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Abstract: This paper presents a nonlinear model predictive control strategy for stochastic
systems with state- and input-dependent, finite-support disturbances subject to individual chance
constraints. Our approach uses an online computed stochastic tube to ensure stability, constraint
satisfaction, and recursive feasibility in the presence of stochastic uncertainties. The shape of the
tube and the constraint backoff is based on an offline computed incremental Lyapunov function.
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1. INTRODUCTION

Model Predictive Control (MPC) (Mayne, 2014) is a
widely-used optimization-based control method, which is
able to handle general nonlinear constrained systems. For
nominal MPC schemes, which are assuming that an actual
deterministic model of the system is available, rigorous the-
oretical guarantees (such as recursive feasibility, constraint
satisfaction, and stability) are well established in the liter-
ature (Rawlings et al., 2017). Robust and stochastic MPC
(RMPC and SMPC, respectively) have been developed to
ensure these properties despite uncertainties in the model
and/or external disturbances (Kouvaritakis and Cannon,
2016). While RMPC generally assumes that uncertainties
lie in bounded sets, SMPC can additionally incorporate
stochastic descriptions. This enables SMPC to enforce
chance constraints, which are constraints that allow for
a given probability of violation.
In many domains, stochastic models for complex phenom-
ena, e.g., loads or failures in electrical power grids, are well-
established, yet these phenomena often arise in already non-
linear control problems. In order to tackle such problems,
we propose an SMPC framework for nonlinear systems with
rigorous theoretical guarantees. Existing SMPC approaches
for nonlinear systems (Schildbach et al., 2014) suffer from
a tremendous amount of online computation. Our method
on the other hand is able to consider nonlinear systems
under general disturbances at the price of only a limited
increase in online computational demand over nominal
MPC scheme.

Related work

Mesbah (2016) summarizes the current state of the art of
SMPC and notes that there is a lack of efficient algorithms
for nonlinear systems that are able to consider general
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probabilistic uncertainty descriptions. In this work, we aim
to provide such an algorithm in the tradition of tube-based
approaches to SMPC, which are among the most efficient
methods.
Tube-based solutions to propagate uncertainty were first
proposed for RMPC (Chisci et al., 2001; Mayne et al., 2005)
for linear systems. This has later been extended to nonlinear
systems using class 𝒦 functions or Lipschitz constants (Pin
et al., 2009). However, such an approach is conservative,
especially for long prediction horizons. This method was
extended by Santos et al. (2019) to the stochastic case,
where the constraint backoff for the chance constraints
can be computed offline, since only constantly bounded
disturbances are considered. In this article, we consider
general uncertainty, which may also depend on the current
state and input, and hence on the trajectories predicted in
the online optimization.
An efficient method for online-tube-based RMPC was
proposed by Köhler et al. (2019). Using sublevel sets of
an incremental Lyapunov function (ILF) as the tube, the
authors reduce the conservatism significantly compared to
offline methods, while only requiring one additional scalar
state and constraint over nominal MPC. Similarly, our
method introduces just a single constraint for each chance
constraint probability considered, enabling stochastic dis-
turbances.
In a probabilistic setting, Wabersich and Zeilinger (2018)
used ILFs to achieve safety in probability for reinforce-
ment learning algorithms. The therein assumed uniformly
bounded model error allows for simplifications that employ
ideas from tubes for constantly bounded disturbances.
We consider the more general problem, where the tube
size is online adjusted on the predicted state and input
trajectories.
Inspired by these results, we propose an extension of the
computationally efficient framework by Köhler et al. (2019)
to SMPC, which is additionally able to consider stochastic
disturbances and chance constraints for systems under
bounded state- and input-dependent disturbances.
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Notation

The quadratic norm with respect to a positive definite
matrix 𝑄 ≻ 0 is denoted by ‖𝑥‖2

𝑄 = 𝑥⊤𝑄𝑥. The minimal
and maximal eigenvalue of Q are denoted by 𝜆min and
𝜆max, respectively. The positive real numbers are ℝ≥0 =
{𝑟 ∈ ℝ|𝑟 ≥ 0}. 𝒦∞ denotes the class of functions 𝛼 ∶ ℝ≥0 →
ℝ≥0, which are continuous, strictly increasing, unbounded
and satisfy 𝛼(0) = 0. The probability of an event 𝑠 ∈ 𝒮
is ℙ[𝑠 ∈ 𝒮] and the expected value of a random variable
𝑠 is 𝔼[𝑠]. When conditioned on a time-index 𝑡, they are
denoted by ℙ𝑡 and 𝔼𝑡, respectively. If the time argument is
not stated explicitly, 𝑥+ denotes 𝑥(𝑡 + 1), while 𝑥 is used
for 𝑥(𝑡). A nominal prediction for time step 𝑡 + 𝑘 based on
the state at time 𝑡 is denoted with index 𝑘|𝑡, e.g., 𝑥𝑘|𝑡.

2. PRELIMINARIES

2.1 Problem setup

We consider a nonlinear stochastic discrete-time system
𝑥+ = 𝑓(𝑥, 𝑢) + 𝑑𝑤(𝑥, 𝑢) (1)

with time 𝑡 ∈ ℕ, state 𝑥 ∈ ℝ𝑛, control input 𝑢 ∈ ℝ𝑚,
and bounded independent random variables 𝑑𝑤(𝑥, 𝑢) as
disturbance. The 𝑑𝑤 is chosen such that 𝔼𝑡[𝑑(𝑥, 𝑢)] = 0.
Further, for any given value of 𝑥 and 𝑢 𝑑𝑤(𝑥, 𝑢) is identically
distributed over time. The nominal prediction model is
chosen by certainty-equivalence as

𝑥+ = 𝑓(𝑥, 𝑢). (2)

Firstly, we enforce hard state and input constraints
(𝑥(𝑡), 𝑢(𝑡)) ∈ 𝒵R (3)

with some compact nonlinear constraint set
𝒵R = {(𝑥, 𝑢) ∈ ℝ𝑛+𝑚∣𝑔𝑗(𝑥, 𝑢) ≤ 0, 𝑗 = 1, … , 𝑞R} ⊆ ℝ𝑛+𝑚 .
Secondly, we impose nonlinear individual chance constraints
(ICC) on the output at the next time step, i.e.,

ℙ𝑡[ℎ𝑗(𝑥(𝑡 + 1), 𝑢(𝑡 + 1)) ≤ 0] ≥ 𝑝𝑗, 𝑗 = 1, … , 𝑞P . (4)
with a probability level 𝑝𝑗 ∈ (0, 1). The set of all probability
levels used by at least one of the ICCs is denoted as

𝒫 ≔ {𝑝𝑗∣𝑗 = 1, … , 𝑞P} . (5)

Instead of requiring the exact cumulative distribution
function, we make use of a lower bound thereupon, which
may be easier to obtain in practice.
Assumption 1. The random variable 𝑑𝑤 (1) has a known
probability distribution 𝑝𝑤(𝑥, 𝑢) with compact finite sup-
port 𝒲(𝑥, 𝑢) for all (𝑥, 𝑢) ∈ 𝒵R. Hence, for any 𝜀 ∈ [0, 1],
there exists a scalar function 𝑤̂𝜀 ∶ 𝒵R → ℝ≥0 that satisfies

ℙ[‖𝑑𝑤(𝑥, 𝑢)‖ ≤ 𝑤̂𝜀(𝑥, 𝑢)] ≥ 𝜀 (6)
with 𝑤̂𝜀(𝑥, 𝑢) finite for all 𝑥 and 𝑢. Furthermore, 𝑤̂𝜀 satisfies
the following monotonicity property:

∀(𝑥, 𝑢) ∈ 𝒵R, 0 ≤ 𝜀1 ≤ 𝜀2 ≤ 1 ∶ 𝑤̂𝜀1(𝑥, 𝑢) ≤ 𝑤̂𝜀2(𝑥, 𝑢) . (7)

This uncertainty description encompasses additive, mul-
tiplicative and more general nonlinear disturbances or
unmodeled nonlinearities.
We assume that 𝑓(0, 0) = 0 and that the constraints satisfy
0 ∈ int(𝒵R ∩ {(𝑥, 𝑢) ∈ ℝ𝑛+𝑚∣ℎ𝑗(𝑥, 𝑢) ≤ 0, 𝑗 = 1, … , 𝑞P}),

since we consider the problem of stabilizing the origin.
Further, the control objective is to minimize the open-loop
cost 𝐽𝑁 of the predicted state and input sequence, with

𝐽𝑁(𝑥⋅|𝑡, 𝑢⋅|𝑡) =
𝑁−1
∑
𝑘=0

ℓ(𝑥𝑘|𝑡, 𝑢𝑘|𝑡) + 𝑉𝑓(𝑥𝑁|𝑡) , (8)

where the stage cost ℓ and terminal cost 𝑉𝑓 (defined in
Sec. 3.3) are positive definite.

2.2 Local incremental stabilizability

In order to describe ‘how fast’ the system can return to
a nominal reference without the disturbances, we assume
that the system is locally incrementally stabilizable.
Assumption 2. There exist a control law 𝜅 ∶ ℝ𝑛 × 𝒵R →
ℝ𝑚, an incremental Lyapunov function (ILF) 𝑉𝛿 ∶ ℝ𝑛 ×
𝒵R → ℝ≥0, which is continuous in the first argument
and satisfies 𝑉𝛿(𝑧, 𝑧, 𝑣) = 0 for all (𝑧, 𝑣) ∈ 𝒵R, and
parameters 𝑐𝛿,𝑙, 𝑐𝛿,𝑢, 𝛿loc, 𝜅max > 0, 𝜌 ∈ (0, 1), such that
the following properties hold for all (𝑥, 𝑧, 𝑣) ∈ ℝ𝑛 × 𝒵R
with 𝑉𝛿(𝑥, 𝑧, 𝑣) ≤ 𝛿loc, and all (𝑥+, 𝑧+, 𝑣+) ∈ ℝ𝑛 × 𝒵R:

𝑐𝛿,𝑙 ‖𝑥 − 𝑧‖2 ≤ 𝑉𝛿(𝑥, 𝑧, 𝑣) ≤ 𝑐𝛿,𝑢 ‖𝑥 − 𝑧‖2 , (9)
‖𝜅(𝑥, 𝑧, 𝑣) − 𝑣‖2 ≤ 𝜅max𝑉𝛿(𝑥, 𝑧, 𝑣) , (10)

𝑉𝛿(𝑥+, 𝑧+, 𝑣+) ≤ 𝜌2𝑉𝛿(𝑥, 𝑧, 𝑣) , (11)
with 𝑥+ = 𝑓(𝑥, 𝜅(𝑥, 𝑧, 𝑣)), and 𝑧+ = 𝑓(𝑧, 𝑣).

The ILF will be used to construct the stochastic tube later
on, yet we only require its existence and knowledge of the
scalar parameters, but not the functions 𝑉𝛿, 𝜅 themselves.
In particular, we exploit the fact that the ILF provides an
upper bound on the achievable contraction rate between
two trajectories, e.g., between the predicted trajectory of
the MPC scheme and the closed-loop trajectory.
The following assumptions enable us to compute scalar
bounds that relate the nonlinear constraints (3) and (4) to
the level sets of the ILF 𝑉𝛿.
Assumption 3. The stage cost ℓ ∶ 𝒵R → 𝑅 ≥ 0 satisfies

ℓ(𝑟) ≥ 𝛼ℓ(‖𝑟‖) , (12)
ℓ( ̃𝑟) − ℓ(𝑟) ≤ 𝛼𝑐(‖𝑟‖) , ∀𝑟 ∈ 𝒵R, ̃𝑟 ∈ ℝ𝑛+𝑚, (13)

with 𝛼ℓ, 𝛼𝑐 ∈ 𝒦∞, and ∀𝜌 ∈ (0, 1) ∶ ∑∞
𝑘=0 𝛼𝑐(𝜌𝑘𝑐) ∈ 𝒦∞.

Assumption 4. There exist local Lipschitz constants 𝐿R
𝑖 ,

𝐿P
𝑗 , such that

𝑔𝑖( ̃𝑟) − 𝑔𝑖(𝑟) ≤ 𝐿R
𝑖 ‖𝑟 − ̃𝑟‖ , 𝑖 = 1, … , 𝑞R , (14)

ℎ𝑖( ̃𝑟) − ℎ𝑖(𝑟) ≤ 𝐿P
𝑖 ‖𝑟 − ̃𝑟‖ , 𝑖 = 1, … , 𝑞P , (15)

holds for all 𝑟 ∈ 𝒵R and all ̃𝑟 ∈ ℝ𝑛+𝑚 with ‖𝑟 − ̃𝑟‖2 ≤ 𝛿loc
𝑐𝛿,𝑙

.

These assumptions can be, for example, satisfied with a
convex polytopic constraint set and a quadratic positive
definite stage cost ℓ.
Proposition 5. Suppose that Ass. 2 – 4 hold, then there
exists constants 𝑐R

𝑖 ≥ 0, 𝑖 = 1, … , 𝑞R, 𝑐P
𝑗 ≥ 0, 𝑗 = 1, … , 𝑞P,

and a function 𝛼𝑢 ∈ 𝒦∞ such that the following inequal-
ities hold for all (𝑥, 𝑧, 𝑣) ∈ ℝ𝑛 × 𝒵R with 𝑉𝛿(𝑥, 𝑧, 𝑣) ≤ 𝑐2

and any 𝑐 ∈ [0, 𝛿loc]:
ℓ(𝑥, 𝜅(𝑥, 𝑧, 𝑣)) − ℓ (𝑧, 𝑣) ≤ 𝛼𝑢(𝑐) , (16)

𝑔𝑗(𝑥, 𝜅(𝑥, 𝑧, 𝑣)) − 𝑔𝑗(𝑧, 𝑣) ≤ 𝑐R
𝑗 · 𝑐 , (17)

ℎ𝑗(𝑥, 𝜅(𝑥, 𝑧, 𝑣)) − ℎ𝑗(𝑧, 𝑣) ≤ 𝑐P
𝑗 · 𝑐 . (18)
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Proof. For the proof of the first part, i.e., (16) and (17),
see Köhler et al. (2019, Prop. 1). Equation (18) is derived
analogously to (17). �

This proposition will allow us to relate the constraints to
the tube, we construct in the next sections.

2.3 Efficient uncertainty description

Additionally, for the tube construction, we need to consider
how uncertainty propagation affects the ILF. A computa-
tionally efficient way, proposed by Köhler et al. (2019), is
to describe the uncertainty in terms of the ILF. As we not
only consider bounded set disturbances but also stochastic
uncertainties, we need a revised construction.
Assumption 6. Consider the disturbance bound 𝑤̂, the
incrementally stabilizing feedback 𝜅 and the ILF 𝑉𝛿 from
Ass. 1, and 2. For any 𝜀 ∈ [0, 1], there exists a function
𝑤𝜀

𝛿 ∶ 𝒵R × ℝ≥0 → ℝ≥0, such that for any point (𝑥, 𝑧, 𝑣) ∈
ℝ𝑛 ×𝒵R with 𝑉𝛿(𝑥, 𝑧, 𝑣) ≤ 𝑐2, and any 𝑐 ∈ [0, 𝛿loc], we have

𝑤̂𝜀(𝑥, 𝜅(𝑥, 𝑧, 𝑣)) ≤ 𝑤𝜀
𝛿(𝑧, 𝑣, 𝑐) . (19)

Furthermore, 𝑤𝛿 satisfies the following monotonicity prop-
erties: Firstly, for any point (𝑥, 𝑧, 𝑣) ∈ ℝ𝑛 × 𝒵R such that
𝑉𝛿(𝑥, 𝑧, 𝑣) ≤ (𝑐1 − 𝑐2)2 with constants 0 ≤ 𝑐2 ≤ 𝑐1 ≤ 𝛿loc,
we have

𝑤𝜀
𝛿(𝑥, 𝜅(𝑥, 𝑧, 𝑣), 𝑐2) ≤ 𝑤𝜀

𝛿(𝑧, 𝑣, 𝑐1) . (20)
Secondly, for any constant 0 ≤ 𝜀1 ≤ 𝜀2 ≤ 1, we have

𝑤𝜀1
𝛿 (𝑥, 𝜅(𝑥, 𝑧, 𝑣), 𝑐) ≤ 𝑤𝜀2

𝛿 (𝑧, 𝑣, 𝑐) . (21)

This assumption establishes 𝜔𝜀
𝛿 as an 𝜀-likely upper bound

on the uncertainty that can occur at a state 𝑥 of an
incrementally stabilized trajectory in a neighborhood of
a point (𝑧, 𝑣) ∈ 𝒵R, where the neighborhood is given
by 𝑉𝛿(𝑥, 𝑧, 𝑣) ≤ 𝑐2. Based thereupon, we can bound the
increase of the ILF due to the disturbance in the next time
step with probability 𝜀.
Proposition 7. Let Ass. 1, 2, and 6 hold. Then, there exists
a function 𝑤̃𝜀

𝛿 ∶ 𝒵R × ℝ≥0 → ℝ≥0, such that for any point
(𝑥, 𝑧, 𝑣) ∈ ℝ𝑛 × 𝒵R with 𝑉𝛿(𝑥, 𝑧, 𝑣) ≤ 𝑐2 , any 𝑐 ∈ [0, 𝛿loc],
any (𝑧+, 𝑣+) ∈ 𝒵R with 𝑧+ = 𝑓(𝑧, 𝑣), and disturbance 𝑑𝑤
as random variable, we have
ℙ[𝑉𝛿(𝑧+ + 𝑑𝑤(𝑥, 𝜅(𝑥, 𝑧, 𝑣)), 𝑧+, 𝑣+) ≤ (𝑤̃𝜀

𝛿(𝑧, 𝑣, 𝑐))2] ≥ 𝜀 .
(22)

Furthermore, 𝑤̃𝜀
𝛿 satisfies the same monotonicity properties

as 𝑤𝜀
𝛿, i.e., (20) and (21) hold for 𝑤̃𝜀

𝛿.

Proof. The proof follows trivially from the assumptions,
by setting 𝑤̃𝜀

𝛿(𝑧, 𝑣, 𝑐) = √𝑐𝛿,𝑢𝑤𝜀
𝛿(𝑧, 𝑣, 𝑐). �

The function 𝑤̃𝜀
𝛿 can be constructed similarly as in Köhler

et al. (2019), an example thereof is given in Sec. 4.
In the absence of chance constraint, we could now construct
the tube as in Köhler et al. (2019). For the chance con-
straints (4), however, additional considerations are required,
in order to ensure closed-loop constraint satisfaction, which
is discussed later in Sec. 3.2.

3. STOCHASTIC MODEL PREDICTIVE CONTROL
FRAMEWORK

This section presents the proposed stochastic MPC frame-
work for nonlinear uncertain systems. The overall scheme

is introduced in Sec. 3.1. In Sec. 3.2 the constraint backoff
for the chance constraints are discussed. The theoretical
analysis in Sec. 3.4 uses the terminal ingredients described
in Sec. 3.3.

3.1 Proposed nonlinear MPC scheme

Our scheme indirectly characterizes the tube as the sublevel
sets of the ILF 𝑉𝛿 (Ass. 2) using online predicted tube sizes
𝑠𝑝. Then, these tube sizes are used to tighten the state and
input constraints ensuring constraint satisfaction, cf. (23f–
g). The main contribution allows for ICCs and stochastic
uncertainties by incorporating additional larger tubes with
size 𝑠𝑝 for each likelihood 𝑝 required by a constraint. These
are derived from the robust tube size 𝑠1 as described in
the following section.
This lead to the deterministic optimization problem

𝑉𝑁(𝑥(𝑡)) = min
𝑢·|𝑡,𝑤R

·|𝑡,𝑤𝑝
·|𝑡

𝐽𝑁(𝑥·|𝑡, 𝑢·|𝑡) (23a)

s.t. 𝑥0|𝑡 = 𝑥(𝑡), 𝑠𝑝
0|𝑡 = 0, (23b)

𝑥𝑘+1|𝑡 = 𝑓(𝑥𝑘|𝑡, 𝑢𝑘|𝑡), (23c)
𝑠𝑝

𝑘+1|𝑡 = 𝜌𝑠1
𝑘|𝑡 + 𝑤𝑝

𝑘|𝑡, (23d)
𝑤𝑝

𝑘|𝑡 ≥ 𝑤̃𝑝
𝛿(𝑥𝑘|𝑡, 𝑢𝑘|𝑡, 𝑠𝑝

𝑘|𝑡), (23e)
ℎ𝑗(𝑥𝑘+1|𝑡, 𝑢𝑘+1|𝑡) + 𝑐P

𝑗 𝑠𝑝
𝑘+1|𝑡 ≤ 0, (23f)

𝑔𝑖(𝑥𝑘|𝑡, 𝑢𝑘|𝑡) + 𝑐R
𝑖 𝑠1

𝑘|𝑡 ≤ 0, (23g)
𝑠1

𝑘|𝑡 ≤ ̄𝑠, 𝑤𝑝
𝑘|𝑡 ≤ 𝑤1

𝑘|𝑡 ≤ 𝑤̄, (23h)
(𝑥𝑁|𝑡, 𝑠1

𝑁|𝑡) ∈ 𝒳𝑓, (23i)
𝑖 = 1, … , 𝑞R, 𝑗 = 1, … , 𝑞P,
𝑘 = 0, … , 𝑁 − 1, 𝑝 ∈ 𝒫 ∪ {1},

which is to be solved at each time instant. The solution
of (23) are optimal trajectories for the state 𝑥∗

·|𝑡, the input
𝑢∗

·|𝑡, the tube sizes 𝑠𝑝,∗
·|𝑡 , the disturbance bounds 𝑤𝑝,∗

·|𝑡 , and
the value function 𝑉𝑁. The terminal ingredients 𝑉𝑓, 𝒳𝑓, ̄𝑠,
and 𝑤̄ are introduced in Sec. 3.3.
The first portion of the resulting optimal input sequence is
applied to the system, resulting in the closed-loop system
is given by

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡)) , 𝑢(𝑡) ≔ 𝑢∗
0|𝑡 . (24)

3.2 Chance Constraints

For the sake of simplicity, we will consider in this section
without loss of generality only single ICCs

ℙ𝑡[ℎ(𝑥(𝑡 + 1), 𝑢(𝑡 + 1)) ≤ 0] ≥ 𝑝 . (25)

In the literature, the chance constraints are commonly
handled by so-called constraint backoffs. This idea origi-
nates in linear MPC with additive stochastic disturbances
(van Hessem and Bosgra, 2002). There, one can simply
backoff the constraint, by enforcing at least a precomputed
constant distance from the constraint boundary. In this
work, however, we consider nonlinear systems with general
disturbances, where the required backoff not only becomes
state-dependent, but also intractable to compute.
Using the sublevel sets of the ILF, we can construct a
tube around the prediction, which contains the disturbed
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𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

·𝜌 ·𝜌

𝒮𝑝
1|𝑡 𝒮1

1|𝑡

𝒮𝑝
2|𝑡 𝒮1

2|𝑡
𝒮𝑝

3|𝑡 𝒮1
3|𝑡

𝜌𝒮1
1|𝑡 𝜌𝒮1

2|𝑡

Fig. 1. Illustration of the idea behind the proposed
incremental backoff. The robust and stochastic tubes
are shown in orange and blue, respectively.

closed-loop trajectory with at least probability 𝑝. The size
of this tube will be used as our backoff.
The idea of the tube construction is illustrated in Fig. 1.
Starting off, we begin with the prediction (black). Using
Prop. 7 for 𝜀 = 1, a robust tube (orange) can be constructed
around this prediction, inside which the true state will
certainly lie. This tube is constituted by the sublevel set

𝒮1
𝑘|𝑡 ≔ {𝑥 ∈ ℝ𝑛∣𝑉𝛿(𝑥, 𝑥𝑘|𝑡, 𝑢𝑘|𝑡) ≤ 𝑠1

𝑘|𝑡} . (26)

If one assumes that the previous time step was without
disturbance, i.e., 𝑑𝑤 = 0, then a contraction 𝜌 of the robust
set (Ass. 2) is reached by the incremental stabilization 𝜅.
Thus, we obtain an inner tube (green) lacking the influence
of the last disturbance with the sets 𝒮0

𝑘+1|𝑡 ≔ 𝜌𝒮1
𝑘|𝑡.

Using Prop. 7 for 𝜀 = 𝑝 ∈ (0, 1), the disturbance is added
to the tube. Thereby, we obtain an 𝜀-likely tube, indicate
by the blue error bars. This tube confines the state with a
probability greater than 𝜀 at each time step in the sets

𝒮𝑝
𝑘+1|𝑡 ≔ 𝒮1

𝑘|𝑡 + {𝑥 ∈ ℝ𝑛∣𝑉𝛿(𝑥, 𝑥𝑘|𝑡, 𝑢𝑘|𝑡) ≤ 𝑤𝑝
𝑘|𝑡} (27)

= {𝑥 ∈ ℝ𝑛∣𝑉𝛿(𝑥, 𝑥𝑘|𝑡, 𝑢𝑘|𝑡) ≤ 𝜌𝑠1
𝑘|𝑡 + 𝑤𝑝

𝑘|𝑡 ≕ 𝑠𝑝
𝑘+1|𝑡} .

By this construction, we can employ the size 𝑠𝑝 of the
sublevel sets of 𝑉𝛿, i.e., the size of our tube, as our backoff
to ensure ICC satisfaction.

3.3 Terminal ingredients

By using the minimal bound on the uncertainty 𝑤̄min and
the maximal tube size ̄𝑠

𝑤̄min = inf
(𝑥,𝑢)∈𝒵R

𝜔̃𝛿(𝑥, 𝑢, 0) , ̄𝑠 = √𝛿loc , (28)

we capture the desired properties of the terminal ingredients
in the following assumption.
Assumption 8. There exist a terminal controller 𝑘𝑓 ∶ ℝ𝑛 →
ℝ𝑚, a terminal cost function 𝑉𝑓 ∶ ℝ𝑛 → ℝ≥0, a terminal set
𝒳𝑓 ⊂ ℝ𝑛+1 , and a constant 𝑤̄ ∈ ℝ≥0 such that the following
holds for all (𝑥, 𝑠) ∈ 𝒳𝑓 , all 𝑑𝑤 ∈ ℝ𝑛, all 𝑤 ∈ [𝑤̄min, 𝑤̄],
and all 𝑠+ ∈ [0, 𝜌𝑠 − 𝜌𝑁𝑤 + 𝑤̃𝛿(𝑥, 𝑘𝑓(𝑥), 𝑠)], such that
𝑉𝛿(𝑥+ + 𝑑𝑤, 𝑥+, 𝑘𝑓(𝑥+)) ≤ 𝜌2𝑁𝑤2 with 𝑥+ = 𝑓(𝑥, 𝑘𝑓(𝑥)):

𝑉𝑓(𝑥) − ℓ(𝑥, 𝑘𝑓(𝑥)) ≥ 𝑉𝑓(𝑥+) , (29a)
(𝑥+ + 𝑑𝑤, 𝑠+) ∈ 𝒳𝑓 , (29b)

𝑤̃1
𝛿(𝑥, 𝑘𝑓(𝑥), 𝑠) ≤ 𝑤̄ , (29c)

𝑔𝑖(𝑥, 𝑘𝑓(𝑥)) + 𝑐R
𝑖 𝑠 ≤ 0, (29d)

𝜌𝑠 − 𝜌𝑁𝑤 + 𝑤̃𝑝𝑗
𝛿 (𝑥, 𝑘𝑓(𝑥), 𝑠) ≕ 𝛽𝑝𝑗 (29e)

ℎ𝑗(𝑥+, 𝑘𝑓(𝑥+)) + 𝑐P
𝑗 𝛽𝑝𝑗 ≤ 0, (29f)

𝑠 ≤ ̄𝑠 , (29g)
with 𝑖 = 1, … , 𝑞R, and 𝑗 = 1, … , 𝑞P. Furthermore, the
terminal cost 𝑉𝑓 is continuous on the compact set 𝒳𝑓,𝑥 ≔
{𝑥 ∣ ∃𝑠 ∈ [0, 𝑠], (𝑥, 𝑠) ∈ 𝒳𝑓}, i.e., there exists a function
𝛼𝑓 ∈ 𝒦∞ such that

𝑉𝑓(𝑧) ≤ 𝑉𝑓(𝑥) + 𝛼𝑓(‖𝑥 − 𝑧‖), ∀𝑥, 𝑧 ∈ 𝒳𝑓,𝑥 . (30)

These technical conditions are similar to the standard
conditions in nominal MPC for the augmented state (𝑥, 𝑠)
and input (𝑢, 𝑤, 𝑤𝑝). Details on constructive satisfaction
can be found in Köhler et al. (2019).
The only extension to the robust case is the inclusion
of the ICC in the construction of the terminal set, i.e.,
(29f). This ensures that also the ICCs are satisfied by the
terminal controller, using the same backoff technique as just
described in Sec. 3.2. For the construction of the terminal
set, these constraints are treated similarly to the hard
constraint (29d).

3.4 Theoretical analysis

In the following theorem, we provide guarantees on the
closed-loop properties of the proposed MPC scheme.
Theorem 9. Let Ass. 1 – 4, 6, and 8 hold, and suppose that
(23) is feasible at t = 0. Then (23) is recursively feasible, the
constraints (3), (4) are satisfied and the origin is practically
asymptotically stable for the resulting closed-loop system.

Proof. The proof is based on an extension of the main
idea behind Köhler et al. (2019, Thm. 1), as such we will
refer to their results, whenever it is possible. This will
enable us to focus on handling the chance constraints, as
the impact of the hard constraints is equivalent.
The core idea is to use the control law 𝜅 from Ass. 2 to
construct a candidate solution, ensuring recursive feasibility,
and bounding the cost increase.
i. Candidate Solution : For convenience, define

𝑢∗
𝑁|𝑡 = 𝑘𝑓(𝑥∗

𝑁|𝑡) , 𝑢∗
𝑁+1|𝑡 = 𝑘𝑓(𝑥∗

𝑁+1|𝑡), (31a)
𝑥∗

𝑁+1|𝑡 = 𝑓(𝑥∗
𝑁|𝑡, 𝑢∗

𝑁|𝑡) , (31b)
𝑤𝑝,∗

𝑁|𝑡 = 𝑤̃𝑝
𝛿(𝑥∗

𝑁|𝑡, 𝑢∗
𝑁|𝑡, 𝑠∗

𝑁|𝑡) . (31c)
Consider the adapted candidate solution, i.e.,

𝑥0|𝑡+1 = 𝑥(𝑡 + 1) = 𝑓(𝑥0|𝑡, 𝑢0|𝑡) + 𝑑𝑤(𝑥𝑡, 𝑢𝑡) , (32a)
𝑢𝑘|𝑡+1 = 𝜅(𝑥𝑘|𝑡+1, 𝑥∗

𝑘+1|𝑡, 𝑢∗
𝑘+1|𝑡) , (32b)

𝑥𝑘+1|𝑡+1 = 𝑓(𝑥𝑘|𝑡+1, 𝑢𝑘|𝑡+1) , (32c)
𝑠𝑝

𝑘+1|𝑡+1 = 𝜌𝑠1
𝑘|𝑡+1 + 𝑤𝑝

𝑘|𝑡+1 , 𝑠𝑝
0|𝑡+1 = 0 , (32d)

𝑤𝑝
𝑘|𝑡+1 = 𝑤̃𝑝

𝛿(𝑥𝑘|𝑡+1, 𝑢𝑘|𝑡+1, 𝑠𝑘|𝑡+1) , (32e)
with 𝑘 = 0, … , 𝑁 − 1 and 𝑝 ∈ 𝒫. As in Köhler et al.
(2019, eq. 17), we obtain using Prop. 7 (22) with 𝜀 = 1 and
repeatedly applying Ass. 2 (11) that for 𝑘 = 0, … , 𝑁
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𝑉𝛿(𝑥𝑘|𝑡+1, 𝑥∗
𝑘+1|𝑡, 𝑢∗

𝑘+1|𝑡) ≤ 𝜌2𝑘[𝑤∗
0|𝑡]

2 ≤ 𝛿loc . (33)
Thus, the candidate and previous optimal solution stay
in the region 𝑉𝛿(𝑧, 𝑥, 𝑣) ≤ 𝛿loc, for which we have a local
incremental Lyapunov function 𝑉𝛿 by Ass. 2.
ii. Tube Dynamics: From Köhler et al. (2019, Proof of
Thm. 1, Part II, eq. 18-19), we have the inequalities

𝑠1
𝑘|𝑡+1 ≤ 𝑠1,∗

𝑘+1|𝑡 − 𝜌𝑘𝑤1,∗
0|𝑡 , (34)

𝑤1
𝑘|𝑡+1 ≤ 𝑤1,∗

𝑘+1|𝑡 , (35)
for 𝑘 = 0, … , 𝑁 − 1. Analogously to the derivation of (35),
we can show

𝑤𝑝
𝑘|𝑡+1 ≤ 𝑤𝑝,∗

𝑘+1|𝑡 . (36)

This enables us to consider the general case of 𝑠𝑝
𝑘|𝑡+1,

yielding that for all 𝑝 ∈ 𝒫 ∪ {1} the inequality
𝑠𝑝

𝑘|𝑡+1 ≤ 𝑠𝑝,∗
𝑘+1|𝑡 − 𝜌𝑘𝑤1,∗

0|𝑡 (37)
holds for all 𝑘 = 0, … , 𝑁 − 1 and 𝑗 = 1, … , 𝑞P, since

𝑠𝑝
0|𝑡+1

(23𝑏)
= 0

(23𝑑)
= 𝑠1,∗

1|𝑡 − 𝜌0𝑤1,∗
0|𝑡

𝑠𝑝
𝑘+1|𝑡+1

(23𝑑)
= 𝜌𝑠1

𝑘|𝑡+1 + 𝑤𝑝
𝑘|𝑡+1

(34)
≤ 𝜌𝑠1,∗

𝑘+1|𝑡 − 𝜌𝑘+1𝑤1,∗
0|𝑡 + 𝑤𝑝

𝑘|𝑡+1
(36)
≤ 𝜌𝑠1,∗

𝑘+1|𝑡 − 𝜌𝑘+1𝑤1,∗
0|𝑡 + 𝑤𝑝,∗

𝑘+1|𝑡
(23𝑑)
= 𝑠𝑝,∗

𝑘+2|𝑡 − 𝑐P
𝑗 𝜌𝑘+1𝑤1,∗

0|𝑡 .

iii. Satisfaction of Hard Constraints, Terminal Constraints,
and Tube Bounds: The constraints (23g–i) are satisfied by
the candidate solution (32) as shown in Köhler et al. (2019,
Proof for Thm. 1, Part III –V)
iv. Satisfaction of Deterministic ICC Replacement : In
the following, we show that the deterministic constraints
(23f) used in place of the ICCs (4) hold for 𝑘 = 0, … , 𝑁 − 1.
For 𝑘 = 0, … , 𝑁 − 2, we have

ℎ𝑗(𝑥𝑘+1|𝑡+1, 𝑢𝑘+1|𝑡+1) + 𝑠𝑝
𝑘+1|𝑡+1

(18),(33)
≤ ℎ𝑗(𝑥∗

𝑘+2|𝑡, 𝑢∗
𝑘+2|𝑡) + 𝑐P

𝑗 𝜌𝑘+1𝑤∗
0|𝑡 + 𝑠𝑝

𝑘+2|𝑡+1
(37)
≤ ℎ𝑗(𝑥∗

𝑘+2|𝑡, 𝑢∗
𝑘+2|𝑡) + 𝑠𝑝,∗

𝑘+2|𝑡

(23𝑓)
≤ 0

The terminal condition (23i) ensures constraint satisfaction
for 𝑘 = 𝑁 − 1 with

ℎ𝑗(𝑥𝑁|𝑡+1, 𝑢𝑁|𝑡+1) + 𝑐𝑝
𝑗 𝑠𝑝

𝑁|𝑡+1
(33),(18),(37)

≤ ℎ𝑗(𝑥∗
𝑁+1|𝑡, 𝑢∗

𝑁+1|𝑡) + 𝑐𝑝
𝑗 𝑠𝑝,∗

𝑁+1|𝑡

(29𝑓)
≤ 0

v. Practical Stability : As shown in Köhler et al. (2019,
Proof of Thm. 1,Part VI), there exist 𝛼−, 𝛼+, 𝛼𝑤 ∈ 𝒦∞
such that

𝛼−(‖𝑥𝑡‖) ≤ 𝑉𝑁(𝑥𝑡) ≤ 𝛼+(‖𝑥𝑡‖) , (38)
𝑉𝑁(𝑥𝑡+1) − 𝑉𝑁(𝑥𝑡) ≤ −𝛼−(‖𝑥𝑡‖) + 𝛼𝑤(𝑤̄) . (39)

Thus, the closed-loop is practically asymptotically stable.
vi. Closed-looped Chance Constraint Satisfaction : In the
following, we show if (23f) holds that the ICCs (4) are
satisfied at time 𝑡. This follows the line of thought outline
in Sec. 3.2. This will also imply that the ICCs hold in
closed-loop, as we have shown in Part iv of this proof that
(23f) will be satisfied at every time-step.

Again, we consider just a single ICC (25). By Prop. 5,
𝑉𝛿(𝑥𝑘|𝑡+1, 𝑥𝑘+1|𝑡, 𝑢𝑘+1|𝑡) ≤ 𝑐2 implies

ℎ(𝑥𝑘|𝑡+1, 𝑢𝑘|𝑡+1) − ℎ(𝑥𝑘+1|𝑡, 𝑢𝑘+1|𝑡) ≤ 𝑐P · 𝑐 (40)
By Ass. 2 (11), we have 𝑉𝛿(𝑥𝑘|𝑡+1, 𝑥𝑘+1|𝑡, 𝑢𝑘+1|𝑡) ≤ (𝜌𝑠1

𝑘|𝑡)
2

for 𝑑𝑤 = 0. Using Prop. 7, we can bound the additional
increase of 𝑉𝛿 due to the 𝑑𝑤 ≠ 0. Together, this yields

ℙ[𝑐 =√𝑉𝛿(𝑥𝑘|𝑡+1, 𝑥𝑘+1|𝑡, 𝑢𝑘+1|𝑡) ≤ 𝜌𝑠1
𝑘|𝑡 +𝑤𝑝

𝑘|𝑡]≥ 𝑝 . (41)

Then, given that 𝑉𝛿(𝑥𝑘−1|𝑡+1, 𝑣𝑘|𝑡, 𝑢𝑘|𝑡) ≤ (𝑠1
𝑘|𝑡)

2, substitut-
ing (41) into (40) yields

ℙ[ℎ(𝑥𝑘|𝑡+1, 𝑢𝑘|𝑡+1)≤ ℎ(𝑥𝑘+1|𝑡, 𝑢𝑘+1|𝑡)+𝑐P𝑠𝑝
𝑘+1|𝑡]≥ 𝑝 , (42)

hence, we obtain that
ℎ(𝑥𝑘+1|𝑡, 𝑢𝑘+1|𝑡) + 𝑐P · 𝑠𝑝

𝑘+1|𝑡 ≤ 0 (43)
⟹ ℙ[ℎ(𝑥𝑘|𝑡+1, 𝑢𝑘|𝑡+1) ≤ 0] ≥ 𝑝 ⟺ (25) . �

3.5 Discussion

In the following, we discuss various properties of the
proposed SMPC scheme, as well as relations to other
existing MPC schemes for uncertain systems.
Remark 10. Compared to a nominal MPC scheme, 𝑠𝑝 and
𝑤𝑝 augment the state and the input, resp., for each 𝑝 ∈ 𝒫∪
{1}. Thus, the online computational demand for solving (23)
is comparable to a nominal MPC scheme with 𝑛 + 1 + |𝒫|
states, 𝑚 + 1 + |𝒫| inputs, and additional 1 + |𝒫| nonlinear
constraints for each time step. Correspondingly, while it
is possible to have multiple probability levels 𝑝𝑗 for the
ICCs, using the same 𝑝 for all ICCs will be computationally
significantly cheaper.
Remark 11. The SMPC method in Santos et al. (2019)
for additive uncertainty is based on a 𝒦-function or as a
special case on a Lipschitz constant 𝐿. Therein, the authors
employed the inverse of empirical cumulative distributions

̂𝐹𝑊 as uncertainty description, which can be equivalently
used in our method by setting 𝑤̂𝑝 = ̂𝐹 −1

𝑊 (𝑝). In particular,
the result on Lipschitz constants 𝐿 are contained as a
special case in our framework with 𝑉𝛿(𝑥, 𝑧, 𝑣) = ‖𝑥 − 𝑧‖2,
𝜅(𝑥, 𝑧, 𝑣) = 𝑣, and 𝜌 = 𝐿. Similarly, the use of a 𝒦-function
𝜎 is also a special of our scheme using the same 𝑉𝛿 and 𝜅 by
rewriting 𝜌 and 𝑤̃𝛿 in terms of 𝜎. The main difference is that
we use a backoff for the ICCs depending on the prediction in
order to consider state- and input-dependent disturbances,
whereas Santos et al. (2019) can employ constant backoff as
the current state has no impact on the considered additive
stationary stochastic uncertainty. Overall, the proposed
framework using ILF is typically less conservative than
either one of these choices (Köhler et al., 2018).
Remark 12. While other methods (e.g., Santos et al.
(2019)), often require prestabilization in order to limit
the tube growth for unstable systems. In our method, this
is not necessary as the tube size depends on the controller
𝜅 in ILF, which is efficiently able to handle instability.

4. NUMERICAL SIMULATION

A widely used benchmark case study in the SMPC literature
is the DC-DC-converter regulation problem. The discrete-
time dynamics translated to the origin are described by
Lazar et al. (2008), including their parameters, as
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Fig. 2. Evolution of the closed-loop states under 100
disturbance realizations with chance constraints (red)
and initial condition 𝑥(0) = [−1.1, −1.4]⊤.
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Fig. 3. Empirical cumulative distribution of the chance
constraint (red) under 10000 disturbance realizations.

𝑥+ =[𝑥+
1

𝑥+
2

]=[ 𝑥1 + 𝛼𝑥2 + (𝛽 − 𝑇
𝐿 𝑥2) 𝑢

( 𝑇
𝐶 𝑥1 + 𝛾) 𝑢 + (1 − 𝑇

𝑅𝐶 ) 𝑥2 + 𝛿𝑥1
] . (44)

We consider a (possibly time-varying) parameter uncer-
tainty in 𝜃 = [𝛼, 𝛿] with a Gaussian distribution with
Σ𝜃 = 0.1 · I2×2 variance truncated to a maximal deviation
of 1.6𝜎. The objective is to minimize the quadratic cost
ℓ(𝑥, 𝑢) = 𝑥⊤𝑥 + 𝑢2 over the finite horizon 𝑁 = 7. The
system is subject to hard input constraint |𝑢| ≤ 0.5, and
the electric power is chance-constrained by ℙ𝑡[|𝑥+

1 𝑥+
2 |2 ≤

2] ≥ 0.8. Using an ILF 𝑉𝛿(𝑥, 𝑧, 𝑣) = ‖𝑥 − 𝑧‖2
𝑃 and the

controller 𝜅(𝑥, 𝑧, 𝑣) = 𝐾(𝑥 − 𝑧) + 𝑣, a contraction rate
of 𝜌 ≈ 0.82 can be achieved. The disturbance bounds
𝑤̃𝑝

𝛿(𝑥, 𝑢, 𝑐) = ∥𝑃 1
2

𝜕𝑓(𝑥,𝑢)
𝜕[𝛼,𝛿] Σ

1
2
𝜃 ∥ 𝜀(𝑝) + 𝐿𝑤𝑐 is derived anal-

ogously to (Köhler et al., 2019, Prop. 3) with Lipschitz
constant 𝐿1

𝑤 ≈ 0.15, 𝐿0.6
𝑤 ≈ 0.06 and ℙ[‖𝜃‖2

Σ−1
𝜃

≤ 𝜀(𝑝)] ≥ 𝑝.

In Fig. 2, we can see 100 realizations of the closed-loop under
the proposed SMPC. The initial condition was chosen such
that unconstrained operation would violate the chance
constraint. In 87% of the 10000 simulated realizations the
power constraint is satisfied, this can also be seen in the
empirical cumulative distribution in Fig. 3.
To achieve guarantees despite nonlinearity of the system
and the constraints while maintaining low computational
complexity, some relaxations were made that necessarily
lead to conservatism. Yet, this is still less conservative than
other methods, e.g., using Lipschitz constants (cf. Rem. 11)
or approximating the disturbance as constantly bounded.
Additionally, with our approach conservatism could be
further reduced by using a less conservative disturbance
bound 𝑤̃𝛿 at the price of additional computational com-
plexity. Therefore, our method can be tuned to the desired
compromise between conservatism and complexity. At the
same time with the fairly conservative, but simple, bound
presented in this example, we achieved tighter satisfaction
than existing methods.

5. CONCLUSION

We proposed a nonlinear SMPC framework based on
incremental stabilizability for nonlinear systems incorpo-
rating general state- and input- dependent uncertainty
descriptions. The scheme can ensure the satisfaction of
individual chance constraints and hard constraints, as
well as recursive feasibility. By using a specially designed
growing tube, we achieve this with only a small increase in
the computation cost over nominal MPC.
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