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Abstract: In this paper, we consider optimization of trajectories for automotive vehicle rollover
testing. In particular, worst-case trajectories that are most likely to cause rollover accidents
are determined through trajectory optimization. Our approach combines online local-model
identification and gradient-based input update, and can be applied to black-box type models,
e.g., a high-fidelity vehicle dynamics model given as a simulation code and not as an explicit set
of equations. With our approach, a library of worst-case trajectories corresponding to different
operating conditions (e.g., vehicle mass, road surface conditions, etc.) can be constructed and
subsequently used in hardware tests.
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1. INTRODUCTION

Achieving safer transportation has been a major goal
in the automotive industry. Compared to other types of
traffic accidents, rollover accidents have higher fatality
rates (NHTSA, 2018). Extensive efforts have been pursued
in both academia and industry to address vehicle rollovers
(Rajamani, 2011). Various rollover prevention mechanisms
have been proposed based on, e.g., differential braking in
Chen and Peng (2001); Gáspár et al. (2005); Lu et al.
(2007); Li et al. (2016) or steering intervention in Carlson
and Gerdes (2003); Solmaz et al. (2007); Bencatel et al.
(2017); Liu et al. (2019). To evaluate vehicle roll stability
and rollover resistance, as well as to assess performance
of these rollover prevention mechanisms, standardized
tests including static tests, e.g., based on measurement
of the static stability factor (NHTSA, 2017), and dynamic
tests such as fishhook (NHTSA, 2004) and sine-with-dwell
(NHTSA, 2007) maneuvers have been established.

However, the standardized tests may not correspond to the
worst case for all vehicles or over all operating conditions
of the same vehicle. Here, worst case designates operation
scenarios or maneuver trajectories that are most likely to
cause the vehicle to have a rollover accident.

The procedure of designing/identifying a worst-case tra-
jectory for a given system such that a given system spec-
ification is violated by that trajectory is generally called
falsification (since the specification is disproved/falsified),
and such a trajectory is usually called a falsifying trajec-
tory. As it is typically unknown a priori whether such a
trajectory exists or not, procedures for designing worst-
case trajectories and for identifying (the existence of) fal-
sifying trajectories are sometimes interpreted interchange-
ably, both called falsification.

In the literature, several approaches have been proposed
to address the falsification problem of control systems,
based on, e.g., optimal control theory in Ma and Peng
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(1999a,b), Yaghoubi and Fainekos (2019), or sampling-
based techniques in Cheng and Kumar (2008), Nghiem
et al. (2010) and in the temporal logic falsification tool S-
TaLiRo (Annpureddy et al., 2011). In our previous work
(Li et al., 2017, 2018), we have also proposed an approach
to falsifying control systems by exploiting optimal control
theory. In particular, our approach is applicable to systems
that do not have explicit models. By integrating online
local-model identification and gradient-based input update
into an iterative algorithm, our approach handles the sys-
tem by treating it as a black-box generating input-output
responses. For continuous-time systems represented by or-
dinary differential equations, this approach is presented in
Li et al. (2017), and an extended version handling systems
with input and/or state time-delays has appeared in Li
et al. (2018).

The contributions of this paper are as follows: 1) In
this paper, we describe a discrete-time variant of the
approach in Li et al. (2017, 2018). On the one hand,
discrete-time formulation translates more naturally into
the computational implementation of the approach. On
the other hand, we have found through simulation ex-
periments that the discrete-time version of our approach
has greater numerical stability than its continuous-time
counterpart. 2) This paper considers a new case study
of vehicle rollover test generation. We first illustrate the
use of our approach to determine two distinct worst-case
trajectories for a given vehicle model operating in two
different road conditions. We then discuss the application
of our approach to constructing a worst-case trajectory
library corresponding to a range of operating conditions,
which can inform future hardware tests. 3) To account
for the fact that the dynamics during a vehicle rollover
event experiences discontinuous changes, which may be
modeled as event-triggered mode switches (Yoon et al.,
2007), we have modified the iterative algorithm of Li et al.
(2017, 2018) so that it is applicable to such mode-switching
hybrid systems.
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Furthermore, compared to previous optimal control-based
falsification approaches, such as the one in Ma and Peng
(1999a,b), our approach has the following differences: 1)
Unlike restricting the cost function to be quadratic as in
Ma and Peng (1999a,b), our gradient-based input update
can handle a broader class of cost functions and thereby a
wider range of falsification objectives. Examples of non-
quadratic cost functions treated by our approach have
been reported in Li et al. (2017, 2018). 2) When applied
to system models that do not have explicit equation
forms, the approach of Ma and Peng (1999a,b) uses a
standard numerical differentiation method to estimate the
derivative information, which is not uncommon in the
treatment of optimal control problems based on models
(Kasac et al., 2010). This requires the algorithm to be
able to artificially manipulate the state value of the system
at every time instant. In contrast, our approach uses
collected input-output trajectory data to estimate needed
gradient information, treating the system as a black-
box. This makes our approach applicable to industry-
level models that are sealed and not inspectable from
outside. 3) Although the application to vehicle rollover
test is considered both in Ma and Peng (1999a,b) and
in this paper, in this paper we explicitly account for the
discontinuous changes of vehicle dynamics during rollover
accidents through modeling those as event-triggered mode
switches, which is not pursued in Ma and Peng (1999a,b).

2. PROBLEM FORMULATION

We consider systems that can be modeled by the following
discrete-time model,

xk+1 = f(xk, uk, k) + dk, (1)
where k denotes the discrete-time instant, xk ∈ Rn denotes
the system state, uk ∈ Rnu denotes a controlled input,
and dk ∈ Rn denotes an uncontrolled input. The dk
may represent disturbance inputs to the system and/or
unmodeled dynamics, which is assumed to be sufficiently
small.

We are interested in optimizing the input signal uk to
minimize a cost function in the form of

J =

N−1∑
k=0

L(xk, uk, k) +K(xN ), (2)

where L(·, ·, k) and K(·) are continuously differentiable
functions. Although in general (2) may represent various
optimization objectives, in this paper we consider it as
a measurement of the system performance in terms of
satisfying a given specification (Fainekos and Pappas,
2009) – smaller values of (2) represent worse specification
satisfaction. Therefore, minimizing (2) represents the goal
of designing/identifying an input trajectory uk to falsify
the specification. In particular, we consider the case where
the model (1) is a black-box with measurable input-output
responses. For instance, it may represent a simulation code
where an explicit form of the model is unknown while
simulation trajectories can be generated. For this, we make
the following assumptions: 1) the f(·, ·, k) are unknown
continuously differentiable functions of x and u; and 2) the
initial condition x0 can be reset and the states xk can be
measured. We remark that the approach proposed in what
follows does not rely on any particular parametrization of
f and the need to globally identify f from collected data,
which could, in general, be difficult.

3. ITERATIVE INPUT UPDATE BASED ON
DATA-DRIVEN GRADIENT ESTIMATION

To begin with, we define the Lagrangian function associ-
ated with the system (1) and the cost function (2),

J =K(xN )+λT0 xinit−λTNxN+

N−1∑
k=0

[
Hk+λTk+1dk−λTk xk

]
,

(3)
where xinit denotes the given nominal initial condition,
λk ∈ Rn are the Lagrange multipliers, and Hk are the
Hamiltonian functions,

Hk = L(xk, uk, k) + λTk+1f(xk, uk, k). (4)

Now assume a nominal trajectory (x0k, u
0
k, d

0
k) is given. In

the vicinity of (x0k, u
0
k, d

0
k), the variation of J with respect

to variations in (xk, uk, dk) can be estimated as

δJ =
( ∂K
∂xN

∣∣∣∣
0

− λTN
)
δxN +

N−1∑
k=0

[
(
∂Hk
∂xk

∣∣∣∣
0

− λTk )δxk

+
∂Hk
∂uk

∣∣∣∣
0

δuk + λTk+1δdk
]

+OJ , (5)

where |0 represents evaluations at the nominal trajectory,
OJ denotes higher-order-terms in the Taylor expansion
(5), and

∂Hk
∂xk

∣∣∣∣
0

=
∂Lk
∂xk

∣∣∣∣
0

+ λTk+1

∂fk
∂xk

∣∣∣∣
0

, (6)

∂Hk
∂uk

∣∣∣∣
0

=
∂Lk
∂uk

∣∣∣∣
0

+ λTk+1

∂fk
∂uk

∣∣∣∣
0

, (7)

in which Lk(·, ·) = L(·, ·, k) and fk(·, ·) = f(·, ·, k).

Consider Lagrange multipliers determined as follows:

λTN =
∂K

∂xN

∣∣∣∣
0

, λTk =
∂Hk
∂xk

∣∣∣∣
0

, (8)

resulting in

δJ =

N−1∑
k=0

[∂Hk
∂uk

∣∣∣∣
0

δuk + λTk+1δdk
]

+OJ . (9)

Then, consider

δuk = −ηk
∂Hk
∂uk

∣∣∣∣T
0

, (10)

with ηk > 0, and obtain

δJ = −
N−1∑
k=0

ηk

∥∥∥∥∂Hk∂uk

∣∣∣∣
0

∥∥∥∥2
2

+

N−1∑
k=0

λTk+1δdk +OJ , (11)

where ‖ · ‖2 represents the 2-norm.

Suppose ∂Hk
∂uk

∣∣
0

are not all zero and δdk and OJ are

sufficiently small, then δJ = δJ < 0, i.e., the cost (2)
can be decreased via the update u0k → u0k + δuk.

The above input update procedure is not yet applicable,
because the derivatives ∂fk

∂xk

∣∣
0

and ∂fk
∂uk

∣∣
0

involved in steps

(8) and (10) are not known, since f is an unknown
function. Note also that it may not be easy to globally
estimate the nonlinear function f . Therefore, we pursue
local estimation of f , i.e., estimating ∂fk

∂xk

∣∣
0

and ∂fk
∂uk

∣∣
0

instead. For this, linearizing the dynamics (1) in the
vicinity of the nominal trajectory (x0k, u

0
k, d

0
k) yields

δxk+1 =
∂fk
∂xk

∣∣∣∣
0

δxk +
∂fk
∂uk

∣∣∣∣
0

δuk + δdk +O, (12)

where δxk = xk − x0k, δuk = uk − u0k, and δdk = dk − d0k.

Maintaining uk = u0k and perturbing xk through a pertur-
bation to the initial condition x0, we obtain

δx̂k+1 =
∂fk
∂xk

∣∣∣∣
0

δx̂k + δd̂k +Ox. (13)
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We now collect mx such perturbed trajectories,[
δx̂1k+1 · · · δx̂

mx
k+1

]︸ ︷︷ ︸
X̂x
k+1

=
∂fk
∂xk

∣∣∣∣
0

[
δx̂1k · · · δx̂

mx
k

]︸ ︷︷ ︸
X̂x
k

(14)

+
[
δd̂1k · · · δd̂

mx
k

]︸ ︷︷ ︸
D̂x
k

+Ox,

with mx ≥ n such that the matrix X̂x
k is full rank. Then,

we estimate ∂fk
∂xk

∣∣
0

as

∂̃fk
∂xk

∣∣∣∣
0

= X̂x
k+1(X̂x

k )+, (15)

where (X̂x
k )+ represents the Moore-Penrose inverse of X̂x

k ,

(X̂x
k )+ = (X̂x

k )T
(
X̂x
k (X̂x

k )T
)−1

. (16)

After the estimate ∂̃fk
∂xk

∣∣
0

has been obtained, we pursue

estimation of ∂fk
∂uk

∣∣
0
. For this, perturb uk and collect mu

perturbed trajectories[
δx̂1k+1 · · · δx̂

mu
k+1

]︸ ︷︷ ︸
X̂u
k+1

=
∂fk
∂xk

∣∣∣∣
0

[
δx̂1k · · · δx̂

mu
k

]︸ ︷︷ ︸
X̂u
k

(17)

+
∂fk
∂uk

∣∣∣∣
0

[
δû1k · · · δû

mu
k

]︸ ︷︷ ︸
Ûu
k

+
[
δd̂1k · · · δd̂

mu
k

]︸ ︷︷ ︸
D̂u
k

+Ou,

with mu ≥ nu such that the matrix Ûuk is full rank. Then,

we estimate ∂fk
∂uk

∣∣
0

as

∂̃fk
∂uk

∣∣∣∣
0

=
(
X̂u
k+1 −

∂̃fk
∂xk

∣∣∣∣
0

X̂u
k

)
(Ûuk )+ (18)

=
(
X̂u
k+1 − X̂x

k+1(X̂x
k )+X̂u

k

)
(Ûuk )+.

After both the estimates ∂̃fk
∂xk

∣∣
0

and ∂̃fk
∂uk

∣∣
0

have been

obtained, we update the input uk according to (10) with

the ∂fk
∂xk

∣∣
0

and ∂fk
∂uk

∣∣
0

in (6) and (7) replaced with ∂̃fk
∂xk

∣∣
0

and ∂̃fk
∂uk

∣∣
0
, respectively. Then, the variation of J can be

written as

δJ =

N−1∑
k=0

(
λTk+1

[( ∂fk
∂xk

∣∣∣∣
0

− ∂̃fk
∂xk

∣∣∣∣
0

)
δxk + δdk

]
− ηk

(∂Lk
∂uk

∣∣∣∣
0

+ λTk+1

∂fk
∂uk

∣∣∣∣
0

)(∂Lk
∂uk

∣∣∣∣
0

+ λTk+1

∂̃fk
∂uk

∣∣∣∣
0

)T)
+OJ

=

N−1∑
k=0

(
− Pk + λTk+1Qk

)
+OJ , (19)

where

Pk = ηk
(∂Lk
∂uk

∣∣∣∣
0

+ λTk+1

∂̃fk
∂uk

∣∣∣∣
0

)(∂Lk
∂uk

∣∣∣∣
0

+ λTk+1

∂̃fk
∂uk

∣∣∣∣
0

)T
Qk = δdk +

( ∂fk
∂xk

∣∣∣∣
0

− ∂̃fk
∂xk

∣∣∣∣
0

)
δxk

− ηk
( ∂fk
∂uk

∣∣∣∣
0

− ∂̃fk
∂uk

∣∣∣∣
0

)(∂Lk
∂uk

∣∣∣∣
0

+ λTk+1

∂̃fk
∂uk

∣∣∣∣
0

)T
.

Suppose ∂Lk
∂uk

∣∣
0

+ λTk+1
∂̃fk
∂uk

∣∣
0

are not all zero. Then it can
be seen from the above expressions that for sufficiently
small δdk, Ox, Ou and OJ , δJ < 0 can be achieved, since

δJ → −
∑N−1
k=0 Pk as δdk,Ox,Ou,OJ → 0.

4. FALSIFICATION ALGORITHM

In some systems, dynamics may change discontinuously
depending on the location of system state in the state
space. Such phenomena can often be modeled as event-
triggered mode switches as follows,

xk+1 =

m∑
i=1

f i(xk, uk, k) IXi(xk) + dk, (20)

where the sets {X1, · · · , Xm} form a partition of the state
space Rn satisfying

⋃m
i=1X

i = Rn and Xi ∩ Xj = ∅
for i 6= j, IXi(x) are set-membership indicator functions
taking value 1 if x ∈ Xi and 0 otherwise, and the
functions f i represent the system dynamics in each mode
i = 1, · · · ,m. Switches between modes are triggered as
states xk enter different sections Xi of the state space.
For a given trajectory xk, we denote by ik(xk), or simply
ik when there is no ambiguity, the mode at time k along
that trajectory, which is assumed to be measurable. As
a matter of fact, the dynamics during a vehicle rollover
accident, which are addressed in this paper, experience
such discontinuous changes. Specifically, the roll dynamics
before and after one-side wheel lift-off can be modeled as
two modes of the vehicle system (Yoon et al., 2007).

To treat such systems, necessary steps are introduced into
our algorithm to promote convergence of the algorithm
iterates. Firstly, when estimating ∂fk

∂xk

∣∣
0

and ∂fk
∂uk

∣∣
0
, the

perturbed trajectories x̂k should have the same mode
trajectory ik as the nominal trajectory x0k. This can be
promoted by maintaining perturbations δx̂ik in (14) and
(17) to be small. In addition, the update step sizes ηk for
the inputs uk are adjusted in each iteration so that the cost
values associated with the algorithm iterates are monotone
non-increasing.

Our algorithm of iterative gradient-based input update
with data-driven gradient estimation for identifying fal-
sifying trajectories is formally presented as Algorithm 1.
In Algorithm 1, the termination conditions TC-A to -C
are as follows:

• TC-A: The iteration count θ has reached θmax.
• TC-B : The absolute change in the cost Jθ over a

moving window of the θwin most recent iterations is
less than a threshold value ε.

• TC-C : The update step size ηθ has been below a
threshold value ηmin.

Remark 1: It can be shown that the cost sequence Jθ
generated by Algorithm 1 is guaranteed to be monotone
non-increasing, and under the assumption that the cost
function (2) is lower bounded, Jθ must converge as θ in-
creases. Then, based on the above termination conditions
TC-A to -C, Algorithm 1 must terminate after a finite
number of iterations.

Remark 2: Although the perturbed trajectories x̂k for

estimating
∂f

ik
k

∂xk

∣∣
0

and
∂f

ik
k

∂uk

∣∣
0

are required to have the

same mode trajectory ik as the nominal trajectory x0k,
Algorithm 1 allows the updated trajectory xθ+1 to have
different mode trajectories from the previous nominal
trajectory xθ as long as xθ+1 corresponds to a lower cost
value than xθ.

5. VEHICLE ROLLOVER TEST GENERATION

We apply the proposed falsification algorithm to vehicle
rollover test trajectory generation. Specifically, we pursue
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Algorithm 1 Iterative Falsification Algorithm

1: Set an initial guess for input u0 = {uk,0}N−1k=0 and
an initial update step size η0 > 0, set the maximum
number of iterations θmax, and initialize the iteration
count θ = 0.

2: Simulate the black-box model (20) with the nominal
initial condition x0 and input u0, and obtain a nominal
state trajectory x0 = {xk,0}Nk=0.

3: Evaluate the cost associated with (x0,u0) according
to (2), denoted as J0.

4: while TC-A and TC-B not satisfied do
5: Initialize X̂x

k = [ ] for all k = 0, · · · , N .

6: while rank(X̂x
k ) < n for some k = 0, · · · , N −1 do

7: Add a random perturbation δx̂0 to the initial
condition x0, and simulate (20) with x0 + δx̂0
and uθ to obtain a state trajectory
x̂θ = {x̂k,θ}Nk=0.

8: if ik(xk,θ) = ik(x̂k,θ) for all k then

9: Set X̂x
k ← [X̂x

k δx̂k,θ], δx̂k,θ = x̂k,θ − xk,θ.
10: end if
11: end while

12: Estimate
∂f

ik
k

∂xk

∣∣
θ

using (15) for all k.

13: Initialize Ûuk = [ ] for all k = 0, · · · , N − 1 and

X̂u
k = [ ] for all k = 0, · · · , N .

14: while rank(Ûuk )<nu for some k = 0,· · ·, N − 1 do
15: Add a random perturbation signal δûθ =

{δûk,θ}N−1k=0 to uθ, and simulate (20) with x0 and
uθ + δûθ to obtain a state trajectory
x̂θ = {x̂k,θ}Nk=0.

16: if ik(xk,θ) = ik(x̂k,θ) for all k then

17: Set Ûuk ← [Ûuk δûk,θ] and X̂u
k ←

[X̂u
k δx̂k,θ], δx̂k,θ = x̂k,θ − xk,θ.

18: end if
19: end while

20: Estimate
∂f

ik
k

∂uk

∣∣
θ

using (18) for all k.

21: Initialize ηθ = η0 and J̃ = +∞.
22: while J̃ > Jθ and TC-C not satisfied do
23: Compute δũθ = {δũk,θ}N−1k=0 using (8) and (10)

with ηk = ηθ.
24: Simulate (20) with x0 and uθ + δũθ, obtain

a state trajectory x̃θ = {x̃k,θ}Nk=0, and evaluate

the associated cost (2) and assign it to J̃ .
25: Set ηθ ← ηθ

2 .
26: end while
27: Set (xθ+1,uθ+1) = (x̃θ,uθ + δũθ) and Jθ+1 = J̃ .
28: Set θ ← θ + 1;
29: end while

identification of, if they exist, driver input trajectories
that cause the vehicle model under test to have rollover
accidents. Here, we consider a sport utility vehicle model
provided by the high-fidelity vehicle dynamics simulation
software CarSim, and focus on the case where the vehicle
drives with constant longitudinal speeds and the driver
input is the steering wheel profile. In particular, the
CarSim model is treated as a black-box, i.e., only provides
input-output responses to our falsification algorithm.

A rollover event typically exhibits two phases: At first,
due to roll dynamics, the vehicle’s vertical load starts
concentrating on one side of the wheels, the extent to
which can be measured using the Load Transfer Ratio
(LTR), defined as

LTR =
Fz,L1 + Fz,L2 − Fz,R1 − Fz,R2

Fz,L1 + Fz,L2 + Fz,R1 + Fz,R2
, (21)

where Fz,i denotes the vertical force on each of the four
wheels. Then, after LTR reaches 1 or −1, one side of the
wheels start lifting off the ground, and as the vehicle’s roll
angle continues increasing, rollover happens.

Note, firstly, that by definition, −1 ≤ LTR ≤ 1, and as
a result, the dynamics after one-side wheel lift-off (i.e.,
after LTR reaches 1 or −1) cannot be reflected by LTR.
However, one-side wheel lift-off does not immediately lead
to a rollover accident, as rollover requires additional work
to lift the vehicle’s center of gravity (CG) up. Thus, al-
though LTR has been used as a conservative indicator for
designing rollover avoidance devices (Bencatel et al., 2017;
Liu et al., 2019), it may not be suitable for identifying tra-
jectories that indeed cause rollover accidents. Secondly, the
dynamics before and after one-side wheel lift-off changes
in a discontinuous manner, which can be modeled as two
modes of the vehicle system with mode switches triggered
when LTR reaches 1 or −1 (Yoon et al., 2007).

According to the above observations, we consider a roll
dynamics model in the following form,

xk+1 =

3∑
i=1

f i(xk, uk, k) IXi(xk) + dk, (22)

IXi(xk) = 1, with i =

1, if − 1 < LTRk < 1,
2, if LTRk ≥ 1,
3, if LTRk ≤ −1,

(23)

where the states are xk = [φk, pk, rk, vk]T with φk, pk, rk
and vk denoting, respectively, the roll angle, roll rate, yaw
rate and lateral velocity of the vehicle at time k, and
uk = SWk is the steering wheel angle at k. Note that
although a high-fidelity vehicle model, such as a CarSim
model, may involve hundreds of states, these four states
have been shown to be most representative of the roll
dynamics (Yoon et al., 2007). The effects of the other
states are assumed to be embedded into the disturbance
term dk. We will show that the reduced-order model (22)
can represent the roll dynamics of the full CarSim model
with acceptable accuracy.

We pursue trajectories of u that push the vehicle to its
rollover limit by minimizing the following cost function:

J = −
N∑
k=0

p2k. (24)

Such a cost function choice is motivated by the fact that
a rollover event corresponds almost always to the absolute
value of roll angle, or, the accumulation of roll rate, ex-
ceeding a threshold. By comparing several alternatives for
the cost function (24), we have found through simulation
experiments that our algorithm is more likely to converge
to a rollover trajectory by maximizing the accumulation
of roll rate squares.

5.1 Reduced-order model validation

Although our algorithm does not rely on the exact form
and parameter values of the model (22) to operate, we do
expect that the reduced-order model can approximate the
full model dynamics with satisfactory accuracy, i.e., with
sufficiently small dk, to guarantee algorithm performance.
Fig. 1 illustrates the accuracy of the online estimated local
model by our algorithm in approximating the CarSim
model dynamics. The black dashed lines represent the
nominal trajectory (x0k, u

0
k) around which a linear time-

varying model (12) is identified. The red lines represent
the response predicted by the identified linear model when
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the initial condition x00 and input signal {u0k}
N−1
k=0 are

perturbed, and the green lines represent the CarSim model
response to the same perturbations. The perturbation to
the initial condition is achieved through a small steering
wheel input applied for a period of time before the initial
time, i.e., k = 0 corresponding to 1[s] in the plots, which
is also how Step 7 of Algorithm 1 is realized.

0 0.5 1 1.5 2 2.5 3
Time [sec]

-3

-2

-1

0

1

2

3

R
o

ll 
a

n
g

le
 [

d
e

g
]

Nominal

CarSim

Identified model

0 0.5 1 1.5 2 2.5 3
Time [sec]

-15

-10

-5

0

5

10

15
Y

a
w

 r
a
te

 [
d
e
g
/s

]
Nominal

CarSim

Identified model

Fig. 1. Validation of identified reduced-order model.

5.2 Algorithm application to CarSim model

We now apply our algorithm to identify worst-case trajec-
tories for the CarSim vehicle model under test, i.e., driver
steering wheel profiles that most likely cause the vehicle
to have rollover accidents. In particular, we consider two
cases: In the first case, the vehicle drives at a speed of
100[km/h] on a flat road with a friction coefficient 1.0.
In the second case, the vehicle drives also at a speed of
100[km/h] on a road also with a friction coefficient 1.0
but with a bank angle of arctan(1/10)[rad]. We consider
steering wheel angles bounded by |u| ≤ 120◦ to represent
physical limitations of driver maneuver. When initializing
the algorithm, we consider a sine wave as the initial guess
for steering wheel profile (black dashed lines in Fig. 2(a)),
which represents a typical obstacle avoidance maneuver.
The blue lines in Fig. 2(a)-(c) represent the steering wheel,
LTR, and roll angle trajectories after algorithm conver-
gence, where some intermediate trajectories during algo-
rithm iterations are also plotted by green lines. Fig. 2(d)
plots the cost values during algorithm iterations, from
which it can be observed that the cost monotonically non-
increases at most iterations until it converges. At a few
instances the trend is slightly reversed. This is due to
the fact that in our implementation of Algorithm 1, the
condition J̃ > Jθ in Step 22 was checked up to a tolerance.

In both cases, the LTR reaches the wheel lift-off limit (1
or −1), and the roll angle reaches a large value at the end
of the maneuver. Due to the positive bank angle, the roll
angle reaches an even larger value in the second case, which
is consistent with the common sense that vehicles are
easier to have rollover accidents when driving on banked
roads.

Note that although the initial trajectories (black dashed)
do not experience mode switches (mode i ≡ 1), mode
switches occur once LTR reaches 1 or −1 at around 2.5[s]
as the trajectories are evolved over algorithm iterations.
Afterwards, the estimated gradients (15) and (18) after
about 2.5[s] correspond to mode 2 or 3 of the system.
This illustrates the feasibility of using our algorithm to
treat switching systems (see Remark 2). Note also that the
identified steering wheel profiles are different for the two
cases (e.g., at around 1.5[s]). This illustrates the fact that
worst-case trajectories for the same vehicle model under
different operating conditions can be different.
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Fig. 2. Identification of worst-case trajectories by Algo-
rithm 1. Left column (a-d): On flat road. Right col-
umn (a-d): On road with a positive bank angle. (e)
Snapshots of CarSim simulation with the converged
steering wheel profile (blue) on road with a positive
bank angle.

5.3 Test trajectory library

A library of worst-case trajectories for a specified vehicle
model and for a range of operating conditions can be
constructed and used to inform future hardware tests. As
an illustrative example, we use our algorithm to construct
steering wheel profiles for the CarSim vehicle model con-
sidered above when the vehicle is driven on flat road with
different constant longitudinal speeds, plotted in Fig. 3.
We envision that test cases designed based on such a test
trajectory library can provide more reliable assessment
results on vehicle roll stability and rollover resistance, as
well as can reduce overall testing time (Li et al., 2017).
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Fig. 3. Steering wheel profiles for rollover testing when
driving on flat road with different longitudinal speeds.

6. CONCLUSION

In this paper, we described a trajectory optimization-
based approach for control system falsification. Our ap-
proach integrates online local-model identification and
gradient-based input update into an iterative algorithm,
and can be applied to black-box type models. In particular,
we considered the case study of vehicle rollover test gener-
ation. We illustrated the functionality and effectiveness of
our falsification algorithm for identifying worst-case trajec-
tories, in terms of most likely causing rollover accidents, of
a given vehicle model under various operating conditions.
We hope that the proposed falsification approach can be
a useful tool that supports the verification and validation
of automotive control systems.
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