are controllable and observable. Calculated control inputs are used as
feedforward control signal to the original SRA system, where tracking controller is used for corrections. The LRA
system is controllable and observable, so analogue architecture can be constructed without decoupling.

Each of the block matrices A1, A2 and A3 on the main di-
agonal of matrix A represents different time scales present
in the original system: A3 very fast, A2 fast and A1 slow
dynamics. Since each triplet (Ai, Bi, Ci) , i = 1, 2, 3 is
controllable and observable, state feedback with Luenberg
observers can be constructed as in Fig. 6. The condition
number of each subsystem equals 1, meaning that all
subsystems are well-conditioned. The control scheme in

Fig. 6 shows decoupled systems for online calculation of a
feedforward input. The feedforward input is supplemented
with a tracking controller which uses the output measure-
ment. The tracking controller is a PID controller tuned to
provide necessary robustness and error reduction.

4. SIMULATIONS

The modal form equivalent to Eqn. 10 and 11 with values
for the experimentally obtained model is

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)

 = 104


−2.0736 0 0 0 0

0 −0.09666 1.4216 0 0
0 −1.4216 −0.09666 0 0
0 0 0 −0.0008812 0.14212
0 0 0 −0.14212 −0.0008812



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

+


0.722409
−0.277630
0.523323
−0.000039
0.000686

u(t) (13)

y(t) = 105 [0.013843 0.028369 −0.003839 1.961667 −0.05548] [x1(t) x2(t) x3(t) x4(t) x5(t)]
T

(14)

where each subsystem’s controllability and observability
matrices have full rank. State feedback controllers and
observers are determined by pole-placement

very fast SRA FB: K1 = 365.4438759

fast SRA FB: K2 = 104
[
−2.6774998
2.2229565

]
slow SRA FB: K3 = 107

[
2.4319584
1.6447982

]
 (15)

very fast SRA observer: L1 = 60.8705069

fast SRA observer: L2 =

[
43.7415717
54.7641023

]
slow SRA observer: L3 =

[
0.3310440
2.38049758

]
 (16)

The LRA state-space matrix triplet (ALRA, BLRA, CLRA)
does not suffer from the same issues as the SRA and
is controllable and observable. Thus the controller and
observer for this stage is designed using standard methods

and is shown in Fig. 6. State feedback controller and
observer gains are:

LRA FB gain: KLRA = 1011

[
0.0000025
0.0063647
2.5586978

]T

LRA observer gain: LLRA = 102

[−5.8334994
0.0031525
0.0000004

] (17)

In order to split the signal between the three time-scales,
three first-order analogue filters are used. A low-pass filter
with cutoff frequency at 450 Hz is designed for the low-
speed dynamics, a band-pass filter with pass band of
300-2500 Hz is used for the fast dynamics, and a high-
pass with cutoff frequency at 4000 Hz is designed for
the very fast dynamics. Bode plots of the designed filters
are shown in Fig. 7. The idea behind these filters is to
split the SRA reference signal into three separate signals
with corresponding frequencies to the dynamics of each
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subsystem. By doing this, it is assured that each subsystem
operates in its most fitting frequency regime.

The performance of the closed-loop system can be quan-
tified by comparing the open- and closed-loop response of
the individual states. The Bode plots in Fig. 8 show open-
loop and closed-loop frequency responses for the LRA
and SRA, respectively. Both closed-loop LRA and SRA
systems achieve closed-loop bandwidths of 200 Hz for the
LRA and 900 Hz for the SRA, which are significantly
higher than open-loop bandwidths (90 Hz for the LRA,
and 300 Hz for the SRA).

Two individual trajectory tracking examples are also pre-
sented. First, Fig. 9 (top) shows tracking results for a
reference trajectory yd = 2sin(2π100t). The maximum dis-
placement of the LRA is approximately ±9.75 µm, while
the SRA has maximum displacement of approximately
±0.75 µm. Therefore, the desired amplitude of the SRA is
chosen to be 0.5 µm in order to fully utilize this actuator
(without saturating it), and the LRA trajectory handles
the rest of the desired input trajectory, that is 1.5 µm.
Individual LRA and SRA signals and their corresponding
errors are shown in Fig. 9 (middle and bottom).

The individual signals coming from the decoupled SRA
system yveryfast, yfast and yslow are shown in Fig. 10.
The signals are split such that the largest amplitude is
handled by the slow dynamics, while smaller amplitudes
are handled by the fast and very fast dynamics. It is
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Figure 8. Open loop and closed loop Bode diagram for the
LRA and the SRA.
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Figure 9. (top) Total output and tracking error when
reference signal is a sinusoid of frequency 100 Hz and
amplitude 1.5 µm for the LRA and 0.5 µm for the
SRA. (middle and bottom) Individual LRA and SRA
references and corresponding tracking errors.
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Figure 10. Signals coming from the decoupled SRA dy-
namics: (top) desired and achieved signals; (bottom)
error signals.

possible to change the portion of the signal that is being
diverted to each subsystem by varying the cutoff frequen-
cies of the low-pass, band-pass and high-pass filters. The
control signals calculated for each subsystem are added,
and applied as a feedforward control action to the SRA.

The root mean square error is calculated as

RMSE =

√∑n
i=1(yd − y)2

n
(18)

where yd is the desired trajectory yd = yd,LRA + yd,SRA, y
is the achieved trajectory, and n represents the length of
the signal vectors. The RMSE value for the LRA trajectory
is 2.83×10−4, for the SRA is 1.43×10−4, for the total
output 1.52×10−4, and for all three trajectories the error
is approximately less than 2%.

A 50 Hz triangular trajectory is also explored as shown
in Fig. 11. In both cases, the LRA and SRA tracking
error is sufficiently small (less than 2%), where the RMSE
value for the LRA trajectory is 5.33×10−4, for the SRA is
0.23×10−4, and for the total output 5.56×10−4.
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Figure 11. (top) Tracking reference and corresponding
tracking error signal of the controlled system with tri-
angular signal as reference trajectory with amplitude
of 2 µm and frequency 50 Hz. (middle and bottom)
LRA and SRA tracking performance for triangular
reference trajectory.

5. CONCLUSIONS

In this paper, the multi-time scale control approach is
applied to a dual-stage nanopositioning system. The pre-
sented approach provides a new concept in the area of
dual-stage system control. The multi-time scale nature of
the analyzed nanopositioning system is a result of cou-
pling and interaction between the two actuators, LRA and
SRA. For this specific type of the system, multi-time scale
control technique design was shown to be effective and the
obtained simulation results display high-precision tracking
with error less than 2% for different input signals. The
results provide a solid ground for future applications and
further experimental study which is in the scope of our
research group.
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