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Abstract: We study mean field Stackelberg games between a major player (the leader) and a large
population of minor players (the followers). By treating the mean field as part of the dynamics of the
major player and a representative minor player, we Markovianize the decision problems and employ
dynamic programming to determine the equilibrium strategy in a state feedback form. We show that for
linear quadratic (LQ) models, the feedback equilibrium strategy is time consistent. We further give the
explicit solution in a discrete-time LQ model.

Keywords: Mean field Stackelberg game, feedback strategy, linear-quadratic model, time consistency

1. INTRODUCTION

To tackle complexity in large-population decision problems,
mean field games exploit ideas in statistical physics to ap-
proximate the collective behavior of a large number of ratio-
nal agents; see Huang et al. (2006); Lasry and Lions (2006);
Cardaliaguet (2013); Caines et al. (2017); Carmona and De-
larue (2018). An important generalization of mean field game
modeling is to include a major player to interact with a large
number of minor players. This is initially introduced in Huang
(2010) for an LQ model. Nguyen and Huang (2012) study non-
uniform minor players parametrized by a continuum set. Partial
information is addressed in Firoozi and Caines (2015). Ma and
Huang (2020) apply multi-scale analysis. Important nonlinear
extensions are developed by Nourian and Caines (2013); Car-
mona and Zhu (2016); Lasry and Lions (2018).

For the major-minor player model, a problem of interest is to
consider leadership of the major player. In this paper, we will
analyze a mean field Stackelberg model with a major player and
a large number of minor players. There has been a long history
to address leadership in games. Stackelberg competition of a
leader and a follower is attributed to von Stackelberg (1934).
Başar and Olsder (1999) give a general introduction to dynamic
Stackelberg games. Yong (2002) solves an LQ stochastic differ-
ential game between a leader and a follower by the stochastic
maximum principle. Bensoussan et al. (2015b) derive a max-
imum principle for stochastic Stackelberg differential games
between a leader and a follower under the adapted closed-loop
memoryless information structure.

Moon and Başar (2016, 2018) study LQ mean field Stackelberg
games in discrete-time and continuous-time settings, respec-
tively. They start with an (N + 1)-player model and take mean
field approximations to derive decentralized strategies. Ben-
soussan et al. (2015a) study a class of mean field Stackelberg
games, in which each minor player has delay in collecting the
information of the major player. Bensoussan et al. (2016) study
a mean field game model between a (dominating) major player
and a continuum of minor players.

The solutions in Bensoussan et al. (2015a, 2016); Moon and
Başar (2016, 2018) to various extent rely on calculus of varia-
tions or the stochastic maximum principle. The resulting equi-
libria in general do not have time-consistency. In this mean
field game context, a set of strategies is called time consistent
if it still has the equilibrium property when implemented in a
remaining time horizon. Also see Elie et al. (2019); Fu and
Horst (2018) for studying leadership via the stochastic maxi-
mum principle. In our work, we introduce a different approach
by dynamic programming in an augmented state space so that
time consistency can be achieved. Wang and Zhang (2014) use
dynamic programming for a discrete time system. But they
consider a special class of simple dynamics and costs without
control penalty. Their method does not augment the dynamics
as in our work and can not handle our model.

Time consistency is an important issue in decision problems
including optimal control and dynamic games. Ekeland and
Lazrak (2006) analyze a deterministic optimal control problem
in continuous time, which has time-inconsistency due to non-
exponential discounting. They take a game theoretic point
of view by considering t-selves as different decision makers
and characterize a subgame perfect equilibrium. For further
references overcoming time-inconsistency, see Ekeland and
Pirvu (2008); Björk and Murgoci (2008); Djehiche and Huang
(2016); Yong (2017).

1.1 Contribution and organization of this paper

Starting from an N + 1 player Stackelberg game, we construct
a limiting model with a major player and a representative minor
player and look for their equilibrium strategies. Within an aug-
mented state space, we introduce two dynamic programming
equations, which can be called the master equations. This paper
is organized as follows. Section 2 introduces the finite popula-
tion Stackelberg game. In Section 3 we study a mean field limit
model and obtain feedback strategies. Section 4 solves an LQ
model to illustrate the approach in Section 3. Section 5 analyzes
a discrete-time LQ mean field limit model.
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1.2 Notation

Let P2(R
n) be the set of Borel probability measures on R

n

with finite second moment; C2
b2d(R

n;Rk) be the set of R
k-

valued functions with continuous and bounded second order
partial derivatives. Denote 〈µ, g〉 :=

∫
g(y)µ(dy), and 〈y〉µ :=∫

yµ(dy) for probability measure µ and function g if the inte-
gral is finite. Denote |y|M = (yTMy)1/2, JY K2M = Y TMY

for y ∈ R
n, Y ∈ R

n×k and symmetric n× n matrix M ≥ 0.

2. FINITE-POPULATION STACKELBERG GAME

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability
space. Consider a major player A0 and N minor players Ai,
1 ≤ i ≤ N , described by the stochastic differential equations
(SDEs):

dX0
t = f0(X

0
t , µ

(N)
t , u0t )dt+ σ0dW

0
t , (1)

dX i
t = f(X0

t , X
i
t , µ

(N)
t , u0t , u

i
t)dt+ σdW i

t , 1 ≤ i ≤ N, (2)

where Xj
t ∈ R

n and ujt ∈ R
n1 are the state and control of

Aj , 0 ≤ j ≤ N , and µ(N)
t := 1

N

∑N
i=1 δXi

t
is the empirical

distribution of all minor players’ states. All initial states are
independent with E|Xj

0 |
2 ≤ C for some fixed C. The R

n2-
valued Brownian motions {W j : 0 ≤ j ≤ N} are mutually
independent and also independent of the initial states. The
constant matrices σ0 and σ are n × n2. For two closed subsets
U0 and U of Rn1 , u0t ∈ U0, uit ∈ U , for 1 ≤ i ≤ N . Let JN+1

j
be the cost functional of player Aj and

JN+1
0 (u0, u1, · · · , uN) = E

∫ T

0

e−ρt L0(X
0
t , µ

(N)
t , u0t )dt,

(3)

JN+1
i (u0, ui, u−i) = E

∫ T

0

e−ρt L(X0
t , X

i
t , µ

(N)
t , u0t , u

i
t)dt,

(4)

where ρ > 0, 1 ≤ i ≤ N and u−i = (u1, ..., ui−1, ui+1, ..., uN ).
For simplicity, the terminal costs are taken as zero.

On P2(R
n) we define the Wasserstein metric W2(µ, ν) =

infγ∈Γ (µ,ν)(
∫
R2n |x − y|2γ(dx, dy))1/2, where Γ (µ, ν) is the

set of probability distributions on R
2n that have µ and ν as the

first and second marginals, respectively. Then (P2(R
n),W2) is

a complete metric space.

We introduce the following assumption (A1).

(A1) The following functions
f0 : Rn × P2(R

n)× U0 → R
n, L0 : Rn × P2(R

n)× U0 → R,

f : Rn × R
n × P2(R

n)× U0 × U → R
n,

L : Rn × R
n × P2(R

n)× U0 × U → R,

are continuous, and there exists a constant C0 such that for
φf = f0, f , and ψL = L0, L,
|φf (x0, x1, µ, u0, u1)− φf (x̂0, x̂1, µ̂, û0, û1)| ≤ C0(|x0 − x̂0|

+ |x1 − x̂1|+ |u0 − û0|+ |u1 − û1|+W2(µ, µ̂)),

|ψL(x0, x1, µ, u0, u1)| ≤ C0(1 + |x0|
2 + |x1|

2

+ |u0|
2 + |u1|

2 + 〈|y|2〉µ),

∀x0, x̂0, x1, x̂1 ∈ R
n, ∀µ, µ̂ ∈ P2(R

n), (u0, u1) ∈ U0 × U.

Denote Xt = (X0
t , · · · , X

N
t ). If we choose u0t and uit as

continuous functions of (t,Xt), with Lipschitz continuity in
Xt, then the SDE system (1)-(2) has a well defined solution.

A basic solution of the Stackelberg game is to consider state
feedback strategies. For the major player, as the leader, and N
minor players, one may try to adapt the dynamic programming
approach in Başar and Olsder (1999) for a two-player Stackel-
berg game. This method, however, becomes unfeasible for large
N due to high complexity.

3. MEAN FIELD LIMIT MODEL

Based on the (N + 1)-player game, we consider a mean
field limit Stackelberg model which involves the major player
A0, a representative minor player A1, and the distribution µt

determined by a continuum of minor players. Fix u0t ≡ u0 and
uit ≡ u in (1)-(2). For g ∈ C2

b2d(R
n), by Itô’s formula we have

d〈µ
(N)
t , g〉 = 〈µ(N), g′(·)f(X0

t , ·, µ
(N), u0, u)

+
1

2
Tr[g′′(·)σσT ]〉dt+

1

N

N∑

i=1

g′(X i
t)σdW

i
t . (5)

We consider the following system:

dX0
s = f0(X

0
s , µs, u

0
s)dt+ σ0dW

0
s , (6)

dX1
s = f(X0

s , X
1
s , µs, u

0
s, u

1
s)ds+ σdW 1

s , (7)
d

ds

∫

Rn

g(y)µs(dy) =

∫

Rn

[fT (X0
s , y, µs, u

0
s, u

1
s)g

′(y)

+ 1
2 Tr(g

′′(y)σσT )]µs(dy), (8)

where s ≥ t, X0
t = x0, X1

t = x1, µt = µ ∈ P2(R
n), and

g ∈ C2
b2d(R

n). Equations (6)-(7) are obtained from (1)-(2) after

approximating µ(N)
t by µt. The measure flow {µt, t ≥ 0} on

one hand drives the evolution of (X0
s , X

1
s ), and on the other is

regenerated by the empirical distribution of a large population
of similar minor players with appropriate initial states. The
differential equation (8) for µs in a weak form, which may be
viewed as a limiting form of (5), essentially results from (7). It
is informative to list it separately. Due to the arbitrary choice of
x1 and µ, µs in general is not equal to the distribution (or the
conditional distribution given {X0

h, h ≤ s}) of X1
s .

Similarly we define

J0(t, x0, µ, u
0, u1) = E

∫ T

t

e−ρ(s−t) L0(X
0
s , µs, u

0
s)ds, (9)

J1(t, x0, x1, µ, u
0, u1)

= E

∫ T

t

e−ρ(s−t) L(X0
s , X

1
s , µs, u

0
s, u

1
s)ds. (10)

We view (X0
t , X

1
t , µt) as a state variable and look for feedback

strategies of the following form, u0 : [0, T ]×R
n ×P2(R

n) →
U0, and u1 : [0, T ] × R

n × R
n × P2(R

n) → U . The pair of
strategies is admissible if the resulting closed loop system has
a well defined solution. Let the value functions be

V0(t, x0, µ) = J0(t, x0, µ, u
0∗, u1∗), (11)

V1(t, x0, x1, µ) = J1(t, x0, x1, µ, u
0∗, u1∗). (12)

Below we elaborate on the determination of the Stackelberg
strategies (u0∗, u1∗) by dynamic programming equations of the
value functions. The reader may consult (Başar and Olsder,
1999, sec. 7.6) for this approach applied to two-player Stack-
elberg differential games. Define the following differential op-
erators associated with the processes (6)-(7):
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Lu0

0 · =fT
0 (x0, µ, u

0) ∂
∂x0

·+ 1
2 Tr[(

∂2

∂x2
0

·)σ0σ
T
0 ],

Lu0,u1

1 · =fT (x0, x1, µ, u
0, u1) ∂

∂x1
·+ 1

2 Tr[(
∂2

∂x2
1

·)σσT ],

Lu0,u1

mf · =fT (x0, y, µ, u
0, u1) ∂

∂y ·+ 1
2 Tr[(

∂2

∂y2 ·)σσ
T ].

The mean field Stackelberg equilibrium (u0∗, u1∗), if it exists,
is characterized by the Hamilton-Jacobi-Bellman (HJB) equa-
tion system




ρV1 = ∂V1

∂t + L(x0, x1, µ, u
0∗, u1∗) + (Lu0∗

0 + Lu0∗,u1∗

1 )V1

+

∫

Rn

Lu0∗,u1∗

mf ∂µV1(t, x0, x1, µ; y)µ(dy),

ρV0 = ∂V0

∂t + L0(x0, µ, u
0∗) + Lu0∗

0 V0

+

∫

Rn

Lu0∗,u1∗

mf ∂µV0(t, x0, µ; y)µ(dy),

(13)

where (t, x0, x1, µ) ∈ [0, T ] × R
n × R

n × P2(R
n) and V1 =

V0 = 0 at t = T . We may also called them the master equations.

Here Lu0,u1

mf acts on ∂µVi, i = 0, 1 via the y variable, with
(t, x0, x1, µ) fixed. Note that ∂µVi has the extra independent
variable y. For instance, for a fixed continuous function g
of quadratic growth, G(µ) =

∫
g(x)µ(dx) is a function of

µ ∈ P2(R
n). Then ∂µG(µ) = g(·). For related references,

see Cardaliaguet et al. (2015); Huang (2019). For this section,
we make the hypotheses i) the value functions V0 and V1 have
sufficient smoothness; ii) the derivatives ∂µV0, ∂µV1 exist and
have sufficient smoothness with respect to y; iii) integral terms
involve functions of mild growth rate to ensure a well defined
term; iv) the minimizers in (14)-(15) below are well defined.

These hypotheses are satisfied by the LQ model in Section 4.

For each u0 ∈ U0, let û1 be the best response of the continuum
of minor players including A1. We determine û1 by studying
the optimizing behavior of A1. Denote

H1 =L(x0, x1, µ, u
0, u1) + (Lu0

0 + Lu0,u1

1 )V1(t, x0, x1, µ)

+

∫

Rn

Lu0,û1

mf ∂µV1(t, x0, x1, µ; y)µ(dy),

where û1 has been applied by all other minor players to deter-
mine the mean field. Player A1 optimizes u1 only through L

and Lu0,u1

1 V1(t, x0, x1, µ). Let the minimizer of H1 be

û1 =ϕ1(x0, x1, µ, u
0, ∂V1

∂x1
), (14)

which is the best response of A1 at (t, x0, x1, µ) to u0 ∈ U0.

Next we consider the major player’s optimizer when all minor
players have adopted (14) by matching their own states. Denote

H0 =L0(x0, µ, u
0) + Lu0

0 V0(t, x0, µ)

+

∫

Rn

Lu0,û1

mf ∂µV0(t, x0, µ; y)µ(dy).

Let the minimizer of H0 be

u0∗ = ϕ0(x0, µ,
∂V0

∂x0
, ∂µV0(t, x0, µ; ·),

∂V1

∂x1
(t, x0, ·, µ)). (15)

Substituting (15) into (14) gives

u1∗ = ϕ1(x0, x1, µ, u
0∗, ∂V1

∂x1
). (16)

The selection of (u0∗, u1∗) may be viewed as optimization
problems of t-selves. For instance, given (t, x0, x1, µ), a coali-
tion of minor players, i.e., s-A1 agents with s ∈ [t, t + ǫ],
optimizes its cost defined on [t, T ] while it only acts on [t, t+ǫ].
Then we let ǫ → 0. The pair (15)-(16) is called a feedback

Stackelberg equilibrium strategy for the mean field Stackelberg
game specified by (6)-(8) and (9)-(10). Under the equilibrium
strategy (15)-(16), we may further write the closed-loop dy-
namics for (X0

s , X
1
s , µs). This section only constructs the HJB

equations (13). The existence analysis for these equations to-
gether with the closed loop system is an interesting subject. We
will not give in-depth analysis here, but will use the LQ case to
illustrate computations.

Remark 1. We give some detail about the integral terms in (13).
Let u0 be fixed. On [t, t + ǫ], we take a Taylor expansion of
V1(t + ǫ,X0

t+ǫ, X
1
t+ǫ, µt+ǫ). In particular, we have the first

order approximation term
∫

Rn

(∂µV1)(t, x0, x1, µ; y)(µt+ǫ(dy)− µ(dy))

=

∫

Rn

fT (x0, y, µ, u
0, û1) ∂

∂y (∂µV1)(t, x0, x1, µ; y)µ(dy)ǫ

+

∫

Rn

1
2 Tr(

∂2

∂y2 (∂µV1)(t, x0, x1, µ; y)σσ
T )µ(dy)ǫ + o(ǫ).

In the end, (u0, û1) will be taken as (u0∗, u1∗). The integral
term in the HJB equation of V0 arises for similar reasons.

4. LINEAR QUADRATIC MEAN FIELD LIMIT MODEL

We consider an LQ mean field limit model, and follow the steps
in Section 3 to search for an explicit solution of the mean field
Stackelberg equilibrium. Now equations (6)-(7) take drift terms

f0(X
0
t , µt, u

0
t ) = A0X

0
t +B0u

0
t + F0〈y〉µt

,

f(X0
t , X

1
t , µt, u

0
t , u

1
t ) = AX1

t +Bu
1
t+Du

0
t+F 〈y〉µt

+GX0
t .

The instantaneous cost functions take the quadratic forms

L0(X
0
t , µt, u

0
t ) = |X0

t − Γ0〈y〉µt
|2Q0

+ |u0t |
2
R0
, (17)

L(X0
t , X

1
t , µt, u

0
t , u

1
t ) = |X1

t − Γ1X
0
t − Γ2〈y〉µt

|2Q

+ |u1t |
2
R + |u0t |

2
R1

+ 2u0Tt R2u
1
t . (18)

The matrices A0, A, B0, B, F0, F , D, G, Γ0, Γ1, Γ2, Q0, Q,
R > 0, R0 > 0, R1 and R2 have compatible dimensions.

4.1 Stackelberg equilibrium strategy

Denote D̃ = D − BR−1RT
2 . By (15)-(16), the Stackelberg

equilibrium strategy is

u0∗ =− 1
2R

−1
0 [BT

0
∂V0

∂x0
+ D̃T

∫

Rn

∂
∂y (∂µV0)µ(dy)], (19)

u1∗ =− 1
2R

−1[BT ∂V1

∂x1
+ 2RT

2 u
0∗]. (20)

As a special case of (13), the HJB equations are

ρV0 =∂V0

∂t + (∂V0

∂x0
)T (A0x0 +B0u

0∗ + F0〈y〉µ)

+

∫

Rn

(Gx0 +Ax1 + F 〈y〉µ +Bu1∗ +Du0∗)|Tx1=y·

∂
∂y (∂µV0)µ(dy) + L0(x0, µ, u

0∗)

+ 1
2 Tr[(

∂2V0

∂x2
0

)σ0σ
T
0 +

∫

Rn

∂2

∂y2 (∂µV0)σσ
Tµ(dy)], (21)
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ρV1 =∂V1

∂t + (∂V1

∂x0
)T (A0x0 +B0u

0∗ + F0〈y〉µ)

+ (∂V1

∂x1
)T (Gx0 +Ax1 + F 〈y〉µ +Bu1∗ +Du0∗)

+

∫

Rn

(Gx0 +Ax1 + F 〈y〉µ +Bu1∗ +Du0∗)|Tx1=y·

∂
∂y (∂µV1)µ(dy) + L(x0, x1, µ, u

0∗, u1∗)

+ 1
2 Tr[

∂2V1

∂x2
0

σ0σ
T
0 + ∂2V1

∂x2
1

σσT +

∫

Rn

∂2

∂y2 (∂µV1)σσ
Tµ(dy)].

(22)

Assume V0 and V1 take the following forms

V0(t, x0, µ) =x
T
0 P

0
0 (t)x0 + 〈y〉TµP

0
1 (t)〈y〉µ

+ 2xT0 P
0
01(t)〈y〉µ + r0(t), (23)

V1(t, x0, x1, µ) =x
T
0 P0(t)x0 + xT1 P1(t)x1 + 〈y〉TµP2(t)〈y〉µ

+ 2(xT0 P01(t)x1 + xT0 P02(t)〈y〉µ + xT1 P12(t)〈y〉µ) + r1(t).
(24)

We substitute (23)-(24) into (19)-(20) to obtain
u0∗ = K0

0x0 +K0
1 〈y〉µ, (25)

u1∗ = K0x0 +K1x1 +K2〈y〉µ, (26)
where

K0
0 = −R−1

0 (BT
0 P

0
0 + D̃TP 0T

01 ),

K0
1 = −R−1

0 (BT
0 P

0
01 + D̃TP 0

1 ),

K0 = −R−1(RT
2K

0
0 +BTPT

01),

K1 = −R−1BTP1, K2 = −R−1(RT
2 K

0
1 +BTP12).

The pair (u0∗, u1∗) obtained by (25)-(26) is a feedback Stack-
elberg equilibrium. Substituting (23)-(26) into (21)-(22) gives
the following Riccati ODE system on [0, T ]:

Ṗ0 =ρP0 − P0(A0 +B0K
0
0 )− (A0 +B0K

0
0 )

TP0

− (P01 + P02)(G+BK0 +DK0
0)

− (G+BK0 +DK0
0 )

T (P01 + P02)
T

−K0T
0 R2K0 −KT

0 R
T
2K

0
0 − JK0K

2
R − JK0

0K2R1
− JΓ1K

2
Q,

Ṗ1 = ρP1 − P1(A+BK1)− (A+BK1)
TP1 − JK1K

2
R −Q,

Ṗ2 =ρP2 − PT
02(B0K

0
1 + F0)− (B0K

0
1 + F0)

TP02

− PT
12(BK2 +DK0

1 + F )− (BK2 +DK0
1 + F )TP12

− (A+BK1 +BK2 +DK0
1 + F )TP2

− P2(A+BK1 +BK2 +DK0
1 + F )

− JK2K
2
R − JK0

1 K2R1
−K0T

1 R2K2 −KT
2 R

T
2K

0
1 − JΓ2K

2
Q,

Ṗ01 =ρP01 − (A0 +B0K
0
0 )

TP01 − P01(A+BK1)

− (G+BK0 +DK0
0 )

T (P1 + PT
12)−KT

0 RK1

−K0T
0 R2K1 + Γ T

1 Q,

Ṗ02 =ρP02 − 2P0(B0K
0
1 + F0)− (A0 + B0K

0
0)

TP02

− P01(BK2 +DK0
1 + F )

− (G+BK0 +DK0
0 )

T (P12 + P2)

− P02(A+BK1 +BK2 +DK0
1 + F )−KT

0 RK2

−K0T
0 R1K

0
1 −K0T

0 R2K2 −KT
0 R

T
2K

0
1 − Γ T

1 QΓ2,

Ṗ12 =ρP12 − PT
01(B0K

0
1 + F0)− P1(BK2 +DK0

1 + F )

− P12(A+BK1 +BK2 +DK0
1 + F )

− (A+BK1)
TP12 −KT

1 RK2 −KT
1 R

T
2K

0
1 +QΓ2,

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 1. The solution of P0, P1, · · · , P
0
01 in Section 4.3.

Ṗ 0
0 =ρP 0

0 − P 0
0 (A0 +B0K

0
0)− (A0 +B0K

0
0)

TP 0
0

− P 0
01(G+BK0 +DK0

0 )− (G+BK0 +DK0
0 )

TP 0T
01

− JK0
0K2R0

−Q0,

Ṗ 0
1 =ρP 0

1 − P 0T
01 (B0K

0
0 + F0)− (B0K

0
0 + F0)

TP 0
01

− (A+BK1 +BK2 +DK0
1 + F )TP 0

1

− P 0
1 (A+BK1 +BK2 +DK0

1 + F )− JK0
1K2R0

− JΓ0K
2
Q0
,

Ṗ 0
01 =ρP 0

01 − P 0
0 (B0K

0
1 + F0)− (A0 +B0K

0
0 )

TP 0
01

− P 0
01(A+BK1 +BK2 +DK0

1 + F )

− (G+BK0 +DK0
0 )

TP 0
1 −K0T

0 R0K
0
1 +Q0Γ0,

(27)

where all of P0, P1, · · · , P
0
01 are equal to 0 at T .

Theorem 1. If the Riccati ODE system (27) has a solution on
[0, T ], then (25)-(26) is a feedback Stackelberg equilibrium on
[0, T ]. ✷

If (27) has a solution on [0, T ], the closed-loop system of
(X0

s , X
1
s ) under (25)-(26) admits a unique strong solution.

4.2 Time consistency

A strategy is called time consistent on [0, T ], if for any sub-
game on [t1, T ], ∀t1 ∈ (0, T ), it is still an equilibrium.

Theorem 2. If the ODE system (27) has a solution on [0, T ], the
Stackelberg equilibrium strategy (25)-(26) is time consistent.

Proof. When one restricts to a remaining period [t0, T ] for any
t0 ∈ (0, T ) and re-solves a mean field Stackelberg game, the
same Riccati ODE system is still valid. ✷

4.3 Numerical illustration

MatLab ODE solver ode45 is used to solve the ODE system
(27) of P0, P1, · · · , P

0
01 on [0, T ], with terminal condition 0 and

parameter values A0 = 1, B0 = 2, F0 = 0.5, A = 0.5, B = 1,
D = 1, F = 0.2, G = 0.4, Γ0 = 0.8, Γ1 = 0.3, Γ2 = 0.5,
Q = 2, Q0 = 1, R = 1, R0 = 0.5,R1 = 1, R2 = 0.5, T = 12,
and ρ = 0.1. The solution is shown in Fig. 1

5. DISCRETE-TIME MEAN FIELD LIMIT MODEL

Consider a mean field Stackelberg game with discrete time
horizon {0, 1, · · · , T }. The major player A0, a representative
minor player A1, and the mean field stateX have the dynamics:
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X0
t+1 =A0X

0
t +B0u

0
t + F0Xt +W 0

t , (28)

X1
t+1 =AX1

t +Bu1t +Du0t + FXt +GX0
t +W 1

t , (29)

Xt+1 =(A+ F )Xt +But +Du0t +GX0
t , (30)

where W i
t , 0 ≤ t ≤ T − 1 are i.i.d. random variables

with zero mean and finite variance. The control mean field
ut = limN→∞

1
N

∑N
i=1 u

i
t, where each uit is a minor player’s

control. For discount factor α ∈ (0, 1), the cost functionals are

J0(u
0, u1) = E[

T−1∑

t=0

αt(|X0
t − Γ0Xt|

2
Q0

+ |u0t |
2
R0

)], (31)

J1(u
0, u1) = E[

T−1∑

t=0

αt(|X1
t − Γ1X

0
t − Γ2Xt|

2
Q

+ |u1t |
2
R + |u0t |

2
R1

+ 2u0Tt R2u
1
t )], (32)

Remark 2. The underlying N + 1 player model is specified by
replacing Xt by X(N)

t = 1
N

∑N
i=1X

i
t in (28)-(29) and J0, J1.

5.1 Minimizer of the minor player

By dynamic programming,
V1(t, x0, x1, x) = min

u1
{|X1

t − Γ1X
0
t − Γ2Xt|

2
Q

+ |u1t |
2
R + |u0t |

2
R1

+ 2u0Tt R2u
1
t

+ αE[V1(t+ 1, X0
t+1, X

1
t+1, Xt+1)](X0

t
,X1

t
,Xt)=(x0,x1,x)

}.

(33)

Given u0t = u0 for the major player, we assume for k = t+ 1,

V1(k, x0, x1, x) =x
T
0 Φ0,kx0 + xT1 Φ1,kx1 + xTΦ2,kx+ r1k

+ 2(xT0 Φ01,kx1 + xT0 Φ02,kx+ xT1 Φ12,kx).

By the first order condition, the minimizer in (33) satisfies

0 =(R+ αBTΦ1,t+1B)u1t + αBTΦ12,t+1Būt

+ {RT
2 + αBT [(Φ1,t+1 + Φ12,t+1)D + ΦT

01,t+1B0]}u
0
t

+ αBT [(Φ1,t+1 + Φ12,t+1)G+ ΦT
01,t+1A0]x0

+ αBTΦ1,t+1Ax1

+ αBT [Φ1,t+1F + ΦT
01,t+1F0 + Φ12,t+1(A+ F )]x.

If R+ αBTΦ1,t+1B is invertible, then

u1t =− (R+ αBTΦ1,t+1B)−1αBT ·

{[(Φ1,t+1 + Φ12,t+1)G+ ΦT
01,t+1A0]x0 + Φ1,t+1Ax1

+ [Φ1,t+1F + ΦT
01,t+1F0 + Φ12,t+1(A+ F )]x

+ Φ12,t+1Būt} − (R+ αBTΦ1,t+1B)−1·

{RT
2 + αBT [(Φ1,t+1 + Φ12,t+1)D + ΦT

01,t+1B0]}u
0
t . (34)

By the consistency condition ut = limN→∞
1
N

∑N
i=1 u

i
t, with

each uit being a copy of u1t given by (34), we determine

ut =− [R+ αBT (Φ1,t+1 + Φ12,t+1)B]−1αBT ·

{[(Φ1,t+1 + Φ12,t+1)G+ ΦT
01,t+1A0]x0

+ [(Φ1,t+1 + Φ12,t+1)(A+ F ) + ΦT
01,t+1F0]x}

− [R+ αBT (Φ1,t+1 + Φ12,t+1)B]−1·

{RT
2 + αBT [(Φ1,t+1 + Φ12,t+1)D + ΦT

01,t+1B0]u
0
t}.

We write the above ut in the form
ut =ξ

0
t+1X

0
t + ξ2t+1Xt + ξ3t+1u

0
t , (35)

and further substitute (35) back into (34) to get
u1t =θ0t+1X

0
t + θ1t+1X

1
t + θ2t+1Xt + θ3t+1u

0
t , (36)

where ξit+1 and θit+1 are functions of Φi,t+1. The control (36) is
the best response of the minor player to u0 of the major player.
(35) is the control mean field for given u0.

5.2 Minimizer of the major player

Taking into account the best response (36), we solve the major
player’s minimization problem. By dynamic programming,

V0(t, x0, x) = min
u0

{|x0 − Γ0x|
2
Q0

+ |u0t |
2
R0

+ αE[V0(t+ 1, X0
t+1, Xt+1)](X0

t
,Xt)=(x0,x)

}. (37)

Assume that V0 takes the following form for k = t+ 1,

V0(k, x0, x) = xT0 Φ
0
0,kx0 + xTΦ0

2,kx+ 2xT0 Φ
0
02,kx+ r0k.

By the first order condition, the minimizer in (37) satisfies that

0 =R0u
0
t + α[BT

0 Φ
0
0,t+1 + (Bξ3t+1 +D)TΦ0T

02,t+1]·

(A0x0 +B0u
0
t + F0x)

+ α[BT
0 Φ

0
02,t+1 + (Bξ3t+1 +D)TΦ0T

2,t+1]·

[(A+ F )x+B(ξ0t+1x0 + ξ2t+1x+ ξ3t+1u
0
t ) +Du0t +Gx0].

If R0 + α[BT
0 Φ

0
0,t+1 + (Bξ3t+1 + D)TΦ0T

02,t+1](B0 + D0) is
invertible, we obtain from the first order condition that

u0t = β0
t+1x0 + β2

t+1x, (38)

where the βi
t+1 are functions of Φi,t+1 and Φ0

i,t+1.

5.3 Stackelberg equilibrium

We substitute (38) into (36) and (35) to obtain

u1t =θ̂0t+1x0 + θ̂1t+1x1 + θ̂2t+1x, (39)

ut =ξ̂
0
t+1x0 + ξ̂2t+1x, (40)

where θ̂it+1 and ξ̂it+1 are functions of Φi,t+1 and Φ0
i,t+1. The

pair (u0t , u
1
t ) in (38)-(39) is a Stackelberg equilibrium, and (40)

is the control mean field.

We substitute the equilibrium (u0t , u
1
t , ut) given by (38)-(40)

into (33) to obtain equations for Φi,t and Φ0
i,t, which depend on

Φi,t+1 and Φ0
i,t+1. We can solve for Φi,t and Φ0

i,t backwards in
time with zero terminal condition at T .

Φ0,t =JΓ1K
2
Q+Kθ0t+1K

2
R + Jβ0

t+1K
2
R1

+ αJA0
t+1K

2
Φ0,t+1

+ αJGt+1K
2
Φ1,t+1

+ αJGt+1K
2
Φ2,t+1

+ 2αA0T
t+1Φ01,t+1Gt+1

+ 2αA0T
t+1Φ02,t+1Gt+1 + 2αGT

t+1Φ12,t+1Gt+1,

Φ1,t =Q+ Jθ̂1t+1K
2
R + αJAt+1K

2
Φ1,t+1

,

Φ2,t =JΓ2K
2
Q + Jθ̂2t+1K

2
R + Jβ2

t+1K
2
R1

+ αJF 0
t+1K

2
Φ0,t+1

+ αJFt+1K
2
Φ1,t+1

+ αJAt+1K
2
Φ2,t+1

+ 2αF 0T
t+1Φ01,t+1Ft+1

+ 2αF 0T
t+1Φ02,t+1At+1 + 2αFT

t+1Φ12,t+1At+1,

Φ01,t =− Γ T
1 Q+ θ̂0Tt+1Rθ̂

1
t+1 + αGT

t+1Φ1,t+1At+1

+ αA0T
t+1Φ01,t+1At+1 + αG

T

t+1Φ
T
12,t+1At+1,

Φ02,t=Γ1QΓ2+θ̂
0T
t+1Rθ̂

2
t+1+β

0T
t+1R1β

2
t+1+αA

0T
t+1Φ0,t+1F

0
t+1

+ α[GT
t+1Φ1,t+1Ft+1 +G

T

t+1Φ2,t+1At+1]

+ α[A0T
t+1Φ01,t+1Ft+1 +GT

t+1Φ
T
01,t+1F

0
t+1]

+ α[A0T
t+1Φ02,t+1At+1 +G

T

t+1Φ
T
02,t+1Ft+1]

+ α[GT
t+1Φ12,t+1At+1 +G

T

t+1Φ
T
12,t+1Ft+1],
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Φ12,t =−QΓ2 + θ̂1Tt+1Rθ̂
2
t+1 + αAT

t+1Φ1,t+1Ft+1

+ α[AT
t+1Φ

T
01,t+1F

0
t+1 +A0T

t+1Φ02,t+1At+1]

+ α[G
T

t+1Φ
T
02,t+1F

0
t+1 +AT

t+1Φ12,t+1At+1],

Φ0
0,t =JΓ0K

2
Q0

+ Jβ0
t+1K

2
R0

+ αJA0
t+1K

2
Φ0

0,t+1

+ JGt+1K
2
Φ0

2,t+1

+ 2αA0T
t+1Φ

0
02,t+1Gt+1,

Φ0
2,t =JΓ0K

2
Q0

+ Jβ2
t+1K

2
R0

+ α[JF 0
t+1K

2
Φ0

0,t+1

+ JAt+1K
2
Φ0

2,t+1

]

+ 2αA0T
t+1Φ

0
02,t+1At+1,

Φ0
02,t =−Q0Γ0 + β0T

t+1R0β
2
t+1 + αA0T

t+1Φ
0
0,t+1F

0
t+1

+ α[G
T

t+1Φ
0
2,t+1At+1 +A0T

t+1Φ
0
02,t+1At+1]

+ αG
T

t+1Φ
0T
02,t+1F

0
t+1.

In the above equations, the matrices A0
t+1, F 0

t+1, At+1, Ft+1,
Gt+1, At+1 and Gt+1 are defined as

A0
t+1 = A0 + B0β

0
t+1, F 0

t+1 = F0 +B0β
2
t+1,

At+1 = A+Bθ̂1t+1, Ft+1 = F +Bθ̂2t+1 +Dβ2
t+1,

Gt+1 = G+Bθ̂0t+1 +Dβ0
t+1,

At+1 = A+ F +Bξ̂2t+1 +Dβ2
t+1,

Gt+1 = G+Bξ̂0t+1 +Dβ0
t+1.

Remark 3. The continuous-time LQ model needs the control-
coupling term u0TR2u

1 in (18) so that the best response of the
minor player explicitly involves u0, which enables the major
player’s leadership. In the discrete-time case, leadership can be
generated by dynamic coupling alone without control-coupling.

6. CONCLUDING REMARKS

For mean field Stackelberg games with a major player, we apply
dynamic programming to find feedback equilibrium strategies.
For future work, it is of interest to analyze the performance of
the decentralized strategies applied by a finite population.
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