
Formulation of Fatigue Dynamics
as Hybrid Dynamical System
for Model Predictive Control

Stefan Loew ∗ Dragan Obradovic ∗∗

∗Wind Energy Institute of Technical University of Munich,
Boltzmannstrasse 15, 85748 Garching, Germany, and Siemens AG,

Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich,
Germany(e-mail: loew.stefan@siemens.com).

∗∗ Siemens AG, Corporate Technology, Otto-Hahn-Ring 6,
81739 Munich, Germany.

Abstract: The standard fatigue estimation procedure is formulated as a hybrid dynamical
system, which subsequently is utilized to calculate an economic terminal cost in MPC. This
formulation is enabled by the development of a novel algorithm for continuous stress cycle
identification. A second hybrid dynamical system is designed to provide fatigue cost gradients.
The formulation turns out to be a powerful generalization of previous fatigue cost formulations,
and additionally introduces consideration of past stress into the cost function. Presented closed-
loop simulations using a wind turbine model provide insight into the subsystems of the hybrid
dynamical system, and show the benefit of memorizing the past.
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1. INTRODUCTION

Fatigue is damage of a material caused by cyclic appli-
cation of mechanical stress. Fatigue has large impact on
the operating costs of devices and thus control of fatigue
is used to increase the total economic profit. Model Pre-
dictive Controllers (MPC) enable optimal control of many
devices by using predictions of future system excitation
(Findeisen and Allgöwer (2002)). Based on these input
predictions, stress time-series at crucial spots in the device
structure can be predicted. In Direct Online Rainflow-
counting (DORFC, Loew et al. (2019)), these stress pre-
dictions are used for direct incorporation of the standard
fatigue damage estimation procedure in the cost function
of Model Predictive Control.

Questions:
Question 1) Since within the formulation of DORFC, fa-
tigue cost is a discontinuous function of all time-samples of
stress within the prediction horizon, neither the concept of
stage cost nor of terminal cost applies (Grüne and Pannek
(2017)). However, formal proofs of stability and recursive
feasibility usually are commonly researched for those stan-
dard concepts (Grüne and Pannek (2017), Findeisen and
Allgöwer (2002), Rawlings and Mayne (2009) p.112 ff.).
In Loew et al. (2020), stage cost formulations are achieved
by some approximations, externalization of the fatigue
cost evaluation from the MPC algorithm, and insertion
of its results into the MPC via time-varying parameters.
However, the question arises, if direct stage or terminal
cost formulations without those additions are possible as
well.

Question 2) In preceding methods (Loew et al. (2019),
Loew et al. (2020)), fatigue cost is evaluated only based on
the states in the prediction horizon. However, fatigue is a
long-term effect, and correct evaluation requires knowledge
about the entire stress history. As an extreme example, the
very first stress sample after commissioning of the machine
can form a stress cycle with the current stress sample
several years later. Thus, the question arises, if information
about the stress history can be included consistently into
the predictive cost function.

Question 3) Taking up the previous question, storing the
entire stress history requires a high amount of computa-
tional memory in the order of Gigabytes. Analyzing this
high amount of data at every controller step requires exces-
sive computing power. Thus, a smart method is required
which enables pertaining a reduced dataset in the controller
without losing information.

Question 4) Other approaches for fatigue control in lit-
erature use Markovian and causal surrogate models for
fatigue dynamics (Luna et al. (2020), Gros and Schild
(2017), Barradas-Berglind et al. (2015)). However, analysis
in Loew et al. (2020) shows that cost functions are closer to
the nature of the fatigue estimation process if stress state
values are penalized based on their past and future evolu-
tion. In Loew et al. (2020), this property is implemented
by above mentioned externalization of fatigue evaluation.
However, the question arises, if this property also can be
achieved by a standard cost formulation with Markovian
and causal properties.

Contribution & Outline: In Sec. 2, Questions 2) and
3) are solved by the development of a value-continuous
fatigue cost calculation with residue handling. In Sec. 3,
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Fig. 1. Flowchart of the MATLAB-implementation
rainflow() of the Three-point Rainflow algorithm
(simplified from The MathWorks Inc. (2018)). Stress
extrema are called ”reversals”. The range r(X) =
|X(2)−X(1)| of a stress value pair X is the absolute
value of the difference between both stresses.

fundamentals on delayed and hybrid systems are presented
as a basis for further modeling. In Sec. 4, fatigue cost calcu-
lation is cast into a hybrid dynamical system which solves
Question 4). In Sec. 5, a link to previous formulations and
an incorporation of the hybrid dynamical system into the
terminal cost of an MPC is provided, which solves Ques-
tion 1). Sec. 6 provides first insight into this novel MPC
implementation. Sec. 7 provides conclusion and outlook.

One comment on notation: The variable notation with
bar ā means sampled on the control intervals of the
prediction horizon and with tilde ã means estimated from
measurements.

2. FATIGUE ESTIMATION

2.1 Cycle identification and fatigue estimation

Rainflow-counting (RFC) (ASTM (1985), The MathWorks
Inc. (2018)) is the standard method for decomposition of
stress time-series to stress cycles and therefore is part of
the standard fatigue estimation process. A flowchart of the
Rainflow algorithm is displayed in Fig. 1. The Rainflow
algorithm is based on reversals (extrema) of the stress
trajectory, and contains algorithmic branches and loops.
Thus, a crucial property of the Rainflow algorithm is its
discontinuous output-behavior. Furthermore, the number
Nc of identified cycles is variable, but bounded by the
number of extrema. The outputs of RFC can be converted
to the variables in Table 1 where the value of weight equals
wc = 1 if a full stress cycle is detected and equals wc = 0.5
if a half cycle (half period) is detected.

2.2 Moving-window cycle identification & Residue

Originally, Rainflow analysis is performed on the entire
stress history. However, in Heinrich et al. (2019) it is shown

Table 1. Converted outputs of RFC for stress
cycles c

Quantity Variable Unit

Stress amplitude σa,c [Pa]

Stress mean σm,c [Pa]

Sample index of cycle maximum kmax,c [−]

Sample index of cycle minimum kmin,c [−]

Weight wc [−]

Fig. 2. Rainflow analysis on a moving window (Heinrich
et al. (2019)).

that Rainflow analysis also can be performed on a moving
window, like stated in Alg. 1.

In Question 2) of Sec. 1, the importance of considering the
stress history in fatigue evaluation is pointed out. This is
due to so called transition cycles which grow over a long
period of time and can reach high stress amplitudes with
dominating fatigue impact (Marsh et al. (2016)). Since
transition cycles per definition have not been closed yet,
they appear as half cycles in Rainflow analysis. Thus,
to account for transition cycles in the moving-window
algorithm, the corresponding half-cycle stress samples are
carried along in the so-called residue (Köhler et al. (2012)).

Algorithm 1 Rainflow-analysis on a moving window;
according to Heinrich et al. (2019)

Input: Existing stress string σexist, Periodic update of
new stress string σnew
Output: Full cycles

1: Extract full cycles from existing string (t ≤ t0) using
Rainflow algorithm, Store residue in xres,1
while true do

2: Receive string σnew of new stress samples obtained on
(t0, t0 + ∆t]

3: Extract full cycles from σnew using Rainflow algo-
rithm, Store residue in xres,2

4: Merge residues xres,1 and xres,2
5: Extract full cycles from {xres,1,xres,2} using Rainflow

algorithm, Store residue in xres,1
end

As an illustration, the Rainflow analysis on a moving
window is shown in Fig. 2. At step a), full cycles are
extracted from an existing stress string which occurs at
t ≤ t0. Additionally, a string of new stress samples (t0 <
t ≤ t0 + ∆t) is obtained and full cycles are extracted
from it as well. Step b) shows extracted full cycles and
residues of both. Step c) shows the string which results
from concatenation of both residues. Consequently, this
string as well is analyzed for full cycles.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6699



Depending on the stress signal, a high number of samples
can be accumulated in the residue. Highest possible di-
mensions of the residue vector result from diverging and
converging stress time series because they result in a very
high number of half cycles (Köhler et al. (2012)). However,
long-term diverging series are unrealistic because unstable
machine behavior typically is counteracted by the con-
troller or an emergency shutdown. Long-term converging
series are irrelevant, since very low-amplitude cycles can be
neglected without significant error in fatigue estimation.
Concluding, the dimension Nres of the residue vector is
finite and in practical tests remained well below 100.

2.3 One-step value-continuous cycle identification

The moving-window approach of Sec. 2.2 results in pe-
riodic updates of identified full cycles. This corresponds
to a periodic value-discrete update of fatigue cost. How-
ever, gradient-based optimization in MPC requires value-
continuous evolution of cost functions. Therefore, also
the dynamics of fatigue cost needs to be expresses in a
continuous fashion. Additionally, just like the plant states,
fatigue cost should evolve on arbitrarily small timesteps
unlike time periods ∆t of Alg. 1. Both goals are achieved
by the following two novel steps of enhancement:

As the first step, Alg. 1 is adapted to a one-step cycle
identification which is shown in Alg. 2. The advantage is
that this algorithm does not pause until a new string of
stress samples is available, but directly provides an update
of full cycles with each new stress sample.

Algorithm 2 One-step Rainflow-analysis

Input: Existing stress string σexist, Periodic update of a
scalar new stress sample σ
Output: Full cycles
Initialization: Stress residue xres = σexist
while true do

1: Merge residue xres and new stress sample σ
2: Extract full cycles from {xres, σ} using Rainflow algo-

rithm, Store residue in xres
end

As the second step, Alg. 2 is enhanced by additional consid-
eration of half cycles which start ”growing” already due to
infitesimally small variations in stress. This consideration
results in continuous output of the computation of fatigue
cost which additionally is added to the algorithm, like
stated in Alg. 3.
These enhancements do not introduce further assump-

tions. Thus, like shown in Fig. 3, this continuous fatigue
cost calculation provides the same output like a batch
evaluation over the entire stress trajectory. As expected,
the fatigue cost rate never is negative, and thus fatigue
cost is monotonously increasing. Concluding, Alg. 3 also
solves Question 3) of Sec. 1 by condensing information
of past full cycles in the scalar xfatigue,FC , and by only
memorizing stress samples which are extrema and have
not contributed to full cycles yet.

3. SYSTEM CLASSES

In order to integrate the continuous fatigue cost estimation
of Alg. 3 in an MPC, it has to be cast into a class of

Algorithm 3 One-step value-continuous fatigue cost es-
timation
Input: Existing stress string σexist, Periodic update of a
scalar new stress sample σ(k + 1) at each step k
Output: Periodic update of fatigue cost Jfatigue(k) at
each step k
Initialization: Zero total fatigue cost Jfatigue(0) = 0 and
fatigue cost xfatigue,FC(0) = 0 of full cycles, Stress residue
xres(0) = σexist, k = 0
while true do

1: Merge residue xres(k) and new stress sample σ(k+ 1)
2: Extract full and half cycles from {xres(k), σ(k + 1)}

using Rainflow algorithm, Store residue in xres(k+ 1)
3: Calculate fatigue cost based on full cycles, Add result

to xfatigue,FC(k) to obtain xfatigue,FC(k + 1)
4: Calculate fatigue cost based on full and half cycles,

Add result to xfatigue,FC(k) to obtain Jfatigue(k + 1)
5: k = k + 1

end
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Fig. 3. Upper: Exemplary input stress trajectory, and
fatigue cost rate obtained by Finite Differences from
continuous fatigue cost including half cycles. Lower:
continuous (one-step) and batch estimation using only
full cycles or full+half cycles.

dynamical systems. A system class is required which allows
for incorporation of past states, for dynamic variation of
state dimensions, and for discontinuous updates of states.
In the following, system classes from literature are assessed
which seem promising with regard to these properties.

3.1 Delay differential equations

Delay differential equations (DDEs) are differential equa-
tions in which the state differential at a certain time
depends on past state values (see Shampine and Thompson
(2009)). However, discontinuous updates of states and
their dimensions do not seem to be possible. Additionally,
delays would have to increase with simulation time since
the instances of residue-sampling are fixed in absolute
time. Therefore, DDEs are not utilized in the present work.

3.2 Hybrid dynamical systems

Definition: A hybrid dynamical system is characterized
by a coexistence of value-continuous and value-discrete
dynamics (Aihara and Suzuki (2010)). They are able to
describe physical mechanisms like impact and friction,
and cyber-physical mechanisms like switching. Therefore
for the present work, hybrid systems are highly suitable
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Fig. 4. Switching of dynamics at t2 and resets of the
value-continuous state x at t1 and t3, both triggered
by the value-discrete state q (Lunze and Lamnabhi-
Lagarrigue (2009)).

for modeling the interplay of physical value-continuous
dynamics and algorithmic discontinuous mappings.

According to Aihara and Suzuki (2010) and Lunze and
Lamnabhi-Lagarrigue (2009), hybrid dynamical systems
can be described by the mappings

ẋ(t) = F q(t)(x(t),u(t)) (1a)

q(t) = G(q(t−),x(t−),u(t)) (1b)

x(t) = R(q(t−),x(t−),u(t)) (1c)

y(t) = H(q(t),x(t),u(t)) (1d)

where

• x(t) ∈ RNx are value-continuous states.
• u(t) ∈ RNin are control variables.
• q(t) ∈ RNq are value-discrete states.
• t− = lim

ε→0
τ − ε denotes the time instant right before

a discontinuous transition/reset event τ of states. t
equivalently denotes the time instant after such an
event.

• y(t) ∈ RNy is the output of the system.

• F q(t) is a switched set of continuous differential
equations. Which subsystem is active, is determined
by the value-discrete states q(t).

• G is a discontinuous transition-map for the value-
discrete states from q(t−) to q(t).

• R is a discontinuous reset-map for jumps of the value-
continuous states from x(t−) to x(t).

• H is an output function.

An exemplary time-behavior of a simple hybrid dy-
namical system is shown in Fig. 4.

4. FATIGUE DYNAMICS AS HYBRID
DYNAMICAL SYSTEM

4.1 Formulation of fatigue dynamics

In the following, plant dynamics and fatigue evolution
of Alg. 3 will be cast into the framework of an hybrid
dynamical system which was introduced in Sec. 3.2. Since
the ultimate goal is utlization of this hybrid dynamical
system in an MPC cost function, there will be a distinc-
tion between time instances in the controllable prediction
horizon (prediction) and time instances before execution
of the current MPC-step (past). The resulting subsystems
stem from plant dynamics, extrema & cycle identification,

update of residue, update of fatigue cost of past full cycles,
and output of total accumulated fatigue cost. This is
visualized in Fig. 5. Interestingly, all types of mappings
of hybrid dynamical systems are utilized; namely several
continuous differential equations, a transition-map, three
reset maps, and one output function. Additionally, there
are value-discrete and value-continuous state sets of vari-
able dimensions.

Plant: The time-continuous evolution of value-continuous
plant states x(t) is obtained by the set

ẋ = F sys(x(t),u(t),d(t)) (2)

of differential equations with control variables u(t), dis-
turbances d(t) and initial states x(t0) = x̃(t0). Fatigue is
caused by stress σ(t) ∈ x(t) which is considered as one of
the states of the system.

Cycle identification: According to Alg. 3, cycle identifi-
cation by the Rainflow algorithm is based on a stress string
which is a concatenation of the residual stress samples
and the new stress sample. This string is input to the
transition-map

qstruct(t) = GRFC({xres(t), σ(t)}) (3)

which instantaneously updates the value-discrete struc-
tural states. The structural states are defined by

qstruct =

(
w
kmax
kmin

)
=

(
(w1, w2, ..., wNc

)
(kmax,1, kmax,2, ..., kmax,Nc

)
(kmin,1, kmin,2, ..., kmin,Nc

)

)
(4)

where the number Nc of identified cycles - and thus the
dimensions - are variable. The structural states are cycle
weights w, sample indices kmax of cycle maxima and
sample indices kmin of minima (compare to Tab. 1).

Residue: The update of the value-continuous residue
states is obtained by the reset-map

xres(t) = Rres(qstruct(t
−),xres(t

−), σ(t−), t) (5)

with the residue states

xres = ({xres,past,xres,pred}) =(
(σres,past,1, σres,past,2, ..., σres,past,Npast

)
(σres,pred,1, σres,pred,2, ..., σres,pred,Npred

)

)T
(6)

where the numbers of past Npast and predicted Npred
stress samples - and thus the dimensions - are variable.
Since the reset-map depends on the structural states
qstruct, it is event-driven. Additionally, the reset-map is
time-driven since the reset-behavior differs for the begin-
ning t = t0 and within t0 < t ≤ tend the horizon.

The reset-map comprises two sub-maps Rres,past and
Rres,pred for treatment of past and predicted residue, re-
spectively. Fig. 6 shows the sampling of past and prediction
trajectory via reset-maps to obtain the residue states.

The update of the past-residue is obtained by the reset-
map

xres,past = Rres,past =
{σres,past,l(t−), σ(t−)} ∀l ∈ {kmax,j , kmin,j}
∀j|¬(wj = 1 ∧ kmax,j ≤ Npast ∧ kmin,j ≤ Npast)
if t = t0

not active if t0 < t ≤ tend
(7)
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𝑥𝑓𝑎𝑡𝑖𝑔𝑢𝑒,𝐹𝐶(𝑡)

𝜎 𝑡 ∈ 𝒙(𝑡)

𝒒𝑠𝑡𝑟𝑢𝑐𝑡 𝑡

Output 𝐻𝑓𝑎𝑡𝑖𝑔𝑢𝑒 of

total fatigue cost

𝐽𝑓𝑎𝑡𝑖𝑔𝑢𝑒 (𝑡)

Reset 𝑹𝑟𝑒𝑠 & 

constant dynamics
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𝒙𝑟𝑒𝑠(𝑡)

𝒙𝑟𝑒𝑠(𝑡)

𝒙𝑟𝑒𝑠(𝑡)

Dashed connectors where gradients are not evaluated

𝒙 𝑡0
𝒖 𝑡 , 𝒅(𝑡)

Fig. 5. Structure of the hybrid dynamical system for plant dynamics and fatigue cost evaluation. Black = value-
continuous dynamics, Orange = transition-map, Purple = reset-map, Blue = output function. Dashed lines =
paths which are neglected at fatigue cost gradient calculation.
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𝑡
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𝜎𝑟𝑒𝑠,𝑝𝑎𝑠𝑡,1(𝑡)

𝜎𝑟𝑒𝑠,𝑝𝑎𝑠𝑡,2(𝑡)

𝜎𝑟𝑒𝑠,𝑝𝑟𝑒𝑑,2(𝑡)

𝜎𝑟𝑒𝑠,𝑝𝑟𝑒𝑑,1(𝑡)

𝜎(𝑡)

Fig. 6. Generation of past-residue xres,past and prediction-
residue xres,pred from estimated past and predicted
future stress evolution. Both past extrema which form
a full cycle are excluded from the residue and their
fatigue cost is added to the fatigue cost xfatigue,FC of
past full cycles.

where the new estimated stress sample σ(t−) is appended
to the previous past-residue σres,past,l(t

−) at the begin-
ning t = t0 of the prediction horizon. From the previ-
ous past-residue, only samples are maintained which are
extrema and thus contribute to stress cycles (index l ∈
{kmax,j , kmin,j}). This is further limited to extrema which
do not contribute to full cycles (wj = 1) which entirely oc-
cur in the past-residue (kmax,j ≤ Npast ∧ kmin,j ≤ Npast).
The update of the prediction-residue is obtained by the
reset-map

xres,pred = Rres,pred =
∅ if t = t0
{σres,pred,l(t−), σ(t−)} ∀l +Npast ∈ {kmax,kmin}

if t0 < t ≤ tend
(8)

where the new estimated stress sample is appended to
the previous prediction-residue within the horizon t0 <
t ≤ tend. From the previous prediction-residue, all samples
are maintained which contribute to stress cycles. At the
beginning t = t0 of a new MPC-step, the prediction-
residue is initialized to an empty set.

In between of those resets, the residue states are held
constant; which is represented by the continuous dynamics

ẋres(t) = F res = 0. (9)

Fatigue cost of past full cycles: The update of fatigue
cost of full cycles which occurred at t ≤ t0 is obtained by

the reset-map

xfatigue,FC(t) =

Rfatigue,FC(qstruct(t
−),xres(t

−), σ(t−), xfatigue,FC(t−)) =

∑
j (wj ffatigue,j({xres(t−), σ(t−)}, kmax,j , kmin,j)) +

+xfatigue,FC(t−) ∀l ∈ {kmax,j , kmin,j}
∀j|(wj = 1 ∧ kmax,j ≤ Npast ∧ kmin,j ≤ Npast)
if t = t0

not active if t0 < t ≤ tend
(10)

which calculates a sum of convex fatigue cost func-
tions ffatigue over all full cycles in the past residue
(see Loew et al. (2019) for more details). Each fatigue
cost function is composed by two stress samples out of
the string {xres(t−), σ(t−)}; determined by the indices
kmax,j , kmin,j . The summed fatigue cost is added to the
previous version of the state xfatigue,FC(t−). This state
as well is accompanied by a constant continuous dynamics
ẋfatigue,FC(t) = Ffatigue,FC = 0.

Fatigue cost: The continuous calculation of total accu-
mulated fatigue cost is obtained by the output function

Jfatigue(t) = yfatigue(t) =

Hfatigue(qstruct(t), {xres(t), σ(t)}, xfatigue,FC(t)) =∑
c

(wc ffatigue,c({xres(t), σ(t)}, kmax,c, kmin,c)) +

+ xfatigue,FC (11)

which calculates a sum of fatigue cost over all identified
full and half cycles c, and adds this to the fatigue cost of
past full cycles xfatigue,FC .

Summary: The total hybrid system Φ, its states χ and
output γ are defined by

Φ



F sys
GRFC

Rres

F res
Rfatigue,FC
Ffatigue,FC
Hfatigue

χ



x

qstruct
xres

xfatigue,FC

γ


Jfatigue.

(12)

Since at any point of time the states χ(t) contain all
relevant information about the entire history, they form
a Markovian state.
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4.2 Derivation of fatigue cost gradient

For gradient-based MPC, gradients of states and cost func-
tions w.r.t. the control variables ū have to be simulated in
parallel to the states and cost functions (12). This gradient
dynamics as well is cast into the framework

Φū

{
F sys,ū,GRFC,ū,Rres,ū,F res,ū,

Rfatigue,FC,ū, Ffatigue,FC,ū, Hfatigue,ū

χū

{
dx

dū
,
dqstruct
dū

,
dxres
dū

,
dxfatigue,FC

dū

γū

{
dJfatigue

dū

(13)

of an hybrid dynamical system. Since fatigue cost is the
output of system (12), all gradient calculations culminate
in the gradient

γūi,j (t) =
dJfatigue(t)

dūi,j
=
∂Hfatigue(t)

∂χ

dχ(t)

dūi,j
=

∂Hfatigue(t)

∂σ

dσ(t)

dūi,j
+ (14a)

+
∂Hfatigue(t)

∂qstruct

dqstruct(t)

dūi,j
+ (14b)

+

Npast∑
l=1

∂Hfatigue(t)

∂σres,past,l

dσres,past,l(t)

dūi,j
+ (14c)

+

Npred∑
l=1

∂Hfatigue(t)

∂σres,pred,l

dσres,pred,l(t)

dūi,j
+ (14d)

+
∂Hfatigue(t)

∂xfatigue,FC

dxfatigue,FC(t)

dūi,j
(14e)

of fatigue cost output w.r.t. individual zero-order-hold-
samples ūi,j of the control variables. The individual terms
of (14) are derived in the following.

Plant: For term (14a),
∂Hfatigue(t)

∂σ is obtained by Auto-

matic Differentiation (AD), and dσ(t)
dūi,j

from the respective

Variational Differential Equation F sys,ūi,j
.

Cycle identification: For term (14b), dqstruct(t)
dūi,j

cannot

be obtained because the transition-map GRFC cannot be
differentiated. Therefore, the assumption stated in Loew
et al. (2019) is applied, that the update of control variables
ūi,j by the optimization algorithm only leads to mild
variations in the state trajectories within one MPC-step.
Therefore, the structure qstruct of identified cycles can
be assumed to be invariant w.r.t. the controls within one
MPC-step. This corresponds to

dqstruct(t)

dūi,j
= GRFC,ūi,j

= 0 (15)

and a vanishing term (14b). Consequently, in Fig. 5, all
paths are marked as neglected for gradient calculation
which are connected to the transition map GRFC . Valida-
tion and further assessment of above mentioned assump-
tion are subject of current research.

Residue: All summation terms of (14c) are equal to zero
since the past residue samples from t ≤ t0 are inde-
pendent from the control variables in t > t0. Therefore,
dσres,past,l(t)

dūi,j
= Rres,past,l,ūi,j

= 0 ∀l ∀t ≥ t0.

For term (14d), gradient
∂Hfatigue(t)
∂σres,pred,l

is obtained by AD.

The gradients

dσres,pred,l(t)

dūi,j
= Rres,pred,l,ūi,j

=
∅ if t = t0{
dσres,pred,l(t)

dūi,j
(t−),

dσ(t)

dūi,j
(t−)

}
∀l +Npast ∈ {kmax,kmin} if t0 < t ≤ tend

(16)

of prediction-residue are updated by a reset-map of identi-
cal design to the reset-map of the prediction-residue itself
(8). This gradient update is a simplification since the reset-
map also depends on the structural states qstruct, and
formally gradients w.r.t. this variable would have to be
derived as well. However, these terms are neglected due
to assumption (15). Analogously to the residue states (9),
also their gradients are held constant by dẋres

dū = F res,ū =
0.

Fatigue cost of past full cycles: Term (14e) is equal to
zero since the past fatigue cost xfatigue,FC of full cycles is
independent from the control variables in t ≥ t0. Therefore
dxfatigue,FC(t)

dūi,j
= 0, Rfatigue,FC,ū = 0 and Ffatigue,FC,ū =

0 ∀t ≥ t0.

Fatigue cost: Concluding, fatigue cost gradient calcula-
tion reduces from (14) to the approximation

dJfatigue(t)

dūi,j
=
∂Hfatigue(t)

∂σ

dσ(t)

dūi,j
+

+

Npred∑
l=1

∂Hfatigue(t)

∂σres,pred,l

dσres,pred,l(t)

dūi,j
. (17)

5. LINK TO EXISTING METHODS AND
ENHANCEMENT

The present formulation of fatigue cost in a hybrid dy-
namical system is very general. In the following, this is
demonstrated briefly by deriving from it two existing for-
mulations of direct fatigue cost implementation in MPC.
Additionally, both approaches are revolutionized in the
sense that stress history from the past now can be con-
sidered in the cost function in a natural and consistent
way.

5.1 Parametric Online Rainflow-counting

Derivation: In PORFC (Loew et al. (2020)), fatigue cost
calculation within the MPC is continuous since the discon-
tinuous subsystem is externalized and its state is fixed for
one MPC-step. Implementation-wise, the continuous state
prediction of the plant additionally is simulated before
each evaluation of the MPC in order to perform Rainflow
analysis on the output stress trajectory. The result of the
Rainflow analysis, which corresponds to the discrete states
qstruct, is converted to time-varying parameters which are
fed to the MPC. The remaining problem in the MPC then
is continuous. A fairly similar approach can be seen in A.
W. Winkler et al. (2018), were the sequence of discrete
states is fixed a-priori and their event-times are optimized
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in a continuous and smooth MPC problem.
In comparison to the hybrid dynamical system (12), sub-
systems in PORFC are:

• Externalized from MPC: GRFC .
• Neglected: Rres,F res, Rfatigue,FC , Ffatigue,FC since

Rainflow analysis is performed batch-wise on the
entire stress prediction, and no past residue is taken
into account.

• Remaining in MPC: F sys, Hfatigue

Enhancement: Following the hybrid dynamical system
formulation, past stress is introduced to the fatigue cal-
culation of PORFC by adding all neglected subsystems
to above mentioned external pre-preparation phase of the
MPC.

5.2 Direct Online Rainflow-counting

Derivation: In DORFC Loew et al. (2019), the entire
discontinuous fatigue cost calculation is performed within
the MPC. Therefore, calculation of fatigue cost and its
gradients already are similar to the hybrid dynamical sys-
tems (12) and (13), respectively. The two main differences
are:

• Fatigue cost is calculated in a batch fashion over
the entire prediction horizon. Thus, compared to the
hybrid dynamical system, the stress update σ(t−)
is not a scalar but is the entire stress trajectory
(σ(t) ∀t ∈ [t0, tend]) over the prediction horizon.

• A past residue is not taken into account.

Enhancement: The fatigue cost calculation of DORFC
can be replaced by a terminal cost ∆Jfatigue utilizing
the present hybrid dynamical system. This terminal cost
represents the added fatigue cost within the prediction
horizon. This formulation results in the following time-
continuous Nonlinear Programming problem:

min
ū
−
∫ tend

t0

Jrevenue(x(t))dt

+ ∆Jfatigue(χ(tend),χ(t0)) (18a)

where:

∆Jfatigue(χ(tend),χ(t0)) =

Hfatigue(χ(tend))−Hfatigue(χ(t0)) =

Hfatigue(qstruct(tend), {xres(tend), σ(tend)}, xfatigue,FC(tend))

−Hfatigue(qstruct,0, {xres,0, σ̃}, xfatigue,FC,0)

(18b)

subject to:
χ(t) 7→ Φ(χ(t)) (18c)

χ(0) = (x̃, qstruct,0,xres,0, xfatigue,FC,0) (18d)(
x− xmax
−x+ xmin

)
≤ 0 (18e)

umin ≤ ū ≤ umax (18f)

If subsystems regarding past stress Rres,past = 0 and past
fatigue cost Rfatigue,FC = 0 are neglected, (18) returns
similar results like the DORFC-formulation of Loew et al.
(2019). If those subsystems are considered, DORFC is
enhanced significantly since the MPC now can minimize
stress cycles which start in the past and terminate in the
prediction.
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Fig. 7. Upper left: past-residue. Upper right: prediction
trajectory σ(t) and prediction-residue. Lower right:
total fatigue cost and fatigue cost of full cycles over
the prediction horizon. Lower left: gradients of fatigue
cost w.r.t. to all samples j = 1...Nu of one i = 1
control variable ūi=1,j in the prediction horizon. The
gradient trajectory is given at every 50 out of 800
integrator steps in the prediction horizon.

6. DEMONSTRATION & VERIFICATION

The hybrid dynamical system formulation (18) is imple-
mented in the Economic Nonlinear Model Predictive Con-
troller of Loew et al. (2019) and tested with a wind turbine
model. Goals for the MPC are maximization of revenue by
harvested energy and minimization of structural fatigue
at the root of the turbine tower. Important states are
rotor speed and stress at the tower root. Control variables
are generator torque and collective blade pitch angle. See
Loew et al. (2019) for more details. Further examples of
wind turbine control via MPC can be found in Luna et al.
(2020), Gros and Schild (2017) and Barradas-Berglind
et al. (2015). In the following, a brief insight and initial
simulation results are provided.

Fig. 7 shows some of the hybrid states at a specific
MPC-step. The controls are discretized zero-order-hold
by Nu = 20 samples over the prediction horizon. The
evolution of states is displayed on the integrator grid
which has 800 steps per horizon. Fatigue cost Jfatigue
evolves continuously, like expected, but as well exhibits
non-smoothness e.g. at step 480. This is due to the closing
of a full cycle which is formed by xres,pred,1 and xres,pred,2,
and the consequent continuation of a large half cycle which
starts in the past-residue at xres,past,13. This continuation
as well results in a jump of the fatigue cost gradients.
However, since (18b) is a terminal cost, only the fatigue
cost gradients at the final integrator step 800 are used
in the optimization. At the beginning of the horizon, the
offset of Jfatigue w.r.t. the fatigue cost of past full cycles
xfatigue,FC equals the fatigue cost of all half cycles formed
by the past-residue samples xres,past.

Fig. 8 shows first results from wind turbine simulations
using the DORFC formulation from Loew et al. (2019) and
the new DORFC-R formulation (18) including utilization
of past-residue. Very generally, DORFC-R beneficially
seems to result in smoother stress trajectories with less
excursions. Especially in 82s < t < 100s a long-term flat
behavior is observed, originating from the long-term stress
memory due to past-residue xres,past. For the turbine rotor
speed at 65s < t < 80s both formulations exhibit entirely
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Fig. 8. Wind turbine simulation using the previous
DORFC formulation without residue, and using the
new hybrid dynamical system formulation DORFC-R
with residue.

different strategies. Comprehensive analysis has to be done
to judge which behavior is superior. In general, these very
first results need to be extended by simulations which are
planned for the future.

7. CONCLUSION & OUTLOOK

Within the present work, a novel algorithm for continuous
fatigue cost calculation has been presented. Using this al-
gorithm, it has been possible to cast the complete standard
fatigue estimation procedure into the general framework
of a hybrid dynamical system. For implementation in
gradient-based MPC, a second hybrid dynamical system
has been developed which provides fatigue cost gradients
w.r.t. control variables. The hybrid dynamical system has
been implemented in the cost function of an Economic
Nonlinear MPC where it provides accurate fatigue estima-
tion by efficiently memorizing stress samples which even
might date back for several years. By deriving previous
fatigue cost formulations from the present hybrid dynami-
cal system, the impressing generality of this approach has
been proven.

In the future, this new MPC implementation will be tested
thoroughly by applying it to a high-fidelity wind turbine
simulator and to a LiIon battery energy storage system.
Furthermore, the generalization of fatigue cost functions
to hybrid dynamical systems will allow for systematic the-
oretical analysis of stability (Müller and Allgöwer (2012)).
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