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Abstract: In this paper we consider the problem of optimization of a multi-agent system with constraints
through perturbations-based extremum seeking control. We demonstrate that for such systems, effects
of dither signals applied to individual agents can sum up to significant perturbations in the outputs at the
overall system level despite the fact that individual dither signals can be small. These perturbations
are especially detrimental in constrained outputs. To resolve this challenge, we propose a method
of dither signals optimization: while maintaining persistent perturbations of individual agents, dither
signals are coordinated between the agents to minimize their summed effect in constrained outputs. This
problem is formulated as a computationally feasible mathematical programming problem that can be
solved numerically at each time step. Combined with a constrained steady-state optimizer and a least
squares-based gradient estimator, this method provides better performance than a similar perturbation-
based extremum seeking scheme without dither optimization. This is demonstrated with an example
on oil production optimization from a system of multiple gas-lifted wells with a total water processing
constraint.
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1. INTRODUCTION

Extremum seeking control (ESC) is a popular model-free opti-
mization method that has received significant attention from the
scientific community in the last two decades, see, e.g. Krstic
and Wang (2000); Krstic (2000); Ariyur and Krstic (2003);
Tan et al. (2008); Tan et al. (2010); Hunnekens et al. (2014);
Guay and Dochain (2015); Haring (2016). It allows one to
achieve automatic optimization of steady-state behavior of an
unknown plant, where the steady-state behavior is quantified in
terms of an a-priori unknown best measured cost function. Opti-
mization is achieved by manipulating inputs through feedback
of the plant outputs. Apart from applications to optimization
of individual systems, ESC has been applied to optimization
of systems consisting of multiple interconnected subsystems
(possibly with a specification of the interconnection topology),
resulting in a number of publications on distributed Extremum
Seeking Control for multi-agent systems, see, e.g. Ye and Hu
(2015); Pavlov et al. (2017); Ebegbulem and Guay (2018);
Wang et al. (2019).

In practical problems it is quite often the case that while seeking
an optimum, an optimizer needs to respect certain operational
constraints. The attainable performance of the overall system
(formulated in the form of a cost function) is in many practical
cases limited by one or more constraints. For multi-agent sys-
tems, these constraints can be both on the level of individual
systems (agents) or on the level of the overall multi-agent sys-
tem. Results on ESC for individual constrained systems have
been presented in, e.g., Dehaan and Guay (2005); Coito et al.
(2005); Poveda and Quijano (2012); Dürr et al. (2013); Guay
et al. (2015), while extensions to multi-agent systems (still with
constraints on individual agents) have been reported in Nedic
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et al. (2010); Kvaternik and Pavel (2012); Poveda and Quijano
(2013); Dougherty and Guay (2016).

In a specific type of multi-agent optimization problems, namely,
resource allocation problems, constraints are formulated not
only on the individual systems (agents), but also on the oper-
ation of the overall system as a whole. For example, the total
available resource to be allocated among the agents to achieve
optimal performance of the overall system is limited, giving us
a constraint on the sum of all the individual systems’ inputs.
At the same time, overall performance can also be limited by a
constraint on the sum of the individual systems’ outputs.

For multi-agent optimization problems with such overall con-
straints, application of perturbation-based extremum seeking
control may face a challenge that is not encountered in prob-
lems with constraints only on individual agents. This challenge
arises from system-wide perturbations caused by dither signals
of individual subsystems (agents). In perturbation-based ESC,
system’s input is a sum of a fast varying dither signal (for gra-
dient estimation of unknown functions) and a slowly-varying
value adjusted by the optimizer to bring the average input
value to the optimum. Dither signals are commonly chosen to
have small amplitudes to extract the essentially local gradient
information and to avoid large dither-induced variations in the
individual system’s input and output. For multi-agent optimiza-
tion problems with overall system constraints, small dither-
induced perturbations from individual agents can sum up to a
large perturbation in the constrained inputs and outputs of the
overall system. While the slowly varying components of the
control inputs can converge to the constrained optimum, this
large perturbation will result in persistent non-small violations
of the constraints (if the optimum is at the constraint).

A practical solution to resolve this problem is to utilize virtual
constraints separated from the actual constraints in the steady-
state optimizer, which are to account for perturbations. While
the average input values satisfy the virtual constraints, the per-
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turbed values will satisfy the original constraints. However, to
account for the large dither-induced perturbations in the overall
system’s input and output, the virtual constraints may need to be
overly conservative, resulting in quite a suboptimal operation of
the overall system. In applications from the oil and gas industry
(we use an example of a multi-well oil production system to
motivate our study), such sub-optimality will result in signif-
icant economical losses, making this conventional approach
inappropriate.

In this work we present a solution to the challenge of large
dither-induced perturbations in the overall constrained multi-
agent system’s input and output by optimizing and coordinating
dither signals between individual agents. For each agent, there
is quite some freedom in dither signal selection. For example,
for sinusoidal dither signals, one can play with the amplitude
and phase while keeping the amplitude within certain min and
max bounds. These degrees of freedom have no effect on the
efficiency of the gradient estimation of individual systems. The
proposed solution utilizes such degrees of freedom within all
the agents to minimize a steady-state dither-induced perturba-
tions in constrained input and output of the overall system. Min-
imal (or, as demonstrated by simulations, negligible) dither-
induced perturbations in the input and output, allow the sys-
tem to operate much closer to the constraints without violating
them, as, for example, compared to the method of the virtual
constraints presented above. This, in turn, will result in a more
economically beneficial operation of the system.

Previous works on dither signals focused on their shape, fre-
quency and amplitude. The shape affects the convergence rate
of the gradient estimator, see, e.g. Tan et al. (2008). The am-
plitude should allow persistence of excitation to ensure con-
vergence to the optimum, see, e.g. Adetola and Guay (2007).
The frequency should be sufficiently high to ensure time-scale
separation between the dynamics of the gradient estimator, the
process optimizer and the plant, see, e.g. Krstic (2000); Suttner
(2019). In multi-agent systems improved performance can be
achieved by re-using frequencies of agents that do not affect
the other’s steady-state performance significantly, see, e.g. Ku-
tadinata et al. (2014). Note that the closest related work, see,
e.g. Adetola et al. (2004), to minimization of dither signals
does not apply in our case. Although that paper does focus on
minimization, in some sense, of the overall dither signal, this
minimization does not guarantee small values of the overall
input in the infinity norm, which is essential in our application.
Secondly, that work focuses only on the reduction of dither-
induced variations at the input of the system, and it does not
minimize the dither-induced variations in the overall output of
the system, which is also very important for our application.

This work is an extension of the dither signals optimization
study initiated in Silva and Pavlov (2020) to the case of con-
strained multi-agent ESC. While the application of ESC to
constrained multi-agent systems is not new, see, e.g. Nedic
et al. (2010); Kvaternik and Pavel (2012); Poveda and Quijano
(2013); Dougherty and Guay (2016), the minimization of the
dither-induced variations both in the input and in the output
of the overall system by means of dither signals coordination
for such problems is considered, to the best of the authors’
knowledge, for the first time, despite its practical relevance.

The paper is organized as follows. In Section 2 we formulate
the constrained optimization problem of multi-agent systems
and formulate the problem of dither signals optimization. In
Section 3 we present analysis and a numerical method for dither
signals optimization. In Section 4 we present an overall ESC
optimizer with dither signals optimization. Section 5 demon-

strates application of the proposed solution to the problem of
optimal gas allocation for gas-lifted wells with a constraint on
the total produced water. We conclude with Section 6.

2. PROBLEM FORMULATION

In this section we firstly formulate the constrained optimization
problem for a multi-agent system with overall (system-wide)
constraints. Then we formulate the problem of dither signals
optimization that arises in solving the first optimization prob-
lem with a perturbations-based extremum seeking control.

Let us consider N systems described by static relations:
yi = fi(ui), , yi ∈ R, ui ∈ R, i = 1, . . . , N, (1)

with a-priori unknown strictly concave functions fi(ui). Both
ui and yi are available for measurements. We need to find a con-
trol algorithm for ui to automatically maximize the following
cost function:

Y :=

N∑
i=1

fi(ui)→ max (2)

subject to input constraints on individual agents:
umin
i ≤ ui ≤ umax

i , i = 1, . . . , N (3)
for some umax

i > umin
i , and to system-wide constraints:

U :=

N∑
i=1

ui ≤ Umax, (4)

W :=

N∑
i=1

gi(ui) ≤Wmax (5)

for some a-priori unknown functions gi(·). It is assumed that
gi(ui), i = 1, . . . N , are also measured. We assume that
inequalities (3)-(5) specify a compact convex set such that the
overall optimization problem (2)-(5) has a unique optimum.
In addition to that we assume that the functions fi and gi are
sufficiently smooth and that there exists a gradient search-type
optimizer algorithm (called steady-state optimizer) that, given
gradients of fi and gi, ensures convergence of control inputs ūi
to the unique optimum from any initial condition ūi(0), while
satisfying the constraints (3)-(5).

Extremum seeking control is a suitable tool to address the
above mentioned problem. Since the gradients of fi and gi
are generally unknown, to employ the optimizer, one needs to
estimate them. The optimizer combined with the gradient esti-
mator constitute the essence of extremum seeking control. To
enable gradient estimation in perturbation-based ESC, slowly
varying control inputs ūi are supplied with slowly varying value
adjusted by the optimizer and a dither signal di(t) — fast-
varying perturbation signal that allows one to estimate gradients
of ∂fi

∂ui
(ūi) and ∂gi

∂ui
(ūi):

ui = ūi + di(t), i = 1 . . . , N. (6)

The overall effect of dither signals on the constrained variables
U and W are given by

U =

N∑
i=1

ūi︸ ︷︷ ︸
=:Ū

+

N∑
i=1

di(t)︸ ︷︷ ︸
=:Ju

. (7)

W =

N∑
i=1

gi(ūi)︸ ︷︷ ︸
=:W̄

+

N∑
i=1

gi(ūi + di(t))−
N∑
i=1

gi(ūi)︸ ︷︷ ︸
=:Jg

. (8)
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While the steady-state optimizer can handle constraints (4), (5)
on the nominal values Ū and W̄ , the terms Ju and Jg can lead
to significant variations in the actual U andW . Even when each
dither signal di(t) can be relatively small, their overall effect on
U andW , especially for largeN , can be quite large. In practice,
this can be quite detrimental for physical equipment, since these
large and relatively fast perturbations can result in increased
equipment wear and reduced life-time. On the other hand, one
still needs to satisfy the constraints (4), (5) in the presence of
the large perturbations. To account for the perturbations, the
constraints on Ū and W̄ need to be made more restrictive,
leading to suboptimal operation.

To minimize or avoid the dither-induced perturbations in U
and W , we formulate the following dither signals optimization
problem:

‖Ju‖∞ = max
t

∣∣∣∣∣
N∑
i=1

di(t)

∣∣∣∣∣→ min
{di(·)}

(9)

‖Jg‖∞ = max
t

∣∣∣∣∣
N∑
i=1

gi(ūi + di(t))− gi(ūi)

∣∣∣∣∣→ min
{di(·)}

(10)

subject to constraints
dmin
i ≤ max

t
|di(t)| ≤ dmax

i (11)

for some dmax
i and dmin

i that ensure the possibility to identify
the gradients. Notice that condition (11) can be substituted
by an appropriate persistence of excitation condition. Even
though we formulate two optimization objectives (9) and (10),
in practice one can either combine them into one objective,
or restrict one of the cost functions by a small value, while
minimizing the remaining one.

Although (10) contains unknown functions gi, it is still possible
to solve this optimization problem based on available measure-
ments, as will be demonstrated in the next section.

3. DITHER SIGNAL OPTIMIZATION

To overcome the problem of unknown functions gi(ui) in (10),
we approximate Jg with the linear approximation of gi(ui):

gi(ūi + di)− gi(ūi) ≈
∂gi
∂ui

(ūi) · di (12)

To simplify the notation, we denote the derivative ∂gi
∂ui

(ūi) as
Gi(ūi), and thus Eq. (10) becomes:

‖Jg‖∞ ≈ ‖JG‖∞ := max
t

∣∣∣∣∣
N∑
i=1

Gi(ūi) · di(t)

∣∣∣∣∣→ min
{di(·)}

.

(13)
Although the gradients Gi are still unknown, they can be
estimated by a gradient estimation algorithm from the measured
gi(ui). Thus, all parameters in (9) and (13) become known and
we can optimize di(t) to achieve the optimization objectives
(9) and (13). Below we demonstrate this concept for the case
of sinusoidal dither signals, which are often used in extremum
seeking control.

The conceptual formulation of the dither signals optimization
problem (9), (10), (11) can be tailored for any particular choice
of dither signals. In this work, we assume sinusoidal dither
signals of the following form:

di(t) = αi sin(ωt+ ϕi), i = 1 . . . N (14)
where the signal amplitude is αi, the frequency is ω, and the
phase is ϕi. The frequency ω is chosen off-line in order to

achieve time-scale separation with the steady-state optimizer.
The remaining parameters for optimization are the amplitudes
αi and the phases ϕi, i = 1, . . . N .

After substituting di(t) from (14) to (13) and (9), we still obtain
a challenging optimization problem (nonlinear and non-convex
problem) with respect to the amplitudes αi and phases ϕi. To
overcome this challenge, we utilize an equivalent parametriza-
tion proposed in Silva and Pavlov (2020):

di(t) = ai · sin(ωt) + bi · sin(ωt), (15)
where ai and bi are the optimized parameters of the dither
signals. The actual amplitudes αi and phases ϕi of the signals
can be obtained with the following relations:

αi =
√
a2
i + b2i (16)

ϕi = arctan
bi
ai

(17)

With the new parametrization, the variations in the input and
the corresponding output variation at each time step (see (9)
and (13)) can be written as:

Ju =

(∑
i

ai

)
sin(ωt) +

(∑
i

bi

)
cos(ωt) (18)

JG =

(∑
i

Gi · ai

)
sin(ωt) +

(∑
i

Gi · bi

)
cos(ωt) (19)

where the optimizing parameters ai and bi now appear linearly
in the equations representing the dither-induced variations.
From this, we obtain

‖Ju‖2∞ =

(∑
i

ai

)2

+

(∑
i

bi

)2

(20)

‖JG‖2∞ =

(∑
i

Gi · ai

)2

+

(∑
i

Gi · bi

)2

. (21)

Individual constraints (11) can be captured taking into account
the relation:

max
t
|di(t)|2 = a2

i + b2i . (22)

3.1 Formulation of the dither signals optimization problem

With the expressions for total variations and maximal ampli-
tudes in (20)–(22), we can formulate the dither signals opti-
mization problem in a form that can be solved with standard
numerical optimization methods, see, e.g. Nocedal and Wright
(2006) . The dither optimization problem consists in optimally
selecting the tuning parameters ai and bi for the dither signals
in (15) such that the equations are satisfied:(∑

i

Gi · ai

)2

+

(∑
i

Gi · bi

)2

→ min
{ai,bi}

(23)(∑
i

ai

)2

+

(∑
i

bi

)2

≤ δ2
in (24)

(dmin
i )2 ≤ a2

i + b2i ≤ (dmax
i )2, i = 1 . . . N (25)

Note that instead of two minimization objectives (9) and (13),
we select to minimize only (13) (or, equivalently (21)), while
restricting (9) (or, equivalently, (20)) by a small value δ2

in.

The optimization problem (23)-(25) depends on the slowly-
varying ūi as parameters. Thus, the solution to the optimization
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problem will also change with ūi (ūi are adjusted by the
steady-state optimizer). To avoid fast variations of the dither
parameters ai and bi, we impose additional constraints on their
subsequent changes ∆ai and ∆bi:

|∆ai|2 ≤ ∆amax i = 1, . . . N, (26)
|∆bi|2 ≤ ∆bmax, i = 1, . . . N, (27)

for some ∆amax and ∆bmax.

If the gradientsGi or their estimates are available, we can solve
the optimization problem (23)-(27) numerically at each time
step. With exact knowledge of the gradientsGi, it can be shown
that the left-hand sides in both (20) and (21) can be set to zero
by proper conditioning of amplitudes and phases in individual
non-zero dither signals. This is possible for N ≥ 3. The proof
of this statement goes beyond the objectives of this publication
and is left out for a journal version of the paper.

4. CONSTRAINED ESC WITH DITHER OPTIMIZATION

In this section we combine the dither signals optimization
scheme developed in the previous section with a steady-state
optimizer and gradient estimator. The overall scheme is illus-
trated in Figure 1. It represents a further development of the
ESC scheme described in Silva and Pavlov (2020) including
system-wide operational constraints. For simplicity of presenta-
tion, in this section we consider optimization problem (2) only
with constraint (5). Including all the other constraints will only
make the optimizer more elaborate, while the concept of dither
signals optimization for constrained ESC (which is the main
contribution of this paper) remains the same.

Steady-state

optimizer i+1

Steady-state

optimizer i

Steady-state

optimizer N

Distributed optimizer

 Gradient

Estimator i

System i

   Gradient

Estimator i+1

System i+1

  Gradient

Estimator N

System N

Dither signal optimizer

Fig. 1. Extremum-Seeking Scheme.

For every system i in Figure 1, the input signal ui is the sum
of the nominal input ūi and a dither signal di(t). The gradient
estimator calculates the estimates the gradients ∂f̂i

∂ūi
and ∂ĝi

∂ūi

from the measured ui and outputs fi(ui) and gi(ui). The steady
state optimizer performs slow adaptations of the nominal inputs
ūi such that the system is driven towards the optimal solution
while avoiding violating the operational constraint.

4.1 Augmented cost function

To develop a steady-state optimizer for the optimization prob-
lem (2) with constraint (5), we transform, using a barrier
method, see, e.g. Nocedal and Wright (2006), the constrained
optimization problem (2), (5) into an unconstrained problem.

The constraint (5) is included in the form of barrier functions in
an augmented cost function. The barrier function penalizes the
constraint violation in the objective such that the solution of the
unconstrained problem is driven towards the neighborhood of
the minimizer u∗ = (u∗1, . . . , u

∗
N ) of the constrained problem.

A common choice for barrier functions is the logarithmic bar-
rier because it possesses the desired property of going to mi-
nus infinity as the constraint becomes nearly active, see, e.g.
Nocedal and Wright (2006). Using the logarithmic barrier, we
define an augmented objective function which encodes the ob-
jective (2) and the constraint (5) as follows:

JA(u) :=
∑
i

fi(ui)− µ log (Wmax −W (u))→ max (28)

where W (u) =
∑

i gi(ui) and µ > 0 is a strictly positive
penalty. Notice that the unconstrained minimization of the
augmented cost JA approaches the solution of (2) and (5) as
the penalty µ→ 0.

4.2 Steady-state optimizer

After the transformation with the logarithmic barrier, the op-
timization problem consists in determining the input signals
ui such that the augmented cost function JA(u, µ) is maxi-
mized. In extremum-seeking control the steady-state optimizer
is responsible for the slower adaptations performed in the input
signals towards the optimal solution. For the optimizer, in our
case, we choose the simple gradient search scheme:

˙̄ui = γi ·
[
∂fi
∂ui

(ūi)−
(

µ

Wmax −W (ū)

)
· ∂gi
∂ui

(ūi)

]
(29)

where the tuning parameter γi is the optimizer gain of the
controller i.

4.3 Least squares gradient estimator

The steady-state optimizer relies on accurate estimates of the
gradients ∂fi

∂ūi
and ∂gi

∂ūi
to perform the adaptations in the input

signals towards the optimum. As proposed in Silva and Pavlov
(2020), we utilize a static estimator to estimate these gradients,
thereby avoiding the interplay between the dither signals opti-
mizer and dynamics of the gradient estimator.

The gradient estimator calculates the gradient and a smoothened
value of the function based on the 1st-order least-square fits
of stored data from previous time steps in a sliding window
(Hunnekens et al., 2014). A sliding window stores data from
the past Tw seconds from previous time steps. The gradient
pi is obtained from the least-squares fit pi · ui(t) + qi of the
window data at time step t as the solution of the following
convex optimization problem:

min
pi,qi

∫ 0

−Tw

(fi(t+ τ)− (pi · u(t+ τ) + qi))
2 · dτ. (30)

We select the window size to be an integer multiplier of the
dither signal wave period. Its size determines the smoothness
of the gradient estimates (in case of noisy measurements) as
well as the delay of the estimates: the bigger the window is, the
smoother and more delayed is the estimation.

The value of W (ū) =
∑

i gi(ūi) is not measured. We can
estimate gi(ūi) for all i (and, thus, W (ū)) from the measured
ui = ūi +di(t) and the corresponding gi(ui(t)) using the same
least squares estimator as for calculating the gradients of gi(ui).
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4.4 Dither signal optimizer

The dither signal optimizer is based on (23)-(27) where instead
of true gradients Gi = ∂gi

∂ui
(ūi) we utilize their estimates Ĝi:

JG =

(∑
i

Ĝi · ai

)2

+

(∑
i

Ĝi · bi

)2

→ min
{ai,bi}

(31)(∑
i

ai

)2

+

(∑
i

bi

)2

≤ δ2
in (32)

(dmin
i )2 ≤ a2

i + b2i ≤ (dmax
i )2, i = 1 . . . N (33)

|∆ai|2 ≤ ∆amax i = 1, . . . N, (34)
|∆bi|2 ≤ ∆bmax, i = 1, . . . N, (35)

5. SIMULATION EXAMPLE

We consider an application example from the petroleum indus-
try to assess the performance of the proposed method. In some
oil production systems, specially in the early stage of produc-
tion, the reservoir pressure is enough to lift up the fluids from
the wells to the platform naturally. However, when the reservoir
pressure depletes and its pressure is not sufficient to ensure
an economically viable operation, some artificial-lift support is
required. A widely used artificial-lift method is called gas-lift.
It consists of injecting pressurized gas down-hole into the well
such that the injected gas reduces the fluid density, leading to a
reduction in the hydrostatic pressure in the vertical column of
the well, which yields an increase in the well production rate.
If the gas injection rate becomes too large, the friction caused
by the additional gas flow becomes greater than the hydrostatic
pressure reduction improvement, and therefore the production
begin to decrease. There is a function that relates the oil rate to
the gas injection rate in a well, usually referred to as production
curve or gas-lift performance curve. Is is typically a concave
curve (y = f(u)) with a unique maximum point u∗, where u is
gas injection rate and y is the oil production rate. In addition to
oil wells produce gas and water also.

The wells typically produce to a common top-side processing
facility, where the total produced gas is processed in a shared
compressor, as shown in Figure 2. A subsea manifold gathers
and directs the production from all the wells to the processing
facilities for separation. A fraction of the gas is pressurized to
be injected into the wells for gas-lift support. The optimization
problem can be formulated as an optimal resource allocation
problem: how to split the total gas available for gas-lift among
the production wells such that the total oil production is maxi-
mized ? Typically, there is an additional constraint on the total
water production, as platforms water processing capacity is
limited.

In our simulation study, we consider a system with N =
5 wells such that their gas-lift injection rates are the input
signals ui, i = 1, . . . 5. The production curves relating the oil
production rates of the wells to given gas injection rates are
concave functions of the form:

fi(ui) =c1,i × 10−7 · u4
i + c2,i × 10−4 · u3

i +

c3,i × 10−2 · u2
i + c4,i · ui + c5,i, (36)

where c1,i, c2,i, c3, i, c4,i, and c5,i are the coefficients of the
production curve of well i. The production curves are depicted
in Figure 3. They are used in the simulations, but are unknown
to the ESC controller. The unconstrained maximum of the
curves is (u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5) ≈ (83.75, 98.31, 64.81, 108.62,

79.68). The water cut of the wells were set to w1 = 0.08, w2 =

Manifold 1

Manifold 2

Pipeline & 
Riser 1

Pipeline & 
Riser 2

W ll 4

U(t)

W(t)

Y(t)

Gas-lift injection

Gas-Lift 
Manifold

Processing Facilities

Wells

Oil Production

Export gas

Gas-lift

Total Water

Fig. 2. A production gathering network with 4 gas-lifted wells
and subsea manifolds (Silva and Pavlov, 2020).

Table 1. Production curves coefficients

well 1 well 2 well 3 well 4 well 5
c1,i −3.9 −1.3 −1.2 −4 −1.4
c2,i 2.1 1 1 1.8 1
c3,i −4.3 −2.8 −2.8 −3.6 −2.9
c4,i 3.7 3.1 3.1 3.5 3
c5,i 12 −17 −17 −16 −5

Fig. 3. Gas-lift performance curves (Silva and Pavlov, 2020).

0.15, w3 = 0.16, w4 = 0.22, w5 = 0.4. The water produced by
each well gi can be obtained from the oil production fi with a
simple relation:

gi = fi ·
wi

1− wi
, ∀i ∈ 1, . . . , N. (37)

Although the proposed ESC scheme is capable of handling
multiple constraints, we focus on the output constraint on the
total water handling capacity (5). Thus, we apply the developed
extremum-seeking control to steer the input signals ui towards
the optimal value of the augmented cost function in (28).

The tuning parameters of the extremum-seeking control are set
to µ = 0.05, ωi = 0.75, and γi = 0.3 , ∀i ∈ 1, . . . , N .
The initial conditions for the input signals are u1(0) = 50,
u2(0) = 70,u3(0) = 100, u4(0) = 70, and u5(0) = 50. The
total water handling capacity is set to Wmax = 138, which
ensures the constraint activation at the optimal solution.

The ESC scheme was implemented in Simulink and Matlab
R2018b. The scheme is implemented in Simulink, while the
least-squares filter and the dither signal optimizer are external
classes embedded into the scheme. The time step was set to
Ts = 0.1, and we chose the window size to 3 times the wave
period of the dither signals, i.e., d3× (2π/ωi)/Tse. The dither
signal optimizer is formulated in CasADI v3.4.5 (Andersson
et al., 2019), and the dither optimization problem is solved with
the nonlinear solver IPOPT (Wächter and Biegler, 2006). The
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bounds for the constraints are set to δin = 10−5, dmin
i = 0.5,

dmax
i = 2.5, ∆amax

i = ∆bmax
i = 0.8.

The performance of the proposed ESC scheme with dynami-
cally optimized dither signals is compared to a similar scheme
with fixed dither signals. While in the first case the amplitudes
and phases are calculated online by the dither signal optimizer,
in the latter the dither signals have the same amplitude and
phases, αi = 1.5 and φi = 0, ∀i = 1, . . . , N . The input signals
ui, i = 1, . . . , N with the proposed scheme are shown in Fig-
ure 4. The nominal input signals ūi converge to values in the

Fig. 4. Input signals.

neighborhood of the constrained optimum (u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5)

≈ (83.78, 98.14, 64.87, 107.4, 57.95).

The amplitudes and phases of the optimized dither signals are
shown in Figures 5 and 6, respectively. The adaptations in the

Fig. 5. Dither amplitudes.

dither signals occur mainly before the maximum is achieved
in each production curve individually, and when the water
handling constraint becomes nearly active. The rate of change
in the adaptations depend on the the upper bounds that are
chosen for the continuity constraints in Eqs (26) and (27). To
ensure feasibility of the adaptations, such bounds should be
consistent with the steady-state optimizer gains.

The total oil production obtained with the ESC scheme with
optimized dither signals and with fixed signals are shown in
Figure 7. Notice that the nominal inputs ūi for both the ESC
scheme with optimized and fixed dither signals converge to a
value near to the constrained optimum

∑N
i=1 fi(u

∗
i ) = 507.73.

To illustrate the performance of dither signal optimization,

Fig. 6. Dither phases.

Fig. 7. Objective function.

we compare the total water produced with both schemes in
Figures 8. The ESC scheme with optimized dither signals

Fig. 8. Total water production.

successfully honor the output constraint while operating near
the upper bound. On the other hand, because of the large dither-
induced variations in the water produced, the scheme with
fixed signals violates the constraint. One could argue that it
would be possible to include a virtual constraint to avoid such
violations, however this would result in significant economic
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losses due to an overly conservative operation. The total output
variations in the ESC scheme with fixed dither signals JG are
considerably larger (≈ 100×) than the output variations with
optimized signals J∗G. In the latter, the estimated and the actual
total variations are negligible, bounded to 10−2. Further, while
the amplitude of the total input variations with fixed dithers
are large (|JU| ≈ 30), the total input variations with optimized
dither signals is quite small, bounded to δin ≤ 10−5.

6. CONCLUDING REMARKS

In this paper we have considered the problem of optimization
of a multi-agent system with constraints using the paradigm
of extremum seeking control. We have demonstrated that in
a perturbation-based extremum seeking control the effects of
dither signals from multiple agents can sum up to significant
perturbations in the constrained outputs. To overcome this prob-
lem, we have presented a method for dynamic optimization of
dither signals that minimizes (or practically cancels) the effect
of dither-induced perturbations from the individual agents on
constrained outputs, while maintaining persistent perturbations
on each individual agent. To demonstrate the proposed method,
we have coupled it with a constrained steady-state optimizer
and a least-squares gradients estimator. The performance of
the overall scheme has been demonstrated with application to
an optimization problem from the oil and gas industry. The
new proposed controller with dither signals optimization has
demonstrated much better performance than the same controller
without dither optimization. Theoretical proofs of the presented
approach are left out for a journal publication. Further work
will include extension of the presented results to multiple con-
straints, and application of the proposed method in more inter-
esting examples where the agents have coupled-dynamics.
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