
     

Motion Control of Mechanical Systems with a Cable Contacting the Ground 
 

Maria Mikami*, Takeshi Yamamoto*, Yoshiki Sugawara**, Masakazu Takeda** 


* Course of Mechanical Engineering, Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1,  

Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa-ken, Japan  

(e-mail: c5619130@aoyama.jp; c5617126@aoyama.jp). 

**Department of Mechanical Engineering, College of Science and Engineering, Aoyama Gakuin University, 5-10-1,  

Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa-ken, Japan  

(e-mail: sugawara@me.aoyama.ac.jp; takeda@me.aoyama.ac.jp). 

Abstract: The usage of unmanned aerial vehicles (UAVs) varies from construction inspection to disaster 

response. Cable attachment benefits the UAV with longer operation time and larger data transmission, 

while the tension, inertia, and contact forces of the cable work to disturb its operation. This paper introduces 

a numerical modelling method of a cable with frictional contact forces using an absolute nodal coordinate 

formulation (ANCF), and extracts and evaluates the influences of the cable on  the mechanical system’s 

motion. The contacting cable length, that affects frictional contact forces, is derived using a catenary curve. 

The numerical analysis results present errors and vibrations at the connection point of the cable and the 

rigid body. These are the influences when the cable contacts the ground. In this paper, the compensation 

system, and its validity for mitigating  these influences, using an  unscented Kalman filter (UKF) to estimate 

the state of the cable, are presented. Although there was a small error in the mechanical system’s final 

position in relation to the target position, the numerical analysis indicated that the proposed control system 

stabilizes the mechanical system’s motion. 
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1. INTRODUCTION 

Many researchers and industry practitioners have proposed the 

use of unmanned aerial vehicles (UAVs) for construction 

inspection and disaster response (Ohno et al., 2016). 

Conventional inspection techniques of large construction sites 

can jeopardize  human safety and require cranes to inspect 

complicated or difficult to reach areas  (Imadu et al., 2016; 

Ciampa et al., 2019). The use of a UAV for construction 

inspection was tested; however, because battery-life lasted 

only 2 hours, it was difficult  to complete a smooth, full 

inspection (Ciampa et al., 2019). In a different study related to 

disaster response, an aerial robot and a ground robot mapped 

inside a  building damaged in the 2011 Tohoku earthquake. 

However, in this study, the robots were unable to access 

certain areas because physical obstacles disrupted their 

operations (Michael et al., 2012). Koyanagi (2016) states that 

radiation is another possible disturbance that affects UAV data 

transmission. As a result, the combination of wired and non-

wired technology was the solution to this situation. 

In disaster response conditions, wireless communication is not 

stable nor reliable (Nagatani et al., 2013), thus, communication 

through a cable is a realistic solution. Cable attachment 

benefits the UAV with longer operation time and larger 

transmission of data. However, the tension, inertia, and contact 

forces of the cable work can work to disturb the UAV’s 

operation (Imadu et al., 2016; Yamamoto et al., 2019). The 

optimal cable length is reported by Imadu et al. (2016). In a 

different study, the linearization to simplify the control method 

of a UAV was examined, yet this system did not include 

external force fluctuations (Rubio, 2018). Further, a control 

method to reduce the disturbance in a quadrotor has been 

studied; nonetheless, a cable was not included into the control 

objective, which should be a nonlinear model (Rubio et al., 

2019). The control system to compensate for the influences of 

a cable load is proposed and verified in the analysis 

(Yamamoto et al., 2019). 

The focus of this research is the control system for when the 

attached cable contacts obstacles, the ground or buildings. 

Particularly, the contact between the two suspending points of 

the cable is examined. 

This paper is organized as follows: The analysis model and the 

frictional contact forces on a cable are introduced in Section 2. 

The numerical analysis is presented, and the influences of the 

cable friction forces are evaluated in Section 3. The applied 

control system is explained in Section 4. The state estimation 

for the control system is explained in Section 5. The numerical 

analysis to show the validity of the proposed control system is 

illustrated in Section 6. Conclusions are given in Section 7. 

2. ANALYSIS MODEL 

This section presents the analysis model of the objective 

mechanical system with a cable attached. The model is 

composed of a rigid body and cable. Both ends of the cable are 

pin supported by the wall and the rigid body respectively. Here 

is the list of assumptions for the model: 

 The diameter and density of the cable and the density of the 

rigid body are constant.  
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 The rigid body is a cube shape.  

 Gravitational force is applied downwards.  

 There is no air resistance.  

 The contact surface is rigid and parallel to the X-axis.  

 Sensors obtain the X, Y, 𝜃 of both ends of the cable, and 

their derivatives with respect to time.  

 

Fig. 1. Control object model. 

2.1  Equation of Motion 

Since the cable is flexible, Absolute Nodal Coordinate 

Formulation (ANCF) proposed in Berzeri et al. (2000) is 

employed in the cable. This formulation method is a type of a 

non-linear Finite Elements Method (FEM) which can express 

large deformation and rotation using only a few elements. 

The cable is divided into N beam elements and the nodal 

coordinate is defined at both ends of each beam element. The 

nodal coordinate vector of j-th element is defined as (1), and 

the deformation and the gradient in the absolute coordinate 

system is defined as (2). 
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Fig. 2. The j-th cable element by ANCF. 

Therefore, the global coordinate vector of an arbitrary point P 

on the neutral axis of j-th element is expressed as 

,cjjj qSr   (3) 

where 𝐒𝑗 is the interpolation function matrix. The coordinate 

vector is defined as (4), consists of horizontal coordinate 𝑥𝐺, 

vertical coordinate 𝑦𝐺, and rotational coordinate 𝜃𝐺. 
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Accordingly, the generalized coordinate vector is defined as  
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The constraint conditions are defined by 𝐂 = 0, that expresses 

the connection of both ends of the cable and the adjacent cable 

elements. The Jacobian 𝐂𝑞  is derived by partially 

differentiating the constraint equations with respect to the 

generalized coordinate vector 𝐪. 

The force vector 𝐐 is expressed by the bending stiffness vector 

𝐊𝑡, the longitudinal deformation stiffness vector 𝐊ℓ, and the 

external force vector 𝐐𝐸 which includes the gravitational force 

and the friction forces.  
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Therefore, the Differential-algebraic Equation (DAE) is 

derived as (7),  
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where 𝐌 denotes the inertia matrix, 𝐂𝑞  denotes Jacobian, 𝛌 

denotes the undetermined multiplier vector, and 𝛄 denotes the 

acceleration equation. 

To organize (7) with respect to independent coordinates 𝐪𝑖𝑛, 

the dependent coordinates and the undetermined multiplier 

vector are eliminated. Hence, (7) is organized into (8). 

  .ininintininin QqKKqM  
  (8) 

where the 𝐌𝑖𝑛, 𝐊𝑡𝑖𝑛, 𝐊ℓ𝑖𝑛, 𝐐𝑖𝑛 denotes the inertia matrix, the 

bending stiffness vector, the longitudinal deformation stiffness 

vector, and the force vector, respectively, they are collectively 

expressed in the independent coordinate system.  

2.2  Contact Length Model 

 

Fig. 3. The model when the cable is contacting the ground. 

The frictional contact forces on the cable are introduced 

supposing UAVs use in rescue applications. A rescue mission 

to detect a person in the damaged area would have obstacles 

both under and above the UAV. This paper focuses on the most 

likely obstacle under the UAV, the ground.  Frictional contact 

forces from the ground depends on the length of cable 
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contacting the surface. For simplicity, the contacting length is 

derived approximately from the catenary curve. Catenary 

value 𝑎0 is defined by horizontal tension at the lowest point 𝑇0, 

linear density 𝑤, and gravitational acceleration g as 

./ wgTa 00   (9) 

When the catenary curve vertex is located at an arbitrary point 

(𝑝 𝑞), the catenary curve is given as 
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Supposing that the coordinates of the position and the angle at 

both ends of the cable can be obtained from the sensors, the 

three unknowns are derived as 
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The length of the catenary curve between the intersection 

points of the surface line and the catenary curve (𝑥’ ，𝑥’ ) is 

approximately equal to the contacting cable length ℓ, which is 

expressed as 
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Fig. 4. Contact length model: Catenary curve and contacting 

cable curve. 

Equation (15) is the contact force which works on each 

contacting cable elements, where 𝜇 is the friction coefficient. 
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Friction forces are applied to the nodes that are contacting the 

surface. The contacting nodes are determined from the length 

of the non-contacting cable length. The non-contacting cable 

shape is approximated to be a catenary curve in which the 

cable inclination at the contacting point is 0. This implies the 

contacting point is the lowest point of the catenary curve. With 

the coordinates of the supporting point and the connecting 

point given, the catenary value for each non-contacting cable 

shapes are 
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Note that the contacting nodes may not match the beginning 

nor the end of the contacting cable. 

 

Fig. 5. Contact length model: Contacting segment model. 

3. ANALYTICAL EVALUATION OF THE CABLE 

CONTACT FORCES: INFLUENCES ON MECHANICAL 

SYSTEM MOTION 

This section presents the numerical analysis results of the 

motion of the mechanical system. The applied PD input 

control vector 𝐐𝑢 that only controls the mechanical system is 

  ,rdrtrpu qKqqKQ   (18) 

where the 𝐊𝑝  is the proportional gain vector, 𝐊𝑑  is the 

derivative gain vector, and 𝐪𝑟𝑡 is the target position and the 

angle vector. The PD controller is chosen for this analysis to 

identify the influences of the cable in such a simple controller. 

The gains are set through a try-and-error operation through a 

preliminary study so that the influences of the cable appear 

significant. Table 1 shows the parameters of the numerical 

analysis. 

Table 1. Parameters of numerical analysis. 

Target position and angle qrt  T002  

Number of elements 𝑁 20  

Gravitational acceleration g )m/s(. 2819  

Length of cable 𝐿𝑐 )m(3  

Cross-sectional area of cable Ac 0 

Density of cable 𝜌𝑐 )m/kg( 31500  

Young’s modulus of cable Ec )Pa(. 61001   

Volume of rigid body Vr )m(... 3050050050   

Density of rigid body 𝜌𝑟 )m/kg( 37870  

Friction coefficient 𝜇 60.  
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Fig. 6. Numerical analysis results: X  coordinate of the 

connecting point of the cable and the rigid body. 

 

Fig. 7. Numerical analysis results: Y  coordinate of the 

connecting point of the cable and the rigid body. 

 

Fig. 8. Numerical analysis results: θ coordinate of the 

connecting point of the cable and the rigid body. 

The numerical analysis shows two influences of the contact 

forces on the motion of the mechanical system. The 

mechanical system with the cable contacting the ground 

reached the target point closer than when it is free from 

touching any obstacles. It could be surmised that because of 

the normal force, the mechanical system had less drag on its 

movement. In contrast, the mechanical system with the cable 

contacting the ground was more unstable at the target position 

than the mechanical system with the cable without contact 

forces. When the cable length becomes shorter, the influence 

of its stiffness on the dynamics becomes significant, thus, the 

stiffness of the cable itself  causes the vibration of the 𝜃 to 

occur. More simply put, the contact forces are working to 

disturb the mechanical system by causing the vibration. The 

results indicate that this proposed contact model is a qualitative 

model, showing vibration. 

Note that this research focuses on a specific contacting 

situation when the cable contacts the ground between the two 

suspending points. The behaviour of the mechanical system 

differs between when there is contact force and when there is 

not. Hence, a new compensation system is needed for the 

mechanical system when connected to a cable which is making 

contact with the ground.  

For higher accuracy of friction force distribution, an improved 

analysis model using the Gauss-Legendre quadrature is needed 

(Kerkkanen et al. 2006; Hasegawa et al., 2008; Lugris et al., 

2010). When this proposed analysis model is put into practice, 

the frictional contact forces must be validated through 

experiments. 

4. COMPENSATION SYSTEM FOR THE CABLE 

INFLUENCES 

4.1  Coordinate transformation 

The compensation is designed to break down the whole control 

system into the PD controller. The objective system is 

underactuated. Thus, the coordinates in the equation of motion, 

in which the control input can be directly applied, must be 

extracted by a coordinate transformation as the equations after 

(19) show. 
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Firstly, the inertia matrix is transformed as 
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𝐪 = 𝐓𝑠
− 𝐪̈̃ is applied to (19) and yields 
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Accordingly, (19) is coordinate transformed to (25) which is 

mathematically equal, denoting 𝐌̃ = 𝐓𝑠
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4.2  Control system 

This section presents the control system for stabilizing the 

position and attitude of the mechanical system connected at the 

end of the cable. Yamamoto et al. (2019) proposed a 

compensation system using the Unscented Kalman Filter 

(UKF) for the cable influences of the gravitational force. This 

UKF is introduced to estimate the state of the cable and the 

mechanical system, which is required for the compensation 

system to achieve the control objective. As a result, it 

controlled the mechanical system with a cable efficiently. The 

equation of motion of the control objective in Newton-Euler 

form is 
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where 𝐌𝑐𝑐 , 𝐌𝑐𝑟 , 𝐌𝑟𝑐 , and 𝐌𝑟𝑟  each denotes the block 

element of inertia matrix for the cable and the rigid body, 𝐪𝑐, 

𝐪𝑟 denotes the element of generalized coordinate vector for the 

cable and the rigid body, and 𝐐𝑐, 𝐐𝑟 denotes the element of 

external force vectors for the cable, the rigid body, and 𝐐𝑢 

denotes the input vector. Taking note of the characteristic of 

ANCF where the inertia matrix is constant and applying the 

coordinate transformation shown in section 4.1 to the equation 

of motion (8), (28) is coordinate transformed into 
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noting 𝐌̂, 𝐪̂, and 𝐐̂ are 

.ˆ

,ˆ

,ˆ

cccrc

rcrcc

crccrc

QMMQ

qMMq

MMMM

1

1

1













  (30) 

Extracting the 2nd-row block element of (29), which is the 

equation related to the generalized coordinate vector of the 

rigid body, it can be transformed as 

  .ˆˆ
urrrr QQQqMM  

 (31) 

It is noticeable that 𝐐̂ depends on state variables, especially, 𝐐̂ 

can be calculated when the state variables are known. Here, the 

control input vector 𝐐𝑢 is  

 .ˆ
ruu QQQQ 

 (32) 

Substitution of (32) to the 2nd-row block element of (30) 

yields the equation of motion (33). 

  .ˆ
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 (33) 

The inertia matrix 𝐌𝑟𝑟 − 𝐌̂  is constant due to the 

characteristics of the ANCF. Regarding 𝐐̅𝑢 as a new control 

input vector, (33) is the equation of motion of the rigid body 

with the control input applied. In other words, by applying 𝐐̅𝑢 

as (31), the proposed compensation system can compensate for 

the influence of the gravitational force and its stiffness on the 

cable 𝐐̂ and the influences of the gravitational force on the 

rigid body 𝐐𝑟. The original control problem with the flexible 

structure is transformed to a rigid body control problem, thus, 

the mechanical system can be controlled. Therefore, knowing 

the appropriate control input vector 𝐐̅𝑢 enables the mechanical 

system to stabilize the rigid body position and angle itself 

precisely. This compensation system should  then allow the PD 

to control the mechanical system because the cable model was 

simplified, meaning it was redesigned to be rigid and not 

flexible. In this paper, the PD control input vector (34) is 

introduced. 

  .rdrtrpu qKqqKQ   (34) 

The optimum gains are calculated using the linear quadratic 

regulator (LQR). The gains are chosen to minimize the 

performance index (35). The weights were determined through 

a preliminary study. However, the control accuracy could be 

changed by the weights (36) and (37). 
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Using conventional FEMs, the inertia matrix for the cable 

depends on the variables. Thus, the inverse matrix of the block 

inertia matrices, that were needed in the transformation from 

(29) to (30), must be calculated at every computing step. In 

addition, the conventional FEMs use a greater number of 

elements than the ANCF, if the control input that compensates 

the influences of the cable yielded as (33). This is because a 

higher dimension of the inertia matrix is used in order to obtain 

a more accurate expression of the cable. Consequently, the 

conventional methods are not convincingly suitable for 

practical or analytical use because the calculation cost of the 

inverse matrix becomes extremely large. On the other hand, 

since the inertia matrix is constant using the ANCF, the inverse 

matrix calculation is necessary no more than once. Moreover, 

the size of the inertia matrix is smaller because fewer elements 

are required in the ANCF than the conventional FEMs for a 

flexible structure in which the deformation and the rotation are 

large. Therefore, the proposed method reduces the calculation 

cost compared to the conventional FEMs, and is, thus, a 

realistic method from the perspective of both practical and 

analytical use. 

5. STATE ESTIMATION 

The state estimation is necessary to apply (33) for precise 

control of the rigid body. Attaching many sensors to the cable 

to obtain all the state variables is extremely unrealistic and 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9170



 

 

     

 

difficult considering the practical use of UAVs. Hence, we 

propose to introduce the following state estimation method in 

addition to the proposed compensation system for the 

influences of the cable. In this paper, we assume the sensors 

are attached to obtain the position and the angle of the rigid 

body for estimating the state variables of the system including 

the cable using UKF.  

The basic logic of the UKF is statistic approximation. To be 

more specific, the approximation of probability density 

function (probability distribution) as a normal distribution is 

used in the UKF. It is one of the statistical sampling methods 

that approximate probability distribution as the ensemble 

mean, by selecting a few sampling points that correspond with 

standard derivation called sigma points (σ point).  

5.1  State Equation for Estimation 

The state equation (38) is derived from (29) to apply the UKF 

state estimation to the proposed control method. The 

observation equation (39) is yielded (as follows) while it 

considers that the rigid body position and angle are known, 
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Here, 𝐌 and 𝐊 are  
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The 𝐐𝑢 is calculated using the estimated state value by UKF 𝐪̂ 

and applied to the control object as the control input.  

 

Fig. 9. The block diagram of state estimation using UKF. 

5.2  State Estimation by UKF 

This section considers a case when the state estimation initial 

value {𝒚(𝑘)}  is modelled using the time-series, non-linear, 

state equation which is based on discrete-time, non-linear, 

state-space expressions: 

    ),()( kkk bqaq 1  (42) 

    ).()( kkk dqcy   (43) 

Here, a and c denote non-linear functions 𝒒(𝑘) that take vector 

values, and 𝑘  denotes the time-series ordinal number. The 

system noise is denoted as 𝜐(𝑘), observation noise is denoted 

as 𝜔(𝑘), which are normal white noises when the mean value 

0, the variance 𝜎𝜐
 (𝑘), the mean value 0, and the variance 

𝜎𝜔
 (𝑘) are independent of each other. 

The state estimation is performed using the UKF algorithm 

targeted on filtering the time-series 𝑦(𝑘), which is expressed 

by above non-linear state equations. At first, initial values of 

state estimate and covariance matrix are set as follows: 

    ,][ˆ
0qq  00 qE

 (44) 

          ,]])[])([[( 0ΣP  TqEqqEqE 00000
 (45) 

Furthermore, the variance of the system noise συ
 (𝑘) and the 

variance of the observation noise σ𝜔
 (𝑘) is determined. Then, 

the sigma point and the predicting step are calculated for each 

step 𝑘 = 1 2 …  𝑁. The 2𝑛 + 1 sigma points are calculated 

from the covariance matrix 𝐏(𝑘 − 1) and the state estimate 

value 𝐪̂(𝑘 − 1) following (46), (47), and (48). 
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The sigma points are renewed as (49) and the preliminary state 

variable 𝐪̂−(𝑘)  and preliminary error covariance matrix 

𝐏−(𝑘) are yielded from the renewed sigma points as (50) and 

(51) 
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The sigma point is recalculated from the preliminary state 

variable 𝒒̂−(𝑘) and the preliminary error covariance matrix 

𝐏−(𝑘) as 

   ,ˆ kk 
 qQ0  (54) 
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    ,,,,,))((ˆ niknkk ii 21 
PqQ  (55) 

    .,,,,))((ˆ niknkk iin 21 

 PqQ  (56) 

After the recalculation of the sigma points, (57) shows the 

renewal of the sigma points. The preliminary output estimate 

𝒚̂−(𝑘), the preliminary output error covariance matrix 𝐏𝑦𝑦
− (𝑘), 

and the preliminary state/output error covariance matrix 

𝐏𝑞𝑦
− (𝑘) are calculated from the renewed sigma points.  
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Using the above, the Kalman gain 𝐠(𝑘) is  
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The state estimate 𝒒̂(𝑘) and the covariance matrix 𝐏(𝑘) are 

derived as 

 .)(ˆ)()()(ˆ)(ˆ kkkkk   yygqq  (62) 

  .)()()()(
T

qy kkkk   PPP g  
(63) 

6. EVALUATION OF THE COMPENSATION SYSTEM 

AND STATE ESTIMATION 

This section presents the numerical analysis with the proposed 

compensation system with the proposed state estimation 

applied. As the initial state, the rigid body is at the origin of 

the coordinates and the cable is in a slack state. The PD 

controller with the compensation system for the rigid body is 

  .rdrtrpu qKqqKQ 
 (64) 

Table 2 shows the parameters of the numerical analysis. 

Table 2. Parameters of numerical analysis.  

Target position and angle qrt  T002  

Number of elements 𝑁 20  

Gravitational acceleration g )m/s(. 2819  

Length of cable Lc )m(3  

Cross-sectional area of cable Ac )m(.. 200500050   

Density of cable 𝜌𝑐 )m/kg( 31500  

Young’s modulus of cable Ec )Pa(. 61001   

Volume of rigid body Vr )m(... 3050050050   

Density of rigid body 𝜌𝑟 )m/kg( 37870  

Friction coefficient 𝜇 60.  

 

Fig. 10. Numerical analysis results: X  coordinate of the 

connecting point of the cable and the rigid body. 

  

Fig. 11. Numerical analysis results: Y  coordinate of the 

connecting point of the cable and the rigid body. 

  

Fig. 12. Numerical analysis results: θ  coordinate of the 

connecting point of the cable and the rigid body. 

The numerical analysis shows that the proposed compensation 

system using the state estimation controls the rigid body with 

almost no error in the X axis direction and the θ axis direction. 

It also indicates that it stabilizes the rigid body at a certain 

point in the Y axis direction, yet there is an error of 10 cm. It 

can be said that the rigid body is stabilized by the 

compensation system. However, to compensate for the vertical 

error, the compensation system must be improved. Moreover, 

depending on the cable contacting model, the forces applied to 

the cable could differ, which may have a more major and 

negative effect on the compensation system. It must be noted 

that the present compensation system is only valid in limited 

conditions.  

For the same reason that the PD controller design process 

using the LQR was not modified for the ground-contacting 

model, the present compensation system might show an 
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adequate control performance. As for future works, the 

compensation system must be improved to meet various 

operational situations when the forces on a UAV might differ 

from that of our experiment. In such a real-life case, these 

forces might have a major negative effect on its mechanical 

system’s behaviour.  

7. CONCLUSION 

This paper presented an analytical evaluation for the control 

system of a mechanical system with a cable contacting the 

ground utilizing a two-dimensional model. In addition, this 

model derived the contact force by using the catenary curve 

for the attached cable to the mechanical system. The behaviour 

of the mechanical system using this proposed model was 

evaluated by a numerical analysis. The numerical analysis 

results showed the influences of the cable contact friction force 

on the mechanical system’s motion. The influences of the 

cable contact help the mechanical system reach the target 

position in the horizontal and vertical direction, but they also 

cause unwanted vibration. The compensation system was 

designed to be broken down into a simple PD controller. The 

numerical analysis results showed that one of the influences of 

the cable contact friction force on the mechanical system’s 

motion, an error in the vertical direction, remained while using 

the proposed control system. However, the analysis proved 

that the proposed control system, PD control input based on 

state estimation using UKF, manages to stabilize the 

mechanical system.  

In future work, in order to achieve a higher accuracy of friction 

force distribution in the analysis model, the Gauss-Legendre 

quadrature will be used. Then, it will be validated through 

experiments. As for the compensation system, the PD 

controller design will be modified to meet an objective 

situation and improved for situations when the forces in the 

analysis model vary. Finally, the experimental verification for 

the proposed control system will be presented. 
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