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Abstract: In this paper, we document a design of a computational method for an onboard
prediction of a breaking distance for a city rail vehicle—a tram. The method is based on an
onboard simulation of tram braking dynamics. Inputs to this simulation are the data from
a digital map and the estimated (current) position and speed, which are, in turn, estimated
by combining a mathematical model of dynamics of a tram with the measurements from a
GNSS/GPS receiver, an accelerometer and the data from a digital map. Experiments with real
trams verify the functionality, but reliable identification of the key physical parameters turns
out critically important. The proposed method provides the core functionality for a collision
avoidance system based on vehicle-to-vehicle (V2V) communication.
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1. INTRODUCTION

1.1 Motivation, short description

In this paper, we present a computational method for
prediction of a tram braking distance based on an onboard
simulation of a mathematical model of tram braking dy-
namics. The proposed algorithm runs onboard the tram.
It combines in real time the outputs from the mathe-
matical model of longitudinal dynamics of the tram with
the signals provided by a GNSS/GPS receiver, an inertial
measurement unit (IMU), and the data read from a digital
map. The parameters of the model of dynamics of the
tram can be partially determined from the technical speci-
fications provided by the producer and partially extracted
from data measured using onboard sensors during experi-
ments (grey box identification). Although in this paper, we
consider one particular tram brand and type, the proposed
procedure can be applied to any (light) rail vehicle.

The motivation for such development is the disturbingly
high number of collisions of trams with other trams, other
vehicles, and even pedestrians 1 . Different collision scenar-
ios call for different approaches to their solutions. In the
research described in this paper, we restrict ourselves to
the development of collision avoidance between vehicles.
In particular, we consider tram-to-tram collisions. The
reason for considering collisions between trams is that
both participants in the (potential) collision are operated
by a single organization/company, which makes coordi-

? The research was funded by Technology Agency of the Czech
Republic within the program Epsilon, the project TH03010155.
1 Prague Public Transit, Co. Inc. has been registering well above
one thousand collisions every year.

nated collision avoidance schemes (almost) immediately
realizable. The key technology for such coordination is
wireless vehicle-to-vehicle (V2V) communication, through
which the trams could exchange their position and speed
estimates and predictions, thus truly distributed estima-
tion/predictions could be realized. One of the essential
components of such a collision avoidance system is a reli-
able prediction of tram braking distance, which we cover
in this paper.

1.2 State of the art

In general, real time prediction of braking distance (or mo-
tion in general) of rail vehicles plays an important role in
safety application (Lehner et al., 2009), (Gu et al., 2013),
(Wu et al., 2018) or energy optimization (Lu et al., 2016),
(Keskin and Karamancioglu, 2016). For safety applications
involving suburban or freight trains, the prediction of
braking distance need not be accurate due to relatively
large gap distance (to the next train) and approximately
constant parameters of the train dynamics. Simple braking
distance prediction models based only on constant param-
eters of heavy-weight trains their current speed and track
characteristics have been published (IEEE, 2009).

In cities with a dense tram network, however, the distance
gap between two (rail or road) vehicles could go down to
a few meters (stopping at tram stops or traffic lights),
resulting in a higher probability of collisions. This imposes
higher requirements on the accuracy of related onboard
estimations and predictions, which are, in turn, condi-
tioned by the accurately identified physical parameters.
The parameters are mainly the weight of the vehicle, which
is given by the actual number of passengers (the total
weight of the tram can be some 50 % higher from an
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empty tram), the coefficients characterizing the adhesion
conditions (given by humidity, temperature) and slope of
the track (tramways). Not many works in the literature
seem to be systematically addressing these issues.

One component of the full collision avoidance system is
an estimator of the (distance) gap, that is, the distance
between the rear bumper of the leading vehicle and the
front bumper of the following vehicle. One class of these
estimators is based on vision-based techniques (Mukhtar
et al., 2015). An alternative followed in the broader
project, within which we write this paper, is to use the
V2V communication (Xiang et al., 2014), (Abboud et al.,
2016) between the two vehicles and, effectively, realize an
estimator of the distance gap in a distributed manner.
Nonetheless, in this paper, we do not elaborate further
on this topic of the distance gap estimation.

1.3 Outline of the paper

This paper is structured as follows. In Sec. 2, we give
some background information about the Tatra T3 tram.
We also describe the instrumentation used for onboard
measurements. Then in Sec. 3 we describe the model
of dynamics with the values of the physical parameters
identified from real data obtained in experiments with
trams and document the verification of the model. In
Sec. 4, we explain the use of the model for prediction of
braking distance and describe in more detail estimation of
the position and the speed of a tram. We also compare the
proposed method with a simple equation-based braking
distance prediction method. Lastly, we give a conclusion
in Sec. 5.

2. EXPERIMENTAL SETUP

2.1 Tatra T3 tram

We focus on developing a model of dynamics of the Tatra
T3 tram partially parameterized by data acquired onboard
a tram during experiments. With nearly 14 thousand
produced trams during the period from 1960 to 1989, the
T3 tram is one of the most produced tram cars in the
world (Mara, 2001). In the Czech Republic, T3 trams (in
several modernized versions) are still used nowadays and
form a significant portion of public transport tram fleets
in many cities. Proportions of the tram and parameters
relevant for the modeling are listed in Tab. 1 (Linert et al.,
2005).

Table 1. Parameters of the T3 tram.

Parameter Notation Value

Curb weight - ≈ 16 500 kg
Gross weight - ≈ 27 500 kg
Body length - 14 000mm
Body height - 3060mm
Body width - 1440mm
Wheel radius r 325mm
Wheel mass mw 195 kg

Maximum speed - 65 kmh−1

Total power of motors Pmax 4× 44 kW

Motor

1ωwh

I : Iwh

T : r 0Fad 1vt

R : Fr(vt,M)

R : µ (vs)

Adhesion cond.

I : M

Tmot Adhesion Tram body

Propulsion resistance

Wheel

FNR : Fs(θ)

vs

Throttle notch

Fig. 1. Bond graph of the longitudinal motion dynamics.

2.2 Instrumentation

The instrumentation in the T3 tram measures only a few
values, for instance, tram speed (computed from a wheel
speed) or applied current to motor. We, however, could not
directly read these data during the experiments due to the
lack of the CAN bus in the tram. We, therefore, used ex-
ternal instrumentation to collect the measurements for the
model identification. We used GNSS receiver NEO-M8P
by U-blox to measure the position and the speed of the
tram and inertial measurement unit (IMU) ADIS16465-
1BMLZ by Analog devices to measure the acceleration. We
used ready-to-use application/evaluation boards from the
manufacturer to directly read the measurements from the
sensors. We set the sampling frequency of the GNSS/GPS
receiver to 1 Hz and the sampling frequency of the IMU to
2 kHz. We aligned the x-axis of IMU with the direction of
the longitudinal motion of the tram.

3. MODEL OF DYNAMICS

3.1 Identification of a model

For the prediction of braking distance, it is sufficient to
use the quarter model of dynamics describing only the
longitudinal motion of a tram (Sadr et al., 2016). The
quarter model of dynamics is given by equations:

Jwhω̇wh = (Tmot − rFad) , (1a)

Mv̇t = (Fad − Fr − Fs) , (1b)

where ωwh is the angular speed of the wheel, Jwh is a
moment of inertia of the wheel, Tmot is torque given from
the motors, r is the radius of a wheel, Fad is adhesion force,
vt is the longitudinal speed of the tram, M is the total
weight of the tram, Fr and Fs are resistive forces. This
model can be also described by a bond graph (Paynter,
1960) displayed in Fig. 1. Approximating the wheel as a
homogeneous disk, we can write its moment of inertia as:

Jwh = 0.5mwr
2 . (2)

The total weight of the tram M is a sum of the curb
weight and weight of passengers in the tram. The torque
Tmot generated by the motors is proportional to the
notch (position) of the control throttle. In the T3, the
throttle control has in total 15 notches: seven notches
for acceleration, seven notches for deceleration, and one
notch for idle. We identified the traction characteristics
experimentally as:
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T̃mot(p) =


Kpp for p ≥ 0 and Tmotωwh < Pmax ,

Pmax/ωwh for p ≥ 0 and Tmotωwh ≥ Pmax ,

Knp for p < 0 ,
(3)

where p ∈ {−7,−6, . . . , 0, . . . , 6, 7} is the notch,Kp = 1449
and Kn = 1176 are constants of proportionality which
were set to match experimentally measured maximal and
minimal acceleration at the highest and lowest notch,
respectively. Due to the electromechanical properties of T3
tram braking traction, the braking torque is not restricted
by the Pmax. Also, we model the dynamics of the change
of T̃mot as a first-order system (with unit steady state gain
and time constant τ = 1/3 s), giving the resulting value of
the torque:

Ṫmot = 3
(
T̃mot(p)− Tmot

)
. (4)

The adhesion force Fad accounts for the transfer of wheel
speed into the longitudinal motion of the tram body. A
physical explanation of the adhesion is given in Park et al.
(2008). In general, the adhesion force Fad is computed as a
sum of adhesion force given by each traction wheel, and the
adhesion force is proportional to the wheel load. However,
since all wheels of T3 tram are connected to the traction
motors and by assuming the uniform distribution of the
tram weight on each wheel, we can directly write:

Fad = µ(vs)FN , (5a)

FN = Mg , (5b)

vs = rωwh − vt , (5c)

µ(vs) = ca exp(−aavs)− da exp(−bavs) , (5d)

where g is the gravitational acceleration. Parameters aa,
ba, ca and da vary on track conditions (Takaoka and
Kawamura, 2000).

Propulsion resistance Fr of rail vehicles (sum of rolling and
air resistance) is typically calculated using an empirical
equation in a form (Hay, 1982):

Fr(vt) = A+Bvt + Cv2t , (6)

where A,B and C are coefficients giving the dependence of
propulsion resistance on characteristics of the rail vehicle
such as weight, number of axles or front surface cross-
sectional area. To identify coefficients in Eq. (6) we first

Fig. 2. Comparison of identified parameters for propulsion
resistance and parameters from the literature.

gather all measurements from experiments during which
the tram decelerate only due to propulsion resistance (idle
notch), see Fig. 2 (Measured data). Note that we could not
obtain longer continuous decay from higher speeds due to
the restriction of the test track. We can simulate the model
and set the same conditions as in the experiments to find
appropriate coefficients. The weight of the tram during
experiments was 17 000 kg (estimated from a number of
people in the tram during the experiment). Since trams
usually operate at lower speeds than other trains, we sim-
plify the identification of Eq. (6) by neglecting quadratic
dependence on vt, thus setting C = 0. The identified
propulsion resistance equation is:

Fr,1(vt,M) = 0.0147M + 125.83vt . (7)

The reason why we do not use coefficients of Eq. (6) from
the literature is that they are usually designed for rail
vehicles which have significantly higher weight and also
operate at higher speeds than trams. For instance, using
the following equations from the literature evaluated for
the T3 tram yields:

Fr,2(vt,M) = 0.0147M + 2.18× 10−6Mv2t , (8a)

Fr,3(vt,M) = 520 + 0.0065M + 3.6vt + 3.8880v2t , (8b)

Fr,4(vt,M) = 1.839
√
M + 0.0036Mvt + 4.329v2t . (8c)

Propulsion resistance Fr,2 was designed for passenger train
on bogies (Iwnicki, 2006), Fr,3 for electric locomotive and
Fr,4 for suburban electric multiple unit train (Rochard and
Schmid, 2000). See the comparison in Fig. 2. We can see
that the speed decay when using any of Eq. (8) does not
match with the measurements.

Lastly, in addition to propulsion resistance, the motion
of a tram is also affected by the slope θ (longitudinal
inclination) of track:

Fs(θ) = FN sin θ . (9)

Slope θ is positive for ascent and negative for the descent.

3.2 Verification of a model

To verify the model output with experimentally obtained
data, we first reduce the noise and bias in the measured sig-
nal from the accelerometer. The longitudinal acceleration
of rail vehicles is usually characterized by low-frequency
signal (Heirich et al., 2011), whereas noise in the measure-
ments is mainly caused by high-frequency vibrations on-
board of a tram and sensor noise. Therefore, to remove the
noise, we used the low-pass filter with the cut-off frequency
2 Hz. We verify the model by setting the same sequence of
the throttle notch in the simulation, as in real experiment
for two scenarios and compare the measured and simulated
acceleration, speed, and total traveled distance.

In the scenario in Fig. 3, the driver was instructed to
set the maximal acceleration for a certain amount of
time and then set the maximal deceleration. We can see,
that around time 5 s, Tmotωwh ≥ Pmax which results in
decline of Tmot and thus decline in the acceleration. The
total actual and simulated traveled distance during the
experiment is 217 m and 207 m, respectively. The scenario
in Fig. 4 has a more complicated sequence of throttle
notches. The total actual and simulated traveled distance
during this scenario is 158 m and 164 m, respectively. We
can see that the modeled dynamics of the acceleration and
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Fig. 3. Comparison of the model output and real mea-
surements for the given sequence of throttle notches:
maximal and minimal acceleration.

Fig. 4. Comparison of the model output and real measure-
ments for the given sequence of throttle notches.

the speed is similar to the experimental data. Note that
the discrepancies in total simulated and actual traveled
distances (for both scenarios) are caused by a small error
in generated acceleration, which is then integrated twice.

In both scenarios, the tram body at the moment of the
stop exhibits oscillation due to the mechanics in the bogies.
This effect is not incorporated into the model since it does
not affect the braking distance.

We will conduct another verification experiments with
varying conditions (different track, adhesion conditions,
and a total weight M of the tram) by the end of the year
2019.

4. BRAKING DISTANCE PREDICTION

Using the model of dynamics developed in Sec. 3, the
braking distance can be predicted onboard a tram as
follows. First, the speed of the tram ṽt is measured (or
estimated) and used to set the initial conditions of the
simulation: vt(0) = ṽt, ωwh(0) = ṽt/r. The speed ṽt
can be estimated, for instance, by fusing measurements
from GNSS/GPS receiver, IMU (Bar-Shalom et al., 2008),

PGPS vGPS

Weight M
Adhesion µ(vs)

Braking distance

Physical
parameters
estimation

Model of dynamics

Onboard sensors

Position and speed
estimation (KF)

Slope
θ

Speed
ṽt

aIMU

Digital map

Fig. 5. Functionality of the proposed method for braking
distance prediction. The estimation of the physical
parameters is not covered in this paper.

or from the wheel speed (Ararat and Söylemez, 2017).
The model of dynamics is then simulated with a selected
notch (p ≤ 0). Finally, the braking distance is obtained
as the total traveled distance (time integration of vt) from
the start of the simulation until the simulated speed vt
is zero. Since the simulation of the proposed model is
not computationally intensive, the simulation can be run
periodically in real time onboard a tram, for instance,
synchronously with the measurement or estimation of the
speed vt.

Furthermore, to get correct results, all following time
varying physical parameters need to be estimated:

• Adhesion conditions: Estimation of the adhesion con-
ditions (coefficients of µ(vs)) is well covered by vari-
ous methods (Sadr et al., 2016), (Pichlik and Zdenek,
2018).

• Slope: The slope θ of the track can be retrieved
from known absolute position and the data from
digital map of the track or estimated from inertial
measurements.

• Weight: The weight M could be estimated, for in-
stance, from number of passengers in the tram
counted by sensors at the tram entrances.

In the work which we present in this paper, we extensively
focused only on the estimation of the absolute position
(provides information of the slope θ) and the longitudinal
speed using Kalman Filter (KF). We assume that the total
weight and the adhesion conditions are known for the
braking distance prediction. Functionality of the proposed
method is depicted in Fig. 5.

4.1 Position and speed estimation

To estimate the absolute position and the longitudinal
speed of a tram, we propose to use discrete-time linear KF
with measurements from GNSS/GPS receiver (position
PGPS and speed vGPS), IMU (longitudinal acceleration
aIMU), and data from the digital map of the track. We
assume that the digital map provides geographic localiza-
tion and value of the slope θ of each position of the track.
The proposed estimation method is motivated by available
sensor measurements onboard a T3 tram in our research.

Since the motion of a tram is restricted onto the track and
the absolute position can be retrieved from the position
on the track and digital map of the track, it is sufficient
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Longitude

Latitude

sref = 0

Projected PGPS

Measured PGPS

Track position s

Digital map of the track

Fig. 6. Illustraion of projection of a measured point xGPS.

to estimate only the longitudinal dynamics of a tram.
Let xk = [sk, vk, ak]T be a state vector of the track
position, the speed, and the acceleration, respectively, at
time instance k. With no information of input, we can
describe time propagation of the state xk using discrete-
time constant acceleration model:

xk+1 = Fkxk =

1 ∆t 0.5∆t2

0 1 ∆t
0 0 1

xk (10)

where ∆t is sample time. Using the digital map, we can
transform the measured geographic coordinates PGPS into
the track position s by the orthogonal projection of the
PGPS onto the track. The track position s is then given
as a distance from a selected reference point sref on the
track, see Fig. 6 for an illustration. Thus, the data from
GNSS/GPS receiver directly serve as measurements of the
track position s, and we can write the output equation of
the model as:

yk = Hkxk =

[
1 0 0
0 1 0
0 0 1

]
xk . (11)

The matrices Fk andHk defined by equations (10) and (11)
can then be used in the standard linear KF algorithm.
Also, suitable covariance matrices Qk and Rk of process
noise and measurement noise, respectively, should be se-
lected according to the precision of used sensors.

4.2 Comparison of braking distance prediction methods

We now compare the proposed method for braking dis-
tance (model-based) prediction with the prediction using
an equation (equation-based) derived from simple kine-
matics:

dbr = 0.5v2t a
−1
dec , (12)

where dbr is calculated braking distance and adec is se-
lected braking deceleration. Such calculation of braking
distance for rail vehicles has been published (IEEE, 2009)
and used in several works (Lu et al., 2016), (Wu et al.,
2018) due to its simplicity.

To get comparable results from equation-based and model-
based methods, we set maximal deceleration of equation-
based prediction (12) to adec = 1.55 m s−2 which approx-
imately corresponds to maximal measured deceleration of
empty tram with zero slope and dry adhesion conditions.
We set such physical parameters in the simulation denoted
as No. 1, see Fig. 7. We can see that the equation-based
model gives in general lower braking distance (at 15 m s−1

Fig. 7. Comparison of equation-based and model-based
prediction of braking distance.

Table 2. Simulation parameters.

Sim. No. Notch p M [kg] Slope θ [rad] Adh. cond.

1 −7 17 000 0 Dry
2 −7 25 000 0 Dry
3 −7 17 000 −0.035 Dry
4 −7 17 000 0 Wet

lower by ≈ 4 m). The difference is mainly to the fact
that model-based calculation, unlike the equation-based
calculation, takes into account also the limited dynamics
of deceleration.

For illustration, we also simulate the model with various
parameters, see Tab. 2. Adhesion coefficients [aa, ba, ca, da]
for dry conditions are: [0.54, 1.2, 1, 1] and for wet con-
ditions: [0.05, 0.5, 0.08, 0.08] (Takaoka and Kawamura,
2000). From simulation No. 2, we can observe that even
though a higher weight causes higher propulsion resis-
tance, it also decreases maximal braking effort, which
results in significantly higher braking distance. Braking
distance is also significantly affected by the relatively small
(negative) slope, as we can see from simulation No. 3.
Simulation No. 4 shows that worse adhesion conditions
have a higher effect on the braking distance at lower speeds
(≈ 5 m s−1).

5. CONCLUSION AND FUTURE RESEARCH

In this paper, we presented a method for prediction of tram
braking distance based on real time simulation of a model
of dynamics of a tram. The braking distance prediction
algorithm runs onboard a tram, taking as the inputs
estimated longitudinal speed of a tram and key time-
varying physical parameters affecting the braking distance
such as the total weight of the tram, adhesion conditions,
or the slope of the track. We have shown, through various
simulations, that predicted braking distance significantly
depends on values of the physical parameters. For safety
applications such as collision avoidance, which is the
ultimate goal of this research, the accurate prediction of
braking distance is crucial for the correct detection of
imminent collisions.

Besides the safety applications, within which we have writ-
ten this paper, the model can be used in other applications
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such as energy optimization or slip control. As a model of
dynamics, we used a quarter model for a rail vehicle. We
identified the parameters of the model partially from the
literature and partially from the data measured using on-
board sensors during real experiments. Also, by comparing
the simulations of the model with real experiments, we
verified its correctness. Another verification experiments
with different physical parameters will be done by the end
of the year 2019. The implemented model in Matlab and
Simulink is downloadable at https://www.mathworks.
com/matlabcentral/fileexchange/73391.
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