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Abstract: A Lyapunov design of a least-squares model-reference adaptive control (LS-MRAC)
algorithm is presented. The plants considered are continuous with relative degree one. A
Monopoli multiplier, originally proposed to extend the MRAC algorithm to the case of relative
degree two, is introduced. As a result, fast convergence of the tracking error is achieved and,
moreover, the Lyapunov analysis shows that a quadratic term depending on the parametric error
belongs to L2, which improves the stability properties of the system. This is the key feature
that allows a more powerful LS algorithm to be employed in the update law. The resulting
LS-MRAC seems to be a missing algorithm in the literature. Simulation results illustrate the
improvement in the transient behavior as well as in the parameter convergence attained with
the proposed adaptive schemes.
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performance, least-squares adaptive law.

1. INTRODUCTION

The normalized least-squares (LS) algorithm was intro-
duced in the literature on continuous time adaptive control
in (Goodwin and Mayne, 1987). Recognized to have a
vastly superior convergence rate, the idea was pursued
in other works. In (Sastry and Bodson, 1989) a slight
variant of the algorithm is presented. For the analysis,
the identification structure is separated from the control
structure. An error equation is obtained in the so called
linear form with respect to the parameter error which
allows the use of well known identification approaches.
The same idea can be found in (Ioannou and Sun, 1996).
To assure stability of the closed loop connection of the
identification and controller structures, a projection is
introduced in the update law to make the high frequency
gain estimate bounded away from zero. The algorithm
however is sensitive to the initial conditions and a large
transient tracking error may be observed.

The composite adaptive controller presented in (Slotine
and Li, 1991) also employs a least-squares update law.
However, its implementation assumes that the derivative
of the output error is available.

Here, the availability of the output error derivative is
circumvented by employing a Monopoli’s multiplier, orig-
inally introduced to generalize the MRAC for plants with
relative degree 2. Two remarkable properties are achieved
with this modified MRAC: (1) The tracking error dynam-
ics is strikingly improved. The convergence rate is shown
to depend explicitly on the adaptation gain and on the
level of the excitation signal, a result that is not observed
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in the conventional MRAC algorithm. (2) The Lyapunov

analysis allows to conclude that a quadratic θ̃-term belongs
to L2, where θ̃ is the parameter error. In the conventional
MRAC design, it is only shown that the tracking error has
this property. This result is the key for the introduction of
a least-squares update law in the design, which is referred
here as LS-MRAC.

Both algorithms, the modified MRAC and the LS-MRAC
are shown to be at least uniformly asymptotically stable.
Only the case of plants with relative degree equal one is
considered in this note. Simulation results are presented
to illustrate the improvement achieved in the tracking
dynamics and parameter convergence of the algorithms.

2. STRUCTURE OF THE CONTROLLER

Consider a linear plant with unknown parameters given by
(Tao, 2003)

y = P (s)u , P (s) = kp
Np(s)

Dp(s)
, (1)

where u is the control signal and y is the plant output.
Also consider a reference model described by

ym = M(s)r , M(s) = km
Nm(s)

Dm(s)
, (2)

where r is a reference input signal.

The objective of the controller, as usually stated in the
literature, is to find a control u(t) that stabilizes the closed
loop system and such that the output error (or tracking
error)

e0 = y − ym , (3)
tends to zero asymptotically for arbitrary initial conditions
and arbitrary piece–wise continuous uniformly bounded
reference signals r. Here, in particular, good convergence
properties of the controller parameters are also aimed.
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The following basic assumptions summarize the prior
available information regarding P (s):

(1) the order of the plant n is known,

(2) n∗ = degree[Dp(s)]− degree[Np(s)] = 1,

(3) Np(s) is Hurwitz, i.e., P (s) is minimum phase, and

(4) the sign of the high frequency gain kp is known.

In view of the above assumption (2), and for simplicity,
M(s) is chosen as

M(s) =
km

s+ am
, (4)

and, without loss of generality, km > 0. As usual, state
variable filters (SVF’s)

v̇1 = Λv1 + gu , (5)

v̇2 = Λv2 + gy ,

where Λ is chosen such that det(sI −Λ) = Nm(s), and v1,
v2∈Rn−1, are used to form the regressor vector

ω = [vT1 y vT2 r]T ∈R2n . (6)

Assumptions (1)–(2) assure the existence and uniqueness
of a constant parameter vector θ∗ = [θ∗T1 θ∗n θ∗T2 θ∗2n]T

such that the transfer function of the closed–loop system
with u = θ∗Tω matches M(s) exactly, i.e., y = P (s)u =
P (s)θ∗Tω = M(s)r.

3. THE ERROR EQUATION

Define the vectors ω̄ = [vT1 y vT2 ]T ∈ R2n−1 and
θ̄∗ = [θ∗T1 θ∗n θ∗T2 ]T ∈R2n−1 so that the matching control
can be written as u = θ̄∗T ω̄ + θ∗2nr.

The plant (1), with the filters (5), can be rewriting as
(Slotine and Li, 1991)

y = P (s)
[
u− θ∗Tω + θ∗Tω

]
= P (s)

[
θ∗T1 v1 + θ∗ny + θ∗T2 v2 + θ∗2nr + u− θ∗Tω

]
= P (s)

[
θ̄∗T ω̄ + θ∗2n

(
r + k∗u− k∗θ∗Tω

)]
= M(s)r +M(s)k∗[u− θ∗Tω] , (7)

where k∗ = (θ∗2n)−1 = kp/km. Then, from the above, one
has that the error equation of the system is given by

e0 = M(s)k∗[u− θ∗Tω] , (8)

irrespective of how u is defined. An exponentially decaying
term, due to the initial conditions, will be omitted here-
after whenever unessential for the theoretical development.
Recalling that the order of the system (7) is 3n − 2 and
defining the error vector e∈R3n−2, one has the following
non–minimal state space realization of (8)

ė = Ame+Bmk
∗[u− θ∗Tω] , (9)

e0 = Cme . (10)

4. REVIEW OF LYAPUNOV DESIGN

The Lyapunov approach to the MRAC design is relatively
simple and elegant (Tao, 2003). The control law is given
by

u = θTω , (11)

where the controller parameter θ ∈ R2n should be adap-
tively adjusted to ensure desired performance. Defining

the parameter error θ̃ = θ − θ∗, the error equation can
be rewritten as

e0 = M(s)k∗
[
θ̃Tω

]
. (12)

Since the reference model M(s) is chosen strictly positive
real (SPR), this been fundamental for the stability analy-
sis, from the Popov–Kalman–Yakubovich (PKY) Lemma
(Krstić et al., 1995), there exist matrices P = PT > 0 and
Q = QT > 0 such that the matrices {Am, Bm, Cm} of the
state space realization (9) satisfies

ATmP + PAm = −2Q , (13)

PBm = CTm . (14)

The following Lyapunov function is considered

2V1(e, θ̃) = eTPe+ γ−1|k∗|θ̃T θ̃ , (15)

where γ is a positive constant. Then, using (13) and (14)
the derivative of V1 along (9) is given by

V̇1 = −eTQe+ γ−1|k∗|θ̃T
[
γ sign(k∗)ωe0 +

˙̃
θ
]
. (16)

By choosing the update law
˙̃
θ = θ̇ = −γsign(k∗)ωe0 , (17)

the θ̃-term is cancelled and (16) reduces to

V̇1 = −eTQe ≤ 0 . (18)

This guarantees e ∈ L∞ and θ̃ ∈ L∞. Since the reference
signal r∈L∞, then y∈L∞. Because ω constitutes a part
of the system (9), it follows that ω ∈ L∞ and u ∈ L∞.
Therefore, the update law (17) assures global uniform
stability of the system.

The convergence properties of the signals are concluded as
follows. Observing that V1(t) is monotone non–increasing
along the trajectories of (9) and (17), bounded above by
V (0) and below by 0, one can conclude that e∈L2. From
(9), it follows that ė∈L∞ and, consequently, e is uniformly
continuous. Then, using the Barbalat’s Lemma, it follows
that e(t)→ 0 as t→∞ (Tao, 2003).

From (12), one can see that if the control mismatch

ũ = θ̃Tω ≈ 0 then e0 ≈ 0. This condition is achieved
when θ̃ ≈ 0 (good identification) or, more often, when θ̃

and ω are close to be orthogonal. To assure that θ̃(t)→ 0,
a persistent excitation condition is required (Tao, 2003).
However, even with persistent excitation, the quality of the
adaptation transient is not uniform and the convergence
of e(t) or θ̃(t) to zero may be very slow (Hsu and Costa,
1987) (Narendra, 1994).

A high adaptation gain γ may not necessarily result in
an improvement of the convergence behaviour. This is
illustrated by a simulation result in the sequel. By the
other hand, it is usually accepted that γ should be kept
small for robustness purposes.

5. MODIFIED MRAC DESIGN

In this section the Lyapunov design of the MRAC is
modified in order to improve its transiente behavior. The
idea comes from (Costa, 1999; Pinto and Costa, 2008)
where a lead filter is employed to obtain a derivative of
e0. Here, the use of a lead filter is avoided by introducing
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a Monopoli’s multiplier (Ioannou and Sun, 1996) in the
design.

The control law is now defined as

u = L(s)θT ξ = θTω + θ̇T ξ , (19)

where L(s) = s+ λ, λ > 0, and

ξ = L−1(s)ω . (20)

With this modification in the control law, the error equa-
tion becomes

e0 = M(s)k∗
[
L(s)θT ξ − θ∗Tω

]
= M(s)L(s)k∗

[
θ̃T ξ

]
. (21)

Notice that M(s)L(s) can be decomposed as

M(s)L(s) =
km(s+ λ)

s+ am
=
km(λ− am)

s+ am
+ km , (22)

where, for λ > am, km(λ−am)
s+am

is a SPR transfer function.

A non-minimal realization of (21) is given by

ė = Ame+B′m[k∗θ̃T ξ] , (23)

e0 = Cme+ km[k∗θ̃T ξ] , (24)

where B′m = (λ− am)Bm and {Am, B′m, Cm} satisfies the
PKY lemma,

ATmP
′ + P ′Am = −2Q′ , (25)

P ′B′m = CTm , (26)

with P ′ = (λ− am)−1P and Q′ = (λ− am)−1Q (P and Q
from (13)).

Consider the partial Lyapunov function (the signal ξ is
missing)

2V2(e, θ̃) = eTP ′e+ γ−1|k∗|θ̃T θ̃ , (27)

where γ > 0. The derivative of V2 along the trajectories of
(23) is given by

2V̇2 = −2eTQ′e+ 2eTP ′B′mk
∗θ̃T ξ + 2γ−1|k∗|θ̃T θ̇ .

From (24) one has that

eTP ′B′m = eTCTm = e0 − km[k∗θ̃T ξ] . (28)

Therefore,

V̇2 = −eTQ′e+
(
e0 − kmk∗θ̃T ξ

)
k∗θ̃T ξ + γ−1|k∗|θ̃T θ̇

= −eTQ′e− km
(
k∗θ̃T ξ

)2
+

+ γ−1|k∗|θ̃T
[
γ sign(k∗)ξe0 + θ̇

]
. (29)

By choosing the update law

θ̇ = −γ sign(k∗)ξe0 , (30)

the derivative (29) reduces to

V̇2 = −eTQ′e− km
(
k∗θ̃T ξ

)2 ≤ 0 . (31)

Compared with (18), the derivative now has a non-positive

θ̃T ξ-term. Using similar arguments as in the previous
analysis, one can conclude that e∈L∞, θ ∈L∞, ω ∈L∞,
and, moreover, e∈L2, θ̃T ξ∈L2.

To prove the boundedness of ξ, a fictitious regressor signal
ωm, obtained from state variable filters applied to the
reference model, is employed to define the error (Ioannou
and Sun, 1996) (Hsu et al., 2006)

ξ̃ = ξ − ξm ,

where ξm = L−1ωm ∈ L∞. This error signal ξ̃ can be
expressed as the output of a stable and proper filter with
inputs e0 and r, i.e.,

ξ̃ = f(s)e0 + g(s)r = ξ̃0 + ξ̃r .

Obviously, the term ξ̃r ∈ L∞. For the term ξ̃0, one can
write the following state space realization

ε̇ = A0ε+B0e0 , (32)

ξ̃0 = C0ε . (33)

Because this filter is stable, there exist P0 = P0 > 0 and
Q0 = Q0 > 0 such that AT0 P0 + P0A0 = −2Q0.

Now consider the true Lyapunov function

2V3(e, θ̃, ε) = 2V2(e, θ̃) + αεTP0ε , (34)

where α > 0. From (31) and (32), the derivative of V3 is
given by

V̇3 = −eTQ′e−km
(
k∗θ̃T ξ

)2−α[εTQ0ε−εTP0B0e0
]
.

Using (24),

V̇3 = −eTQ′e− km
(
k∗θ̃T ξ

)2 − αεTQ0ε+

+ αεTP0B0Cme+ αkmε
TP0B0

(
k∗θ̃T ξ

)
, (35)

which is made negative semidefinite by choosing α suffi-
ciently small (using Schur’s complement). With this, one

concludes that ε∈L∞, ξ̃0∈L∞, ξ̃∈L∞, and ξ∈L∞. As a
consequence, ė∈L∞, θ̇∈L∞, and ξ̇∈L∞.

Therefore, the modified algorithm guarantees that the
system is at least globally uniformly stable. Using the
same arguments as in the analysis of the previous sec-
tion, one has that limt→∞ e(t) = 0 and, furthermore,

limt→∞ θ̃T ξ(t) = 0. This was expected since the transfer
function M(s)L(s) in (21) has relative degree zero. From
(21),

ė0 = −ame0 + k∗
˙̃
θT ξ + k∗θ̃T ξ̇ + λk∗θ̃T ξ

= −ame0 − k∗
[
γ sign(k∗)ξe0

]T
ξ + k∗θ̃T

(
ξ̇ + λξ

)
= −

(
am + γ |k∗|ξT ξ

)
e0 + k∗θ̃Tω , (36)

which shows that the rate of convergence of e0 now
depends explicitly on the adaptation gain γ. The term
γ |k∗|ξT ξ ≥ 0 is a time-varying gain feedback that can
be increased by selecting a large γ and a large level of
excitation r(t).

The control mismatch now is ũ = θ̃Tω + θ̇T ξ. This means
that it is possible to attain ũ ≈ 0 and, consequently,
e0 ≈ 0 even with large θ̃Tω. In other words, e0 ≈ 0 when
θ̃Tω ≈ −θ̇T ξ. This is an extra degree of freedom for the
control action, which is illustrated by simulation results in
section 7.

The convergence of θ̃ to zero, of course, depends on a
persistent excitation condition of the system. Table 1
summarizes the algorithm.

6. LEAST-SQUARES MRAC DESIGN

The term−km
(
k∗θ̃T ξ

)2
obtained in (31) is the key to allow

a more powerful least-squares algorithm to be employed.
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Output error e0 = y − ym

SVF v̇1 = Λ v1 + g u

v̇2 = Λ v2 + g y

Λ s.t. det(sI − Λ) = Nm(s)

Regressor ωT =
[
vT1 y vT2 r

]
Filter ξ = L−1(s)ω

L(s) = s+ λ , λ > am

Control u = θTω + θ̇T ξ

Update law θ̇ = −γ sign(k∗)ξe0

Table 1. Modified MRAC.

Consider the partial Lyapunov function

2V4(e, θ̃) = eTP ′e+ γ−1|k∗|θ̃TR−1(t)θ̃ , (37)

where R(t) is a covariance matrix with R(0) = RT (0) > 0.

Deriving along (23) and using (25), (26), (28), and the fact

that Ṙ−1 = −R−1ṘR−1, one obtains

V̇4 = −eTQ′e− km
(
k∗θ̃T ξ

)2
+

+ γ−1|k∗|θ̃TR−1
[
γ sign(k∗)Rξe0 + θ̇

]
−

− 1

2
γ−1|k∗|θ̃TR−1ṘR−1θ̃ .

Choosing the update laws

θ̇ = −γ sign(k∗)Rξe0 , (38)

Ṙ = −RξξTR , (39)

one gets

V̇4 = −eTQ′e− km
(
k∗θ̃T ξ

)2
+

1

2
γ−1|k∗|θ̃T ξξT θ̃

= −eTQ′e− 1

2
|k∗|
(
2km|k∗| − γ−1

)(
θ̃T ξ

)2
, (40)

which is semi-definite negative for γ > 1
2|kp| . This proves

that e∈L∞, θ̃TR−1θ̃∈L∞, ω∈L∞, e∈L2, θ̃T ξ∈L2.

Boundedness of R and θ are obtained as in (Tao, 2003, p.
104).

Since R(0) = RT (0) > 0, then

Ṙ−1(t) = −R−1ṘR−1 = ξξT .

This means that

R−1(t) = R−1(0) +

∫ t

0

ξ(τ)ξT (τ)dτ ≥ 0 , t ≥ 0 . (41)

Therefore, R−1(t) > R−1(0), and so R(t) > 0, ∀t ≥ 0, and
R∈L∞. From (37) and (41), one has

2V4 = eTP ′e+ γ−1|k∗|θ̃TR−1(0)θ̃+

+ γ−1|k∗|θ̃T
(∫ t

0

ξ(τ)ξT (τ)dτ
)
θ̃ .

Since V4∈L∞, then the term θ̃TR−1(0)θ̃∈L∞ and, hence,

θ̃∈L∞.

Boundedness of ξ and convergence of e0 to zero are
concluded using the same arguments as in the previous
section. The derivative of the true Lyapunov function

2V5(e, θ̃, ε) = 2V4(e, θ̃) + αεTP0ε , (42)

can be made negative semidefinite with a sufficiently small
α > 0. Hence, ξ ∈ L∞, ė ∈ L∞, θ̇ ∈ L∞, and Ṙ ∈ L∞. It

Output error e0 = y − ym

SVF v̇1 = Λ v1 + g u

v̇2 = Λ v2 + g y

Λ s.t. det(sI − Λ) = Nm(s)

Regressor ωT =
[
vT1 y vT2 r

]
Filter ξ = L−1(s)ω

L(s) = s+ λ , λ > am

Control u = θTω + θ̇T ξ

Update laws θ̇ = −γ sign(k∗)Rξe0 , γ > 1
2|kp|

Ṙ = −RξξTR , R(0) = RT (0) > 0

Table 2. Least-squares MRAC.

follows that limt→∞ e(t) = 0 and limt→∞ θ̃T ξ(t) = 0. From
(21),

ė0 = −
(
am + γ |k∗|ξTRξ

)
e0 + k∗θ̃Tω ,

which shows that the rate of convergence of e0 depends on
γ and R.

Table 2 summarizes the algorithm. The implementation
requires a bound for the gain γ. Thus, besides the assump-
tions regarding P (s) stated in section 2, the following a
priori knowledge is also necessary:

(5) A lower bound for |kp|, the unknown plant parameter,
is known.

Remark. The adaptive algorithms based on least-squares
presented in (Sastry and Bodson, 1989) and (Ioannou and
Sun, 1996) consider the controller structure and the iden-
tification structure separately. Thus, to ensure stability of
their closed loop connection, a projection is introduced
which also requires a prior knowledge about a bound
on |kp| to be implemented. Here, the necessity of this
prior knowledge arises directly from the Lyapunov stability
analysis.

7. SIMULATION RESULTS

The improved transient and convergence behavior attained
by the proposed algorithms are illustrated by some simula-
tion results. The simulations are carried out with a fourth
order plant

P (s) =
0.3(s+ 2)3

s4
. (43)

The reference model is

M(s) =
1

s+ 1
. (44)

For this example, the matching parameter is
θ∗ = [−7.25, −9.25, −3, −13.33, 7.5, 25, 20.83, 3.33],
‖θ∗‖ = 38.1, k∗ = 0.3.

For all simulations

y(0) = 10 .

All other initial conditions are zero.

Two reference signals are used in the simulations:

rsin(t) = 3 + sin(t) + sin(3t) + sin(5t) + sin(7t) ,

rsqw(t) = 3 + 10 sign(sin(0.1πt)) .
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7.1 Simulation 1 - Standard MRAC algorithm

The following data are used:

r(t) = rsin(t) , γ = 20 .

The result of this simulation is shown in figure 1.
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Fig. 1. Simulation result with the standard MRAC.

Figure 1(b) illustrates the slow convergence of the param-
eter which is representative for the conventional MRAC
algorithm even in this case, with an excitation signal
composed by 4 sinusoids of different frequencies. Due to
the initial condition, ‖θ‖ jumps to a high value, far from
‖θ∗‖, and stay almost constant. Increasing γ also increases
the ‖θ‖ jump.

Figure 1(c) shows the behaviour of all the components of
the parameter vector θ. It is clear that the vector is quickly
changing its orientation while keeping the norm practically
constant.

The tracking error plotted in figure 1(a) exemplifies the
fact that it can be relatively small even with a very large
parameter error θ̃. The tracking error is small because
θ̃Tω ≈ 0.

7.2 Simulation 2 - Modified MRAC algorithm

The following data are used:

r(t) = rsin(t) , λ = −2 , γ = 100 .

Figure 2 shows the result obtained with the modified
MRAC. The improvement in the tracking error shown
in figure 2(a) is remarkable. As expected, increasing the
adaptation gain γ improves the tracking behavior.

Figure 2(b) shows the behavior of ‖θ‖. The initial jump is
quite attenuated when compared with the previous simu-
lation with the modified MRAC, however, the convergence
may take a very long time as well even with reference signal

used. Notice that γ here is higher than in the previous
simulation.

Figure 2(d) shows that, after a short transient, the mis-

match control ũ = θ̃Tω + θ̇T ξ ≈ 0, that is, θ̃Tω ≈ −θ̇T ξ.
This illustrates the extra degree of freedom introduced in
the control law which allows a small tracking error even
with θ̃ and θ̃Tω large.
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Fig. 2. Simulation result with the modified MRAC.

7.3 Simulation 3 - LS-MRAC algorithm

The following data are used:

r(t) = rsin(t) , λ = −2 , γ = 20 , R(0) = 20I .

Figure 3 shows the result obtained for this simulation. As
expected, a notable parameter convergence improvement
is obtained by introducing the LS algorithm. This can be
clearly observed in figures 3(b) and (c). As the parameter
converges so does the tracking error.

7.4 Simulation 4 - LS-MRAC algorithm

The following data are used:

r(t) = rsqw(t) , λ = −2 , γ = 20 , R(0) = 50I .

Figure 4 shows the result of another simulation with the
LS-MRAC algorithm. Now the reference signal is a square
wave. It can be observed that the convergence of the
parameter is faster than that presented in figure 3 with
a reference signal composed by 4 sinusoids. After t = 40,
θ ≈ θ∗.
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Fig. 3. Simulation result with the LS-MRAC.
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Fig. 4. Simulation result with the LS-MRAC and square
wave r(t).

8. CONCLUSION

Two algorithms are proposed and analysed. First a modi-
fied MRAC, which is derived from the conventional MRAC
by introducing a Monopoli’s multiplier. This modification
substantially improves the behavior of the tracking error
e0. One reason for this result is the explicit dependence of
the error dynamics on the adaptation gain γ (and also on
the level of excitation signal). Another reason is the extra
degree of freedom introduced in the control law, which

allows to attain ũ ≈ 0 (due to θ̃Tω ≈ θ̇T ξ) by means of
high adaptation gain γ.

The second algorithm is the LS-MRAC which is directly
obtained from the previously modified MRAC by introduc-
ing a least-squares update law. Although more complex to
implement, the LS-MRAC shows a much better parameter
convergence property as expected. This is due to the co-
variance matrix R, which acts as a time-varying directional
adaptation gain (Sastry and Bodson, 1989).

Extensive simulations have confirmed the improvement in
the tracking and parameter convergence behavior of both
algorithms.
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