
Nonlinearity Measures for Distributed Parameter
and Descriptor Systems

Pedro Reyero-Santiago ∗ Carlos Ocampo-Martinez ∗ Rolf Findeisen ∗∗
Richard D. Braatz ∗∗∗

∗ Automatic Control Department, Universitat Politècnica de Catalunya,
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Abstract: Control design and state estimation are usually more straightforward for linear than for 
nonlinear dynamical systems, which has motivated the development of methods for quantifying the 
extent of nonlinearity in dynamical systems. Although many well-defined methods have been proposed 
for systems described by ordinary differential equations, such methods are not as well explored for 
dynamical systems described by PDEs and descriptor systems that represent most chemical processes. 
This paper reviews, discusses, and compares methods for the definition and computation of nonlinearity 
measures. The measures are categorized in terms of open- vs. closed-loop control topologies, theoretical 
vs. numerically computed, state transformation dependency, input scaling dependency, linearization 
vs. optimized linear modeling vs. average linear modeling, applicability to unstable dynamical systems, 
and applicability to the right-hand side of the state equation or to input-output relationships. Then 
extensions of the nonlinearity measures are discussed for hybrid systems and those described by 
coupled differential, integral, and algebraic equations, often referred to as descriptor/singular systems.

Keywords: nonlinear systems, process control, nonlinear measures, descriptor systems, distributed 
parameter systems

1. INTRODUCTION

While nearly all real processes are nonlinear, most processes
can be described well enough by linear models for the purpose
of feedback control design. The greater ease of control design
and analyses for linear models (Stengel, 1994; Zhou et al.,
1996) has motivated research to quantify the extent to which
any particular process is nonlinear (Helbig et al., 2000; Leung,
1999; Du and Johansen, 2017; Li, 2012). The notion is that a
control engineer, armed with a suitable nonlinearity measure,
would have a quantifiable approach for assessing whether to
apply linear control design or whether to invest the added effort
needed to design and implement a nonlinear control design.

This review begins with some background on nonlinearity
measures for estimation and control design. Section 3 reviews
worst-case and stochastic nonlinearity measures that are com-
putable for both types of dynamical systems. Section 4 de-
scribes nonlinearity measures that have been defined for spe-
cific classes of distributed parameter systems. Section 5 de-
scribes extensions of the general nonlinearity measures to han-
dle systems whose mathematical representations also include
integral and algebraic equations. Section 6 discusses some prac-
tical considerations on nonlinearity measures computation. The
article concludes with a summary.

2. BACKGROUND

Nonlinearity measures can be applied in many different con-
texts. For state-feedback control design, a relevant nonlinearity
measure can be applied to quantify the relationship between
the input (i.e., manipulated and disturbance variables) to the
state, and the state, manipulated, and disturbance variables to
the output. For output-feedback control design that does not
require the construction of a state estimator, the nonlinearity
measure can be applied to the relationship between the input
and output variables of the system.

Most nonlinearity measures have ignored the effects of distur-
bances, with the reasoning that states and outputs will be ap-
proximately linear functions of the disturbances provided that
the disturbances are small irrespective of whether the relation-
ship between the disturbances and state/output are strictly non-
linear. This implicit assumption is not always correct of course,
as many manufacturing processes exist in which a disturbance
can cause the operations to cross a bifurcation point, which is
a significant nonlinearity. For example, a small disturbance can
cause a blown film extruder to transition from locally asymptot-
ically stable operation to highly oscillatory unstable operation
(Pirkle, Jr. and Braatz, 2010, 2011).

Nonlinearity measures can also be used to select among meth-
ods for the design of a state estimator. Provided that the states
are observable, an optimal state estimator for linear dynamical
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systems can be designed by applying a Kalman filter (Bucy
and Joseph, 1968; Harvey, 1990; Anderson and Moore, 1979)
to a linear model. Numerous optimal or nearly optimal state
estimation methods have been developed for nonlinear process
models, but require much higher computational cost. Nonlin-
earity measures can also be applied to output estimator design
or to select which variables should be measured to achieve an
accurate estimate by a linear estimator.

Several nonlinearity measures have been developed over 20+
years, including Helbig et al. (2000), Schweickhardt and
Allgöwer (2007), Schweickhardt and Allgöwer (2009), Li
(2012), and Du and Johansen (2017). Initial studies analyzed
open-loop input-output systems near a steady-state operating
point, that is, the nonlinearity measure was some quantification
of how close the nonlinear behavior would be to the behavior of
a linearization of the nonlinear dynamics about a pre-specified
steady-state operating point. Several extensions were consid-
ered in subsequent nonlinearity measures, including different
types of nonlinear dynamical systems, and quantification based
on closed loop rather than open-loop behavior. A motivation for
basing nonlinearity measures on closed-loop behavior is that
the set of nonlinear dynamical systems that are optimally or
nearly optimally controlled by a linear feedback control is much
larger than the set of nonlinear dynamical systems whose open-
loop dynamics are well described by a linear dynamical system.

Many proposed nonlinearity measures compare an optimal lin-
ear time-invariant approximation to the full nonlinear dynami-
cal system, through the use of some norm (Helbig et al., 2000;
Schweickhardt and Allgöwer, 2009). Additional nonlinearity
measures include curvature metrics (Guay et al., 1995) and the
gap metric (Du and Johansen, 2017). Challenges that remain
include how to best address the effect of model uncertainties
and develop closed-loop nonlinearity measures that more ac-
curately capture the dynamics of the closed-loop systems that
arise under the type of feedback control that would be designed.

Most of the nonlinearity measures assume that the nonlinear
dynamical system is a lumped parameter system, that is, is
described by a system of ordinary differential equations for
continuous-time system representations or discrete-time dif-
ference equations. However, in many applications, spanning
from pharmaceuticals, chemicals, microelectronics, materials,
and biomedicine, processes are described by distributed pa-
rameter systems (DPS). For such systems, the state variables
depend on some other variables such as spatial position, par-
ticle size, or cell age. Many of these DPS are described by
systems of nonlinear partial differential equations (PDEs), 1

whose spatio-temporal coupling makes nonlinear feedback con-
troller and estimator design much more challenging than for
systems described by ordinary differential/difference equations.
This increased complexity suggests that nonlinearity measures
might be even more useful for DPS than for lumped parameter
systems.

Very few nonlinearity measures have been specific to DPS.
Both curvature and norm-based nonlinearity measures have
been generalized to DPS (Fuxman et al. (2007) and Wu et al.
(2017), respectively). For DPS, nonlinearity measures are not
yet developed for considering closed-loop dynamics or explic-
itly taking model uncertainties and actuator, state, and output
constraints into account.

1 Many DPS are described by integro-partial differential-algebraic equations,
which are discussed in Section 5.

The focus of this review is on nonlinearity measures that are
applicable to both lumped and DPS. Although such measures
are not able to exploit the details on the mathematical structure
of DPS, the measures have the advantage of being generally
applicable. As discussed in Section 5, the general measures
can be applied to more complex classes of nonlinear dynamical
systems, such as descriptor/singular systems.

3. GENERAL NONLINEARITY MEASURES

Initial nonlinearity measures for general dynamical systems
focus on the quantification of the open-loop nonlinearity (Hel-
big et al., 2000; Haber, 1985). These nonlinearity measures
focused on the input-output behavior of the system. The main
focus of Haber (1985) is on data-driven input-output nonlinear-
ity estimates, while Helbig et al. (2000) proposes employing
a general nonlinear representation, for example, a nonlinear
dynamic operator N that maps admissible input signals and
initial conditions into admissible output signals. The process
nonlinearity is assessed through comparison with an optimal
linear time-invariant system, which can be described by a linear
dynamic operatorG. In this case, the nonlinearity measure ΦYa

N
is defined as the non-negative number

ΦYa

N (tf ) =

inf
G∈G

sup
(u,xN,0)∈S

inf
xG,0∈XG,0

‖G[u,xG,0]−N [u,xN,0]‖
‖N [u,xN,0]‖

, (1)

where

• u, x, and y are the system inputs, states, and outputs;
• Ua, Xa,0, and Ya are the spaces of admissible system in-

puts, initial conditions, and system outputs, respectively;
• ‖·‖ is a suitable norm in the space of system outputs Y;
• XG,0 is the space of possible initial conditions to the linear

dynamic operator G : Ua ×XG,0 → Y;
• N : Ua × Xa,0 → Y is the operator for a nonlinear

dynamical system with output signals yN ∈ Ya ⊆ Y;
• G is the space of continuous-time linear time-invariant

systems;
• xG,0 and xN,0 are the initial values of the state of the

linear operator G and nonlinear operator N , respectively;
and

• S≡{(u,xN,0) :u ∈ Ua,xN,0 ∈ X0,a, N [u,xN,0] ∈ Ya}.
All norms and signals are defined over a time interval [0, tf ),
where the final time tf can be either finite or infinite. The outer
infimum in (1) defines optimality of the linear dynamic operator
G in terms of the norm of the difference between the linear
and nonlinear dynamic operators, with optimality defined by
the choice of system output norm ‖ · ‖. The norm is selected
based on the norm that would be used in the linear design
method, e.g., an L2-norm would be appropriate if the linear
design method was H∞-control (Zhou et al., 1996).

The inner infimum in (1) chooses the optimal initial state for
the linear operator G in the same manner as for the outer
infimum. The supremum in (1) indicates that the worst-case
choices of system inputs and initial conditions are considered
in the quantification of the extent of nonlinearity.

This nonlinearity measure is computed numerically, as the ana-
lytical solution of the optimization (1) usually does not exist.
This nonlinearity measure is a relative measure, with value
bounded between 0 and 1, with the behavior of the original
system N being closer to its optimal linear approximation G as
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the nonlinearity measure approaches 0. This nonlinearity mea-
sure assesses nonlinearity through a worst-case set of system
inputs, as described by the optimizations in its definition. The
nonlinearity measure can be applied to transient or stationary
processes and is a measure of global nonlinearity.

Sometimes, it can be reasonable from the control perspective
to demand that the outputs of the operators N and G match
exactly at time zero. This requirement motivates the definition
of a similar but alternative nonlinearity measure as

Φ̂Ya

N (tf ) ≡

inf
G∈G

sup
(u,xN,0)∈S

inf
xG,0∈XG,0

‖G[u,xG,0]−N [u,xN,0]‖
‖N [u,xN,0]‖

such that
0 = G[u,xG,0](0)−N [u,xN,0](0),

with 0 being the zero operator.

The above nonlinearity measures that maximize and minimize
over various signals are related to a class of controllability
measures that have similar optimization formulations (e.g., see
Hovd et al. (2003), Ma et al. (2002), and references therein).
Unlike the related controllability measures, the above nonlin-
earity measures include a nonlinear operator in the optimization
and include an optimization over a linear operator.

Later publications (Schweickhardt and Allgöwer, 2007; Schwe-
ickhardt and Allgöwer, 2009) interpreted some nonlinearity
measures as the gain of an error system resulting from the
representation of a nonlinear process as the connection be-
tween a nominal linear model and an error system. With this
approach, different open-loop nonlinearity measures were pro-
posed through the variation of the structure of the aforemen-
tioned interconnection between nominal model and error sys-
tem. For instance, the additive error nonlinearity measure of N
for the set of system inputs U can be defined as

ΦUAE,N = inf
G ∈ G

‖∆‖U , (2)

= inf
G ∈ G

sup
u ∈ U
T > 0

‖(N [u]−G[u])T ‖
‖uT ‖

, (3)

where the subscript T means that the associated terms are com-
puted up to time T . This definition corresponds to the additive
error interconnection structure shown in Figure 1. Like the pre-
viously presented nonlinearity measure, this nonlinearity mea-
sure relies on an optimal linear time-invariant modelG over the
set of possible system inputs U . Nonlinearity measures can be
proposed using other error system interconnections (Schweick-
hardt and Allgöwer, 2007; Schweickhardt and Allgöwer, 2009),
including multiplicative output error, multiplicative input error,
inverse multiplicative output error, inverse multiplicative input
error, and feedback error. All of those nonlinearity measures
usually need to be numerically computed, are only applicable
if the system N is finite-gain stable, consider a worst-case
scenario, and measure global nonlinearity. The additive error
nonlinearity measure is an absolute measure of nonlinearity that
is always nonnegative and bounded by the gain of the system
N , while the other aforementioned nonlinearity measures are
relative measures, with values that range between 0 and 1. Col-
lectively, these error structures correspond to the norm-bounded
model uncertainties that arise in robust control theory (e.g., see
Morari and Zafiriou (1989) and references therein).
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Fig. 1. Additive error interconnection structure

Li (2012) proposed a nonlinearity measure for stochastic sys-
tems. This measure was based on the deviation between a non-
linear function and the subspace of linear functions. The best
linear approximation was then obtained by stochastic optimiza-
tion. The closeness between a nonlinear function nk and the set
of all linear functions L can be defined as

Jk = inf
Lk∈L

(
E[‖Lk(x)− nk(x)‖22]

)1/2

, (4)

where Lk ∈ L is a linear function, and E is the expectation with
respect to the random variable xk. This nonlinearity measure
can be normalized as

νk =
Jk

[tr(Cgk)]1/2
, (5)

where Cgk is the covariance matrix of gk and tr(A) is the trace
of matrix A. This nonlinearity measure is neutral in the sense
of depending on all the system inputs rather than only on worst-
case inputs, and can be preferable for stochastic systems anal-
ysis. The stochastic measure quantifies global nonlinearity, but
can be adapted to quantify nonlinearity that is more localized by
restricting the set of random inputs. This nonlinearity measure
is nonnegative and absolute rather than relative. This open-
loop nonlinearity measure is invariant under invertible affine
transformations of the independent variable. The stochastic
nonlinearity measure also nearly always needs to be computed
numerically, due to the challenge in finding analytical solutions
for such optimizations.

A closed-loop control-relevant nonlinearity measure defined
based on the gap metric (Du and Johansen, 2017) has been
reported to be comparatively easier and simpler to compute and
apply. The measure can be used to provide some guidance in
feedback controller design and serves as a criterion to assess
the closed-loop performance of the controller, being defined as

NM1 =
δmax(P ∗)

bopt(P ∗)
, (6)

with
δmax(P ∗) = max

1≤i≤n
δ(P ∗, Pi), (7a)

bopt(Pi) =

√
1−

∥∥∥[Ñi]M̃i

∥∥∥2

H
, (7b)

where

• Pi = NiM
−1
i is the normalized right coprime factoriza-

tion of the linear system Pi,
• Pi(i = 1, . . . , n) is one of n linearized models, with one

for each equilibrium point of the system,
• P ∗ is the best local linear model, and
• δ(Pi, Pj) is the gap metric between linear time-invariant

systems Pi and Pj .

The gap metric is bounded between 0 and 1, and is defined as
the maximum of two directed gaps

δ(Pi, Pj) ≡ max {δ(Pi, Pj), δ(Pj , Pi)} , (8)
where
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δ(Pi, Pj) ≡ inf
Q∈H∞

∥∥∥∥[Mi

Ni

]
−
[
Mj

Nj

]
Q

∥∥∥∥
∞
, (9)

and the maximum gap metric stability margin of Pi, which is
an intrinsic property of Pi, is defined by

bopt(Pi) ≡ inf
stabilizing K

bP,K

= inf
stabilizing K

∥∥∥∥[ IK
]

(I + PiK)−1 [I Pi]

∥∥∥∥−1

∞

=

√
1−

∥∥[Ñi M̃i

]∥∥2

H
< 1, (10)

where Pi = M̃−1
i Ñi is the normalized left coprime factoriza-

tion of Pi, K is a stabilizing feedback controller for Pi, and
‖·‖H is the Hankel norm.

If the gap metric nonlinearity measure NM1 < 1, there exists
a linear controller K that can, in theory, stabilize the nonlinear
dynamical system over the entire operating space. In this case,
the system is said to weakly nonlinear under the maximum
stability criterion, and strongly nonlinear otherwise. As the
value of bopt(P

∗) does not depend on the controller used, the
gap metric nonlinearity measure NM1 is a universal measure,
in the sense of having no dependency on control strategies, and
can be computed before the controller is designed.

A control-relevant gap metric nonlinearity measure is intro-
duced in (Du and Johansen, 2017) as

NM2 =
δmax(P ∗)

bP∗,K
, (11)

where K is a linear stabilizing controller designed based on
P ∗. If this nonlinearity measure NM2 < 1 and the controller
K satisfies the desired closed-loop performance requirements,
then the original system is said to be closed-loop linear. Oth-
erwise, a nonlinear control method will be necessary for the
system to be stabilized and satisfy the closed-loop performance
requirements. This nonlinearity measure cannot be computed
before the linear time-invariant controller is designed, and so
depends on both the system and the controller.

4. NONLINEARITY MEASURES FOR DISTRIBUTED
PARAMETER SYSTEMS

Unlike the above nonlinearily measures, which are applicable to
both lumped and DPS, a few papers have proposed nonlinearity
measures specific to DPS. Fuxman et al. (2007) proposed
a curvature-based measure of steady-state nonlinearity for a
subclass of hyperbolic DPS which are described by a system
of first-order PDEs of the form

n∑
j=1

bij
∂xj
∂t

+

n∑
j=1

aij
∂xj
∂z

= ci, i = 1, 2, . . . , n, (12)

where t and z are the only two independent variables, xj(z, t)
are n distributed state variables, and aij , bij , and ci are scalar
functions that can depend on z, xj , and input variables uk. This
class of hyperbolic PDEs appear in simplified models of many
chemical process applications including packed-bed reactors
and tubular heat exchangers, for which t is the time and z is
the axial distance from the process inlet. These types of models
assume that any diffusive phenomena (aka Brownian motion)
have a negligible effect on the states xj , and that the states
have negligible variation in the radial direction. This class of
models also arise in simplified models of particulate processes,
in which case t is usually time and z is some characteristic of

an individual particle, such as length, mass, or age (Ramkrishna
and Singh, 2014).

For this class of DPS, the distribution of the acceleration matrix
along the spatial coordinate z, i.e.,

Ac ≡
∂

∂u′

(
∂x

∂u

)
,

is computed from the steady-state locus defined from the sys-
tem of PDEs by

n∑
j=1

aij
∂xj
∂z
− ci = g

(
x,
∂x

∂z
,u

)
= 0. (13)

Taking partial derivatives of the steady-state map g with re-
spect to the inputs and through differential manipulations, a
system of equations is derived whose solution can be evaluated
at different points to obtain the acceleration matrix Ac. The
elements of the acceleration matrix quantify the nonlinearity of
the process, with larger elements indicating larger nonlinearity.
The acceleration matrix can be decomposed into a normal and
a tangential curvatures, each of which providing different in-
formation about the nonlinearity of the process. This approach
generalizes the curvature approach of Guay et al. (1995) to an
industrially important class of DPS.

Wu et al. (2017) proposed a nonlinearity measure for a different
class of DPS expressed as follows:

∂x

∂t
=

∂

∂z

(
D(x)

∂x

∂z

)
− v(x)

∂x

∂z
+ f(x) + u(z, t), (14)

where x is a vector of distributed states that are function of two
scalar independent variables z and t, D is the diffusivity, v is
the velocity in the z direction which is a scalar equal to dz/dt,
f is a vector of state-dependent forcing functions, and

u ≡
p∑

i=1

ui(t)hi(z) (15)

is a vector of process inputs that only depend on the indepen-
dent variables, ui are scalar process units, and hi are vectors in
which each element is a function of the spatial variable z. This
representation treats the process input as a vector of lumped
variables (ui, ∀i = 1, . . . , p) and the process output as a vector
of distributed states x. The spatial dimension z is assumed to
belong to a bounded domain Ω, and the distributed states are
required to satisfy a number of initial and boundary conditions.

For positive diffusivity D, this set of PDEs is parabolic, and
is a generalization of (12) in the sense of including both
diffusion and advection. The convection term in (14) has more
restrictive dependencies on variables than (12), so neither set
of PDEs is a subset of the other. The above class of DPS
also appears in simplified models of many chemical processes
including packed-bed reactors and tubular heat exchangers,
for which t is the time and z is the axial distance from the
inlet. The more restricted form of the velocity v(x) occurs
for packed-bed reactors of constant cross-sectional area, with
the nontrivial dependency on the distributed state occurring for
operations in which the fluid density is a function of the species
concentrations xi. Such density changes are significant for
gas-phase chemical reactions in which the number of gaseous
reactants in some of the reactions is not equal to the number
of gaseous products, e.g., Torchio et al. (2016). This class of
models also applies to some particulate processes, in which
the diffusive term models growth dispersion (Ramkrishna and
Singh, 2014).
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Wu et al. (2017) proposed the nonlinearity measure

δN = inf
G ∈ G

sup
u ∈ U

‖N [u]‖ 6= 0

‖G[u]−N [u]‖
‖N [u]‖

, (16)

where u(z, t) is a spatiotemporal input signal and the norm in
the spatiotemporal domain was defined as

‖x(z, t)‖ =

√∫
Ω

∫ ∞
0

|x(z, t)|2 dt dz, (17)

being |x| the Euclidean norm of x.

This worst-case nonlinearity measure is similar to the general
measure (1), including being a relative measure with value
between zero and one. As in both nonlinearity measures, op-
timization over the linear operator G cannot produce a larger
value than the value of the norm for any particular value of
G. The choice of G ∈ G thus results in an upper bound on
the solution of the optimization (the inner optimizations fall
away because they do not affect the objective function when
G = 0). The nonlinearity behavior is completely nonlinear
when the nonlinearity measure is equal to one, since then no
linear operator G exists to approximate operator N that is more
optimal than the zero operator 0.

The measure (16) is not general for several reasons. First, the
set U was restricted by Wu et al. (2017) to be of the form
(15), which restricts the process input u to be a function of two
independent variables and to be restricted to have a particular
bilinear form of the dependency on t and z. Second, the DPS for
which the nonlinearity measure was defined was restricted to
have the form in (14). Both of these restrictions were exploited
by Wu et al. (2017) to enable the derivation of an efficient
numerical algorithm for computing the nonlinearity measure
(16) based on several steps that include proper orthogonal
decomposition.

5. DESCRIPTOR/SINGULAR SYSTEMS

The extensions of the nonlinearity measures for ordinary differ-
ential equations conceptually apply to descriptor (aka singular)
systems, that is, dynamical systems described by coupled alge-
braic and ordinary differential equations.

The nonlinearity measure (1) applies directly, as long as a
well-posed system norm is defined for the class of descrip-
tor/singular systems. An important consideration when numer-
ically computing such measures is whether the norm of the dif-
ference between the linear and nonlinear operators is a smooth
function of the system inputs. Descriptor/singular systems can
have dynamics in which either the state or the output can show
Dirac delta-type behavior even when the system inputs are
bounded (Ascher and Petzold, 1998; Brenan et al., 1996).

Whether such behavior can occur is characterized in terms
of the index of the system of differential-algebraic equations
(Ascher and Petzold, 1998; Brenan et al., 1996). Such systems
with an index equal to zero or one will have states and output
that are continuous functions of the system inputs, in which
case the nonlinearity measure (1) can be computed numerically.

Defining and computing a useful nonlinearity measure is more
challenging for differential-algebraic systems that have an in-
dex of two or higher due to the potential for discontinuities
in the states and output. Although the numerical simulation of

such systems requires some care, nowadays many techniques
have been developed to produce numerically stable and reliable
simulation results. For example, the original set of differential-
algebraic equations can be reformulated to create an equivalent
set of differential-algebraic equations that has an index of one
(Mattsson and Söderlind, 1993). The wide availability of such
techniques to handle high-index systems means numerical sim-
ulation by itself does not pose any limitation to defining and
computing a meaningful nonlinearity measure.

Whether the nonlinearity measure for a system of differential-
algebraic equations of higher index is more challenging to com-
pute numerically concerns whether any discontinuities occur
in the relevant input-output relationship of the system. Even if
discontinuities occur for some region in the space of allowable
system inputs, whether the nonlinearity measure is bounded can
depend on the choice of norm. For example, a Dirac delta-type
behavior in the process output may not be a concern provided
that the system norm remains bounded for such behavior. 2

Nonlinearity measures for PDEs conceptually apply to pro-
cesses described by systems of integro-partial differential-
algebraic equations, which commonly arise in the advanced
manufacturing processes (e.g., see Paulson et al. (2018) and
references therein). The theoretical and numerical algorithm
extensions to handle integrals are straightforward, and the al-
gebraic equations are manageable provided that the system has
a differential index of zero or one (e.g., see Martinson and Bar-
ton (2016) and references therein). Integro-partial differential-
algebraic equations of higher differential index can also nor-
mally be addressed by mathematical reformulation.

The definition of nonlinearity measures can be straightfor-
wardly extended to hybrid dynamical systems including both
continuous and discrete behaviors, provided that the system
state or output of interest is a continuous function of the sys-
tem input. For general hybrid system representations, an ex-
tension to (1) is to search for a linear time-variant system for
each subsystem that can be reached by the logic that switches
between subsystems. That extension is quite computationally
expensive. A subset of hybrid systems that describe many
practical manufacturing processes can be modeled by nons-
mooth differential-algebraic equations, which can be numeri-
cally solved efficiently for large-scale systems (Stechlinski and
Barton, 2016). For this class of hybrid systems, the nonlinearity
measure definition (1) can be applied directly.

6. COMPUTATIONAL CONSIDERATIONS

Most nonlinearity measures are formulated in terms of opti-
mizations – usually nested – that need to be solved numerically.
Consequently, the computational cost must be considered, es-
pecially for large-scale systems. These optimization problems
are nearly always too complicated to solve by branch-and-
bound global optimization algorithms, which motivates the use
of Monte Carlo sampling-based methods. While the practical
cost is alleviated by the fact that the calculations are off-line,
and are easily run in parallel, the cost is still high. Each nest-
ing increases computational cost, as each extra optimization
level results in another loop of sampling-based optimization.
Depending on the complexity of the operators and the level of
accuracy needed, it may be useful to reduce the computational

2 As a simple algebraic example, the 1-norm of the Dirac delta function is
equal to one, whereas its ∞-norm is unbounded.
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cost by removing one of the levels (e.g., an optimization over
initial conditions), in exchange for computing a weaker non-
linearity measure. The dependencies of convergence rates of
sampling-based methods on the dimensionality and the prop-
erties of the underlying operators have been well investigated,
and readers are refereed to a recent survey (Homem-de-Mello
and Bayraksan, 2014).

7. CONCLUDING REMARKS

This paper reviews nonlinearity measures for lumped and dis-
tributed parameter systems, and reviews in more detail those
measures that are applicable to DPS. Various considerations
are discussed, including whether the system inputs are treated
as worst-case or described by a stochastic distribution, whether
a measure quantifies the extent of nonlinearity for the open-
loop or closed-loop dynamics, or whether a measure applies
to both lumped and distributed parameter systems, or to only
a subclass of distributed parameter systems. Then extensions
to nonlinear dynamical systems with mathematical representa-
tions that include integral and algebraic equations in addition
to ordinary and/or partial differential equations are discussed.
Then nonsmooth differential-algebraic equations and compu-
tational cost are considered. The mathematical formulation of
nonlinearity measures that are both practically useful and com-
putational tractable remains an open field of research. Some
future directions include extensions to more general classes
of nonlinear dynamical systems, such as determining whether
the numerical method proposed for the efficient computation
of nonlinearity measures from those reviewed into this paper
can be either improved or extended to more general distributed
parameter and/or descriptor systems.
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earity measures: Definition, computation and applications.
Journal of Process Control, 10(2), 113–123.

Homem-de-Mello, T. and Bayraksan, G. (2014). Monte Carlo
sampling-based methods for stochastic optimization. Surveys
in Operations Research & Management Science, 19, 56–85.

Hovd, M., Ma, D.L., and Braatz, R.D. (2003). On the computa-
tion of disturbance rejection measures. Industrial Engineer-
ing & Chemistry Research, 42(10), 2183–2188.

Leung, J.M.W. (1999). Assessing the Impact of Nonlinearity on
Process Control. Master’s thesis, Kingston, Canada.

Li, X.R. (2012). Measure of nonlinearity for stochastic systems.
In 15th International Conference on Information Fusion,
1073–1080.

Ma, D.L., VanAntwerp, J.G., Hovd, M., and Braatz, R.D.
(2002). Quantifying the potential benefits of constrained
control for a large scale system. IEE Proceedings – Control
Theory and Applications, 149(5), 423–432.

Martinson, W.S. and Barton, P.I. (2016). Differentiation index
for partial differential-algebraic equations. SIAM Journal of
Scientific Computing, 21(6), 2295–2315.
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