
Platoon Stability Conditions Under
Inter-vehicle Additive Noisy
Communication Channels

Marco A. Gordon ∗ Francisco J. Vargas ∗ Andrés A. Peters ∗∗

Alejandro I. Maass ∗∗∗

∗ Electronic Engineering Department, Universidad Técnica Federico
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Abstract: This paper studies the behavior of a platoon control system under the presence
of inter-vehicle noisy communication channels. A set of homogeneous vehicles modelled as LTI
systems with a predecessor-following topology is analyzed. Our main contribution is to study the
stochastic scenario when additive white noise is affecting the communication between agents.
We aim to provide conditions for mean square string stability and look over its relationship with
the mean and variance of the tracking error. Finally, through computational analysis, we discuss
the scalability, convergence and boundedness properties related to string stability in stochastic
multi-agent systems.
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1. INTRODUCTION

A platoon of autonomous vehicles, is a controlled multi-
agent system where several vehicles aim to travel as
a string/chain at a common velocity, while keeping a
safe distance within them. Some benefits of automatized
platoon systems include the reduction of traffic congestion
and pollution emissions, safe driving, and efficient fuel
consumption (Wang et al., 2018). Achieving some of these
goals requires each vehicle to follow its predecessor as
closely as possible. However, by reducing the inter-vehicle
distance it is important to guarantee that disturbances
do not amplify along the string. This property, known
as string stability (Peppard, 1974), has been extensively
studied in recent years; it is of particular interest for
platoon control to ensure good tracking performance and
avoid collisions between vehicles. In multi-agent systems,
string stability is a desirable property that guarantees
the scalability and convergence of the whole system, i.e.
the number of agents can increase or decrease without
compromising the performance and safety of the platoon.

Although string stability for the deterministic case has
been deeply studied (Feng et al., 2019; Swaroop and
Hedrick, 1996; Stüdli et al., 2017), string stability in
a stochastic setting remains poorly explored, except in
a few cases (see e.g. (Socha, 2004)). Nevertheless, very
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well studied tools from the deterministic case can be
useful in systems with stochastic signals. The condition of
string stability arises from the need to ensure a bounded
system that avoids the amplification of the error signals
downstream of the platoon. Hence, for a platoon to be
string stable, it is not enough just to satisfy the internal
stability of the closed-loop system (Li et al., 2017).

Frequency-domain string stability is the commonly used
definition for the analysis of linear platoon systems with
predecessor-follower topology (Seiler et al., 2004; Middle-

ton and Braslavsky, 2010; Öncü et al., 2012). In this
context, a system is said to be string stable if, for any
frequency, the magnitude peak of a relevant sequence of
transfer functions can be bounded uniformly with the
number of agents. In Section 3, we demonstrate that a
similar idea is also useful for a platoon system driven by
stochastic signals.

In a platoon, agents exchange information (e.g. speed,
inter-vehicle distance, control inputs) with each other and
depending on how that information flows, a different com-
munication scheme arises (Li et al., 2017; Wang et al.,
2018; Feng et al., 2019). Particularly, in this paper we ana-
lyze the predecessor-following topology where each vehicle
exchanges information only with the nearest agent. In this
topology, the communication flows unidirectionally and
each vehicle receives information only from its immediate
predecessor. Wireless communications between agents are
subject to issues such as communication constraints, noise,
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Fig. 1. Platoon configuration with predecessor-follower
topology.

packet loss or delays. These problems can compromise the
performance of the platoon and therefore it is necessary to
extend the stability analysis for stochastic models, study-
ing the effects produced by unreliable communications in
multi-agent systems. As discussed in a recent survey on
platooning and string stability (Feng et al., 2019), suffi-
cient conditions for string stability of stochastic systems
are still not available.

The present work aims to extend the analysis of platoon
systems with stochastic inputs by considering additive
white noise in the communication channel. To the best
of our knowledge, this approach has not been considered
before whilst most of the investigation is focused on lossy
channels (Vargas et al., 2018; Acciani et al., 2019) and
communication delays (Xiao et al., 2009; Qin et al., 2015;
Di Bernardo et al., 2014; Wang et al., 2018; Qin et al.,
2016). In this framework, we propose a notion of mean
square string stability and provide necessary and sufficient
conditions to achieve it. We also analysis the stationary
behavior of the position error mean and variance of each
agent.

The present paper is arranged as follows. Section 2 de-
scribes the platoon configuration and defines mean square
stability. In Section 3 we define the mean square string
stability conditions derived from the mean and variance
of the tracking error. Some results obtained by simulation
are shown and discussed in Section 4. Finally, in Section 5
we present the conclusions.

2. PROBLEM FORMULATION

2.1 Vehicle Model and Platoon Configuration

We consider a one-dimensional set of N ∈ N vehicles mov-
ing with a predecessor-following configuration as shown
in Fig. 1. Each agent, denoted with the sub-index i where
i = 1, 2, ..., N , follows its predecessor at a desired distance,
except for the leader (i = 1) who follows an independent
navigation.

It is reasonable to assume that in a real setting, the
communications will be carried out digitally, and since
most of the controllers are implemented in digital com-
puters, the interconnected systems can be described in an
adequate fashion with discrete time models. Moreover, the
treatment of the stochastic aspects is more manageable in
the discrete time description of systems (see for instance
Qin et al. (2016)). For these reasons, we focus on platoons
described by discrete time systems.

At any time instant k ∈ N, it is expected that the i-th
agent is capable of measuring its current position yi(k) and
receives, through a communication channel, the measured
position of its predecessor yi−1(k). Platooning control
focuses not only on tracking tasks but also on maintaining
the inter-vehicle distance `i(k) , yi(k)− yi−1(k), as close
as possible to a desired reference ri(k).
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Fig. 2. Sequence for N number of agents
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Fig. 3. Feedback loop for i-th agent

As mentioned, all vehicles are integrated into a network
topology. In this scenario, we contemplate the case where
the inter-vehicle communication channel between the i-th
agent and its predecessor the is affected by an additive
noise di(k).

Except for the leader, we assume the platoon to be
homogeneous, i.e. all the vehicles have the same dynamics.
Thus, we represent each agent by a closed loop feedback
system whose transfer functions is denoted by T (z). Hence,
the platoon setup have the form shown in Fig. 2.

The controller design must ensure that each agent is able
to achieve zero steady-state error for ramp references
(leader moving at constant speed, and without communi-
cation noise). However, in a predecessor follower topology
with constant spacing policy, and a closed-loop configura-
tion with one degree of freedom controller, ramp tracking
and string stability are not compatible (Wang et al., 2018).
Thus, a solution to this issue is a two degrees of freedom
closed-loop controller architecture as shown in Fig. 3 where
G represents the plant, C is the controller and H adds the
extra degree of freedom (dof).

With a 2-dof controller, the filter H can be appropriately
chosen to include the effect of the vehicles speed into the
spacing policy. Then, we choose H = (1 + η)− η/z, where
η > 0 is the time headway constant that weighs the speed
at which a vehicle approaches its predecessor. Therefore,
the desired inter-vehicle distance between agents can be
calculated as

ri(k) = εi + η [yi(k)− yi(k − 1)] (1)

where εi > 0 represents the minimum desired distance
between agents. For simplicity in the explanation we
consider the length of each vehicle equal to zero and εi = 0.
Consequently, from (1), the tracking error is given by

ei(k) = yi−1(k)−yi(k)+di(k)−η [yi(k)− yi(k − 1)] . (2)

Clearly, the complementary sensitivity function of the lo-
cal closed loop system T , and the corresponding sensitivity
function S are given by

T =
GC

1 +GCH
, S =

1

1 +GCH
.
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Assumption 1. We consider the following assumptions:

(1) The noises di are a sequence of stationary and mu-
tually independent white noises, with mean µd and
variance Pd.

(2) Each noise di is uncorrelated with the initial state of
each agent.

(3) T (z) is stable and strictly proper.
(4) The product of G(z)C(z) has, at least, double integral

action.

A proper controller design will naturally yield a stable and
strictly proper transfer function T (z). On the other hand,
the double integral action in Assumption 1 is required for
zero steady-state error for ramp inputs.

2.2 Stability notions

To analyze the convergence properties of the proposed
platoon, we first recall the concept of mean square stability,
commonly adopted to study dynamical systems where
stochastic processes are involved, and also the concept of
string stability, used to analyze the behavior of a platoon
of dynamical agents.

The notion of MSS is useful for systems having stochastic
stationary processes as inputs. In that case, a linear
system is mean square stable (MSS) when the system
state converges in a mean-square sense as the time grows
unbounded (see, for instance Åström (2012)). In our setup,
this notion of stability could be applied to each individual
in the platoon, since the convergence is over the time.
Thus, a necessary and sufficient condition for T (z) and
S(z) to be MSS is that all their poles are inside the unit
circle. This guarantees that the mean and variance of the
error converge to finite values. Given Assumption 1 it is
clear that in our setup, each vehicle in the platoon is MSS
by design.

On the other hand, there are several definitions of platoon
string stability, most of them for a deterministic setup
(Feng et al., 2019). However, all these definitions focus
on how disturbances propagate as the number of agents
increase. Roughly speaking, we could say that a platoon is
string stable if the detrimental effects of the disturbances
(measured with some specific metric) do not amplify along
the string of vehicles. Otherwise, the platoon is called
string unstable.

This notion of string stability cannot be applied for the
platoon configuration of this paper using the usual metrics
for deterministic signals, due to the stochastic nature of
the additive noises affecting the communication channel.
For that reason, we propose an alternative definition to
study string stability in this stochastic setting.

Definition 2. The platoon described in this section is said
to be mean square string stable (M3S) if and only if
the mean and variance of the tracking errors converge to
finite values as the number of agents grows unbounded,
when the channel noises are stationary processes.

The definition of mean square string stability corresponds
to the notion of mean square convergence applied to a
two dimensional stochastic process, where not only the
time but also the agent positions within the string are
important.

2.3 Problem Definition

In this paper, our main goal is to find necessary and
sufficient conditions such that the vehicle platoon under
study is mean square string stable.

3. CONDITIONS FOR MEAN SQUARE STRING
STABILITY

In this section we present the main results of this paper.

Theorem 3. Consider a platoon satisfying the setup de-
fined in Section 2. The platoon is mean square string stable
if and only if the sensitivity functions T (ejω) and S(ejω)
satisfy

|T (ejω)| ≤ 1, ∀ω, (3)

and

|S(ejω
∗
)| = 0, ∀ω∗ such that |T (ejω

∗
)| = 1. (4)

Proof. Since T is assumed to be properly designed, it is
clear that, for a given vehicle, its corresponding tracking
error is mean square stable when k → ∞, which implies
that the stationary mean, variance and spectrum, are well
defined. On the other hand, it is not difficult to see that
the error of the i-th vehicle can be expressed, in the time
domain, as follows

ei+1(k) = hT (k) ∗ ei(k) + hS(k) ∗ di+1(k), (5)

where hT and hS denote the impulse response of T (z) and
S(z) respectively. The expected value of ei+1(k) can be
written as

µei+1
(k) = hT (k) ∗ µei(k) + hS(k) ∗ µdi+1

(k).

In the frequency domain we can write

µei+1
(z) = T (z)µei(z) + S(z)µdi+1

(z) (6)

= T (z)µei(z) + S(z)µd. (7)

In a similar fashion, since di+1(k) is not correlated with
ei(k), we have

Rei+1
(s, k) =

∞∑
`=0

∞∑
j=0

hT (`)hT (j)Rei(s− k, k − `)

+

∞∑
`=0

∞∑
j=0

hS(`)hS(j)Rdi+1
(s− k, k − `), (8)

which implies that the stationary power spectral density
for ei+1(k), say φei+1

(ejω), satisfy

φei+1
(ejω) = |T (ejω)|2φei(ejω) + |S(ejω)|2φdi+1

(ejω),

= |T (ejω)|2φei(ejω) + |S(ejω)|2Pd. (9)

Clearly, both (7) and (9) are linear recursions in terms
of the agent position index i. Additionally, µdi+1(z) and

φdi+1
(ejω) do not depend on i nor ω.

If |T (ejω)| > 1 for any ω the sequence generated by
(9) is obviously unbounded. For ω = 0, S(1) = 0 and
T (1) = 1, due to the double integral action in the
closed loop. Therefore, (9) generates a constant sequence.
For any other ω > 0, it is straightforward to conclude
that |T (ejω)| < 1 is a sufficient condition for the mean
and power spectrum of the error to converge as the
number of vehicles grows unbounded. On the other hand,
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the existence of any ω∗ such that |S(ejω
∗
)| 6= 0 when

|T (ejω
∗
)| = 1, implies that (9) would yield an increasing

sequence. Therefore |S(ejω
∗
)| = 0 when |T (ejω

∗
)| = 1

is necessary. The existence of the power spectrum is also
necessary for the existence of the corresponding stationary
variance, which is guaranteed since T is, by design, a MSS
system. �

Theorem 3 presents an analytical condition to guarantee
string stability in a stochastic setting as defined in Defini-
tion 2. It is clear then that, to ensure that the mean and
the variance of the tracking error do not amplify along the
string, the magnitude of |T (ejω)| must be less than one for
all frequencies.

Remark 4. It is important to note that the necessary
and sufficient condition presented in Theorem 3 is almost
identical to conditions for string stability in a deterministic
and linear setup (see, for instance Seiler et al. (2004)).
The main difference is that in some deterministic setups,
|T (ejω)| = 1 for any ω may not have a detrimental effect
on the string stability property (as neither amplifying nor
attenuating disturbances could be considered a favorable
outcome). However, when considering additive noises, the
marginal string stability case may no longer be a favorable
one.

Now we focus on the steady state values of a mean
square string stable platoon. First, we notice that, for each
vehicle, the stationary value of the mean of the error is
zero since each controller is designed to achieve perfect
tracking in steady state in absence of noise, and since the
channel noises are assumed to be zero mean processes. On
the other hand, studying the stationary behavior of the
variance of the tracking errors is not trivial, which leads
us to the following results.

Corollary 5. Consider a platoon satisfying the setup de-
fined in Section 2, and assume that |T (ejω)| < 1 for all
ω > 0. The variance of the tracking error of the N -th
vehicle when k →∞, is given by

PeN = ‖FN (z)‖22Pd, (10)

where Pd is the variance of the additive noise and

FN (z) = S(z)
[
1 T (z) T (z)2 · · · T (z)N−2

]
. (11)

Furthermore, the variance of the tracking error of the N -th
vehicle when k →∞ and N →∞, is given by

lim
N→∞

PeN =

∥∥∥∥ S(z)

M(z)

∥∥∥∥2
2

Pd, (12)

where M(z) is a stable and minimum phase spectral factor
such that 1− T (z)T (z)∼ = M(z)M(z)∼.

Proof. To ease notation we omit the arguments z and k
during the rest of the proof.

It is easy to see that the dynamics of the platoon is such
that the position error for the N -th vehicle (last agent in
the string) can be written in terms of the leader position
and the channel noises as

eN = S

N−2∑
i=0

(
T i dN−i

)
+ STN−2 y1 (13)

=
[
F STN−2

] [ d
y1

]
(14)

for i ∈ N0, and where d = [dN dN−1 · · · d2]
T

and F (z) is
as in (11). Since the noises di are all i.i.d white processes
with variance Pd, and y1 is a deterministic signal, it follows
that the spectrum of the error eN can be calculated as

φeN = F (z) Pd F (z)∼,

where (·)∼ denotes the para-hermitian operator.

Finally, the stationary variance of the position error can
be obtained from its power spectrum, leading to (10)

PeN =
1

2π

∫ π

−π
φeN (jω)dω

=
1

2π

(∫ π

−π
F (ejω)F (ejω)∗dω

)
Pd

= ‖F‖22 Pd, (15)

where Pd is the variance of the additive noise.

For the case when N → ∞, we notice from (9) that, in
such stationary case, the spectrum φeN satisfies

φeN = T T∼φeN + S S∼Pd, (16)

where we obtain

φeN = (1− T T∼)−1S S∼Pd (17)

=
S S∼

MM∼
Pd. (18)

The expression in (12) is directly obtained from (17),
completing the proof. �

Corollary 5 presents the stationary value of the variance
of the error of each vehicle, when k → ∞. The existence
of such values is guaranteed since T (z) is designed to be a
mean square stable system, ensuring convergence in time.
Also, since mean square string stability is assumed, when
the number of vehicles N → ∞, the variance of the error
also converges to a specific value. This imposes a bound
for the stationary variance of each vehicle in the platoon.

4. SIMULATION RESULTS

In this section, given a system T (z), we show some results
that can be derived from the mean square string stability
analysis performed in Section 3.

Consider the following platoon set up

G(z) =
1

z − 1
, C(z) =

(1/(1 + η))z

(z − 1)(z + 0.7)
, H(z) = (1+η)−η

z
.

To visualize the stable or unstable behavior of the platoon,
we chose two different time headway constants; η = 4
that corresponds to a string stable case, and η = 3 that
corresponds to a string unstable case. The communication
channel within each vehicle is considered to be affected by
an additive white noise of zero mean an variance Pd. In
the simulation, we consider that the leading vehicle moves
with constant speed and all the agents at time instant
k = 0 start from rest.

In Theorem 3 it was shown that a necessary condition
for mean square string stability is that for all frequencies
(ω > 0), the magnitude of the system transfer function
must be less than one. Then, the frequency response of the
system for the two cases under analysis is shown in Fig. 5,
where the M3S condition is clearly not met for η = 3 due
to the peak gain that exceeds the bounded magnitude of
one.
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Fig. 4. Mean square string stable platoon behavior.
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Fig. 5. Frequency response of T (z) for two values of η.

For a set of 50 agents we simulate the evolution of the
system. In Fig. 4 we present the string stable case and
in Fig. 6 the string unstable behavior is shown. In both
scenarios, four plots are presented. From top to bottom,
the mean of the control signal u(k), the mean of the agent’s
position y(k), the mean of the tracking error e(k) and
the variance of the tracking error Pe(k) are shown. The
means of all the parameters were obtained from a Monte
Carlo simulation with 1×106 realizations. Therefore, when
the system is string stable, the tracking error variance
converges to a maximum constant value. From (12) we
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Fig. 6. Mean square string unstable platoon behavior.

found that the stationary variance converges to the value
of 0.02804. On the other hand, when the system is string
unstable the tracking error variance increases its value
while more vehicles are added to the platoon. The unstable
behavior can also be seen in the mean of the tracking error
where although it converges to zero (expected result due
to the integral action of the system), in the transition,
oscillations are observed that affect the position of the
vehicles causing an unacceptable performance that can
lead to vehicle collisions.

5. CONCLUSION

In this work we consider a discrete-time LTI platoon with
noisy communication between agents. Two contributions
were presented in this paper. First, we extended the anal-
ysis of platoons with predecessor follower topology by
considering the realistic scenario where the inter-vehicle
communication channel is affected by additive white noise.
For the mentioned platoon configuration, we propose a
notion of mean square string stability and derived neces-
sary and sufficient conditions to achieve it. This implies
that if a platoon is string stable in a deterministic setup,
then it is also mean square string stable and hence the
variance of the tracking error converges to a maximum
value regardless of the number of agents added to the
platoon.
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