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Abstract: Defects in blood clotting (coagulopathies) are linked to severe outcomes in mothers
suffering from obstetrical hemorrhage. Identifying patients with a coagulopathy poses a challenge
for clinicians, who are required to make quick treatment decisions in fast-paced environments
with a high degree of uncertainty. Integrating data from point-of-care coagulation tests with
mathematical models of coagulation presents an exciting opportunity to improve patient
outcomes by reducing this uncertainty. A model with parameters estimated from individual
patient data can provide clinicians with a way to compare patients and group them into
categories of probable coagulopathy based on biologically-interpretable parameters. With this
in mind, we developed a mechanism-inspired model of blood coagulation calibrated against
thromboelastogram (TEG) data. Markov Chain Monte Carlo and sensitivity analysis were used
to assess the identifiability and distribution of model parameters for 25 obstetric patients. The
ability of our model to separate patients in parameter space based on differences in observed
TEG response lends credence to the feasibility of using dynamic models as tools for identifying
coagulopathy subtypes within the obstetric population.

Keywords: Nonlinear Dynamic Modelling, Coagulation, Thromboelastography, Obstetrics,
Systems Medicine, Markov Chain Monte Carlo.

1. INTRODUCTION

Obstetrical hemorrhage is a leading cause of maternal
mortality in the United States, accounting for 16.2%
of all pregnancy-related deaths between 2003 and 2011
(Kuriya et al. (2016)). Risk factors associated with
this condition include advanced maternal age, placental
complications during pregnancy, and the presence of
postpartum coagulopathy. Coagulopathies are a class of
bleeding disorders characterized by deficits or defects in
the coagulation system that result in an impaired ability
to form or maintain blood clots. Severe post-delivery
bleeding often requires serious interventions such as
uterotonic agents, massive transfusion, or hysterectomy
surgery (Butwick and Goodnough (2015)); therefore,
determining whether a mother has an abnormally weak
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clotting ability at or before the onset of bleeding is a
critical factor in selecting the correct level and type of
treatment needed to prevent dangerous amounts of blood
loss. However, in practice these patients are often identified
only after they fail to respond to standard treatments.
Because of patient-to-patient variability associated with
coagulation, there exists a strategic need to improve
outcomes through the implementation of tools that enable
clinicians to compare patients and group them by severity
and subtype of coagulopathy.

A point-of-care device commonly used to assess
the presence and degree of coagulopathy is the
thromboelastogram (TEG). This device oscillates a
sample of whole blood mixed with a reagent (typically
kaolin or tissue factor) to activate coagulation, which is
measured via the displacement of a small pin (Hae (2014)).
By recording the amplitude (in mm) of these oscillations
over time, the device outputs a quantitative representation
of clot formation and subsequent breakdown (clot lysis).
TEG parameters describing the shape of this response
provide physicians with patient-specific measures of
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clotting ability, which guide treatment protocols in
areas such as trauma and obstetrics (Karlsson et al.
(2014)). Commonly used parameters include the latent
time between the start of the test and first recorded
displacements of the pin (R-time), the maximum recorded
amplitude of displacements (MA), and the percentage
decrease in amplitude 30 minutes after MA is reached
(LY30).

Current thromboelastogram parameters characterize TEG
tracings using macroscopic measurements taken at discrete
points in time. However, a more complete way to describe
these curves is to use ordinary differential equations
(ODEs), which provide a flexible and accurate way of
explaining how the variety of observed TEG response
shapes all arise from a common, dynamic process. TEG
tracings of individual patients may be precisely specified
by a set of ODE model parameters estimated from
measured data. By examining the distribution of model
parameters across patient populations, specific regions of
parameter space can be tied to specific breakdowns of
the coagulation system, thereby enabling individualized
coagulation assessment and subsequent treatment.

Mathematical modelling has yet to be widely implemented
in the context of coagulation management in a clinical
setting; however, in recent years there has been renewed
interest in incorporating knowledge of coagulation
dynamics into resuscitation protocols. Menezes et al.
(2017) outlined a methodology for rectifying coagulation
deficits in trauma patients that uses systems identification
techniques to model the effect that additions of key
clotting factors will have on thrombin generation in
vitro. Mechanism-inspired dynamic models could also be
used to this end, and carry the added benefit of having
states and parameters which are more easily related to the
underlying biological process. Existing mechanistic models
typically feature a large number of states and parameters
(76 biochemical species and 105 kinetic constants in the
case of a systems biology model developed by Chatterjee
et al. (2010)). The complexity of these models hinders
their application to obstetric medicine; fitting such a large
number of parameters on a per-patient basis would require
an amount and quality of data beyond what is available in
a clinical environment. Thus, there is a need for simpler,
low-order models that strike a balance between physiologic
realism and clinical utility. With this in mind, our model
is designed to provide insight into the dynamics of several
key clot components in a reduced-order framework, and
is calibrated using patient TEG data.

2. METHODS

2.1 Thromboelastogram Data

Data from 108 kaolin TEGs run on a TEG 5000
Hemostasis Analyzer System (Hae (2014)) were collected
from UPMC Magee-Womens Hospital in Pittsburgh, PA.
Of the full set of 108 collected TEGs, only 58 TEGs (from
25 unique patients) were identified from the obstetric
population. After taking the earliest available TEG for
each patient, a final sample of n=25 TEGs were analyzed
with our computational methods.

2.2 Model Structure

The kaolin TEG response model was built using mass
conservation principles and consists of a simplified
reaction scheme that describes the dynamics of several
clinically-relevant species in coagulation. Rather than
describing the true biochemical reactions at work, the
kinetic rate equations in our model represent low-order
approximations of the major interactions that occur
between different components. The resulting dynamic
model, while mechanism-inspired, is an analogy for (rather
than an explicit representation of) the underlying biology.
The advantage of this approach is that the parameters
of a simple model are more likely to be identifiable from
individual TEG tracings.

Our model describes coagulation as occurring through
the following simplified reaction scheme. An addition of
kaolin triggers the conversion of prothrombin to its active
form, thrombin, at a small initial rate (1). The resulting
interaction of thrombin with resting platelets causes
the latter to activate (2). Activated platelets provide
sites for surface-mediated reactions that rapidly convert
prothrombin to thrombin, generating large amounts of
the latter (3). Thrombin then reacts with fibrinogen to
form a cross-linked fibrin network, which, together with
aggregated platelets, results in a clot (4). This clot is
subsequently broken down via fibrinolysis (5).

pT
k1−→ T (1)

P + T
k2−→ Pa + T (2)

Pa + pT
k3−→ Pa + T (3)

Pa + T + Fg
k4−→C (4)

C
k5−→∅ (5)

In order to capture intermediate states of platelet
activation, the activation process depicted in (2) was
split up into three stages. Discretizing this step in our
reaction scheme proved useful for capturing patients
with longer R-times. The network that results from this
description of coagulation is depicted in Fig.1.
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Fig. 1. Simplified description of coagulation: solid arrows
indicate generation or consumption of different
species in our model, while dashed arrows indicate
activating or catalytic interactions.
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By approximating the TEG as a well-mixed vessel,
reaction kinetics may be represented as a system of ODEs.
Our system consists of the following states corresponding
to species concentrations: prothrombin, pT (t), thrombin,
T (t), resting platelets, P (t), intermediate activation
states, P1(t) and P2(t), fully activated platelets, Pa(t),
fibrinogen, Fg(t), as well as the clot state, C(t).

dpT (t)

dt
=−k1pT (t)− k3Pa(t) · pT (t)

µpT + pT (t)
(6)

dT (t)

dt
= k1pT (t) + k3Pa(t) · pT (t)

µpT + pT (t)
(7)

−k4T (t) · Pa(t)

µPa
+ Pa(t)

· Fg(t)

µFg + Fg(t)

dP (t)

dt
=−k2P (t) · T (t)

µT + T (t)
(8)

dP1(t)

dt
= k2P (t) · T (t)

µT + T (t)
− kactP1(t) (9)

dP2(t)

dt
= kactP1(t)− kactP2(t) (10)

dPa(t)

dt
= kactP2(t) (11)

−k4T (t) · Pa(t)

µPa
+ Pa(t)

· Fg(t)

µFg + Fg(t)

dFg(t)

dt
=−k4T (t) · Pa(t)

µPa + Pa(t)
· Fg(t)

µFg + Fg(t)
(12)

dC(t)

dt
= k4T (t) · Pa(t)

µPa + Pa(t)
· Fg(t)

µFg + Fg(t)
(13)

−k5C(t)

Equations (6)-(13) describe an abstracted representation
of coagulation biology, but one that nevertheless
incorporates many essential features of the underlying
system. The resulting system of ODEs is parameterized
by 6 rate coefficients (k1, k2, k3, k4, k5, kact), 4 saturation
constants (µpT , µT , µPa

, µFg), and 8 initial concentrations
(one for each state). To relate our model to experimental
data, the clot state C(t) is scaled to patient TEG data
via a scaling factor ψ–itself an estimated parameter with
units of mm.

y(t) = ψ · C(t) (14)

2.3 Bayesian Parameter Estimation

Parameter estimation was accomplished using APT-
MCMC (Zhang et al. (2018)), a C++/Python
implementation of a Markov Chain Monte Carlo algorithm
with parallel tempering. MCMC is a stochastic technique
used to gain information about probability distributions
lacking a closed form, in which random “walkers”
generate samples of the parameter space according to
the probability of a given parameter set in the face of
observed experimental data. This process is enhanced
by parallel tempering, a physics-based method in which
information exchange between Markov chains run in
parallel at different “temperatures” enables both a broad
and deep search of parameter space. From a large number

of samples, MCMC recovers the posterior distribution
of model parameters, which may be used to develop
confidence intervals, assess interparameter correlations,
and identify the locations of multiple minima in the
objective function surface. In our analysis, the maximum
likelihood parameter vector and confidence intervals for
each patient were calculated via kernel density estimation
using the last 10,000 parameter vectors returned by
APT-MCMC out of a total chain of 100,000.

2.4 Sensitivity Analysis

By computing the sensitivity matrix around nominal
parameter values returned from APT-MCMC, it is
possible to determine which parameters have the most
influence on the measured variable y(t). As demonstrated
by Zak et al. (2003), parametric sensitivity is also related
to identifiability, to the extent that parameters whose
sensitivities are highly correlated can influence the
measured variable in a compensatory manner to one
another–thus forming an unidentifiable group. In our
analysis, sensitivities were used to evaluate the relative
importance and identifiability of model parameters.

2.5 Identifiability Analysis and Model Reduction

In the context of nonlinear ODE systems, MCMC
becomes a powerful tool for assessing model robustness
and the identifiability of parameters from available data.
Insufficient or sparse data often results in excessively large
confidence intervals on estimated parameters; mitigating
this issue typically requires reducing the number of free
parameters in the model. With this in mind, APT-MCMC
and sensitivity analysis were used to guide the reduction
of our original set of parameters to a subset that may be
uniquely estimated from patient TEG tracings.

The coupled processes of platelet activation and thrombin
generation form a powerful positive feedback loop, which
in our model is driven by the rate coefficients k1, k2,
k3 and kact. Analysis of the sensitivity matrices for 25
patients indicated that these four parameters have a
highly correlated effect on y(t), suggesting that they are
unidentifiable from TEG data alone. This group was
reduced to an identifiable subset by fixing k1 and kact at
constant values, and setting k2 and k3 in equations (6)-
(9) as being equal to single estimated value, henceforth
referred to as β. In addition, the confidence intervals
on saturation constants indicated that they were not
adequately estimable from TEG data; therefore, all values
of µ in equations (6)-(13) were set to a fixed value of 0.5.
In the reduced formulation of our model, all states are
scaled to have initial values of either 0 or 1, indicating
concentration at the onset of coagulation in arbitrary
units.

After model reduction, our final structure includes four
estimated parameters: the rate coefficient governing
platelet activation and thrombin generation (β), the rate
coefficients of clot formation (k4) and lysis (k5), as well as
the scaling factor ψ. In order to ensure that the Pa(t) state
is distinguishable, it is necessary to set the upper bound
of k4 to a value within an order of magnitude of kact.
Considered ranges of estimated parameters and values of
fixed constants are detailed in Table 1 and Table 2.
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Table 1. Estimated Parameters

Parameter Range Units Description

β [0.0001, 1] s−1 Resting platelet activation and thrombin generation rate constant (value of k2 and k3)
k4 [0.0001, 0.1] s−1 Clot formation rate constant
k5 [1× 10−7, 0.001] s−1 Clot lysis rate constant
ψ [0, 70] mm Scaling factor between clot state and TEG readout

Table 2. Fixed Parameters and Initial Conditions

Parameter Value Units Description

k1 1× 10−6 s−1 Rate constant of thrombin generation from kaolin reagent
kact 0.01 s−1 Platelet transformation rate

µpT , µT , µPa , µFg 0.5 arb. Saturation constants
pT (0), P (0), Fg(0) 1 arb. Initial concentration of species present at onset of coagulation

T (0), P1(0), P2(0), Pa(0), C(0) 0 arb. Initial concentration of species absent at onset of coagulation

Fig. 2. TEG data and model error: the mean, standard
deviation, and range of experimental values (top) and
model error (bottom) at each time point for all 25
patients. Residual error is defined as actual TEG value
(in mm) at each time point minus that predicted by
the model.

3. RESULTS

The model predicted TEG tracings corresponding to the
maximum likelihood parameter vector for each patient
result in an average absolute error of 0.62 mm at each
time point. Plots of the mean residual error at each time
point, as well as the standard deviation and range across
the data set, are shown in Fig. 2. The model exhibits
an ability to capture TEG tracings with a high degree
of accuracy, especially towards the later portions of the
readout in which the clot has ceased growing and begins
to undergo the process of lysis.

The majority of error occurs during the period of rapid clot
growth, a process primarily governed by k4, which controls
the rate of platelet aggregation and fibrin polymerization.
Our model underpredicts the rate of clot growth, which
we attribute to the model structure compensating for

Fig. 3. Model Parameters: The last 10,000 parameter
vectors output by APT-MCMC fits for each
individual TEG were normalized to produce the
distributions shown in blue (left y-axis), and the
overall frequencies across all 25 patients added
together to produce the population histograms shown
in black (right y-axis).

decidedly variable R-times observed within our data set, as
well as the bounds set on k4. Although some of this error
could likely be reduced by relaxing the allowed range of
k4 (Table 1), these limits were deliberately introduced to
restrict the dynamic range of Pa(t) such that activated
platelets have time to accumulate to appreciable levels
before they are incorporated into the clot.

3.1 Population Histograms

APT-MCMC fits to TEGs from all 25 patients are
displayed in Fig. 3. By examining how the distributions
of β, k4, k5, and ψ vary across our data set, it becomes
evident how specific shapes seen in TEG tracings are
linked to the values of estimated model parameters.
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Fig. 4. Patient Subtypes: (a) Model fits to TEG data for 5 different patients from the 25 patient population. (b) Joint
probability distributions of parameters fit to selected patients. (c) Joint probability distributions for all 25 patients
superimposed. The locations of the maximum likelihood parameter sets used to generate the fits in (a) are indicated
by markers in (b) and (c), with 95% confidence regions for each patient shown as shaded areas in panel (b).

The time between the addition of the kaolin reagent and
first recorded oscillations of the pin (R-time) can vary
greatly between patients; this manifests as multimodalities
the distribution of β, which controls the aggressiveness of
the positive feedback loop formed by platelet activation
and thrombin generation. This suggests there exists
significant interpatient differences in coagulation initiation
across the population and that these differences may
contribute to the identification of distinct subpopulations.
The majority of TEG tracings examined exhibit a rapid
rate of clot growth in the minutes after R-time is achieved,
resulting in k4 distributions that are shifted towards the
parameter’s upper bound. However, there exists a small
but clinically relevant group of patients inhabiting the
left half of the k4 range; for these patients, clot growth
occurs at a much slower rate, suggesting an impaired
ability to generate clot-forming species such as activated
platelets and fibrin. Most TEGs exhibit a low rate of clot

lysis, with the exception of two patients whose high lysis
rates place their k5 distributions distinctly to the right of
the overall population. The scaling factor ψ is related to
the magnitude of TEG response produced by a patient’s
clot–a measurement that serves as a proxy for clot size
and strength. In our patient population, distributions of
ψ tend to overlap and are clustered around a value of
approximately 40 mm.

3.2 Subtyping in Parameter Space

The marginal distributions of fitted parameters returned
by APT-MCMC can be combined into joint distribution
plots to provide a two-dimensional visualization of the
model parameter space (Fig. 4). At the population level,
this provides a means for exploring how differences in
patient coagulopathic state (as measured by TEG data)
manifest as separation in the model parameter space.
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Figs. 4a and 4b illustrate how different coordinates
in parameter space define TEG response dynamics for
several patient subtypes observed within our data set.
Model fits to TEG data for five patients are shown in
Fig. 4a. The high lysis subtype (Patient 1), exhibits a
high degree of separation from the overall population
along the log(k5) axis. Patients that fall under the slow
clot growth subtype (Patients 2 and 3) are distinguished
by their outlying position along the log(k4) and log(ψ)
axes. Joint distribution plots for Patients 2 and 3 indicate
the existence of a linear correlation between log(k4) and
log(ψ) not found in the majority of patients (Pearson
correlation coefficient of −0.97 and −0.92 for Patients 2
and 3 respectively, compared to a mean value of −0.64 for
all 25 patients). This can be attributed to the fact that
TEGs for the slow clot growth subtype in our data set
typically do not have time to capture the process of clot
lysis before the test is terminated, making it difficult to
quantify k5 and separate the relative contributions of k4
and ψ to the measured response. This is further evidenced
by the presence of a slight nonlinear correlation seen
between log(k5) and log(ψ) for this patient type. Patients
4 and 5 represent the long and short R-time subtypes
respectively, but otherwise feature TEG tracings typical
of the majority of patients in the data set. In the model
parameter space, they are clustered closely together except
when plotted along the log(β) axis.

4. SUMMARY

From a data set of 25 kaolin-activated TEGs taken from
the obstetric population, a dynamic model of coagulation
was constructed. An identifiability analysis, guided by
APT-MCMC and further validated by sensitivity analysis,
led to the reduction of model parameter space to four
parameters shown to be estimable from TEG data.
The resulting model exhibited an ability to fit different
types of TEG tracings encountered in the clinic, with
interpatient differences in clotting ability (as measured by
TEG response shape) leading to separation when plotted
in the model parameter space–thus demonstrating the
plausibility of using model parameters to identify subtypes
of coagulopathy.

The mechanism-inspired nature of our model structure
could enable the linking of locations in parameter space
to specific impairments of the coagulation cascade.
With this context in mind, dynamic modelling can help
clinicians not only detect the presence of coagulopathy,
but potentially pinpoint where the breakdown is occurring
in the underlying biological system, which informs the
subsequent choice of treatment.

A major barrier to the implementation of model-based
coagulation control is the difficulty of incorporating
thromboelastogram data into a decision support system
in real time. Ideally, such a system would be part of a
point-of-care platform that integrates TEG data with
a dynamic model, thus providing clinicians with up-
to-the-minute assessments of potential breakdowns in
the coagulation process while the TEG is run. Given
that commercially-available TEGs have the capability
to display results in real time to a hospital workstation
via their manufacturers’ viewing interface, integration of

this type of assessment would only require additions to
existing software.

We are in the process of accessing and fitting additional
obstetric patients to evaluate the robustness of identified
subtypes, as well as evaluating how patient subtype may
change over time or as the result of clinical intervention. In
addition, incorporating data from other point-of-care tests
of hemostasis (e.g., thrombin generation assay, platelet
count, fibrinogen Clauss assay, etc.), may enable the
mapping of internal model states to physiologic quantities,
providing clinicians with actionable data on what modes
of intervention may be used to return patients to a healthy
overall coagulation state.
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