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Abstract: Control for semi- and fully-autonomous ships is a broad and complex field. Making
autonomous high-level decisions in place of the captain is considered difficult, partly due to the
risks and uncertainties involved. Though human operators located in onshore control centers are
still needed for safety and regulatory reasons, there is a growing demand for complex decisions to
be made by the onboard control system itself, both during normal operations and extraordinary
circumstances. Model predictive control (MPC) is a promising approach to tackle this problem.
In this paper, a dynamic risk-based decision-making algorithm is constructed through the
use of heuristic objectives, capable of planning suitable vessel trajectories in emergency
situations. Nonlinear programming using the direct multiple-shooting method implemented
with the CasADi framework is considered, and the resulting control performance of several
emergency scenarios is analyzed using simulation. The developed algorithm proved capable of
both generating suitable trajectories below a certain risk threshold, and to engage the safety
systems appropriately. It is concluded that MPC with independent risk cost terms is a promising
method for autonomous ship trajectory planning and emergency management.

Keywords: Model Predictive Control, Risk Control, Autonomous Control, Decision-Making,
Emergency Management, Trajectory Planning, Online Optimization, Maritime Systems

1. INTRODUCTION

This paper focuses on determining sequences of control
actions to be taken in maritime emergency situations, in
which it is not deemed appropriate to – or the ship is not
able to – operate normally. The motivation behind this
work is the ever-increasing desire to further reduce both
operational costs and risks during shipping operations,
particularly by moving personnel normally on board the
vessel to onshore control centers. To achieve this, ships
need increased autonomy and onboard decision-making
capabilities. Model predictive control (MPC) has shown
great results for autonomous vehicle steering (Keviczky
et al., 2006), ship heading control (Li and Sun, 2012),
path following (Zhou et al., 2017) and collision avoid-
ance (Eriksen and Breivik, 2017), (Kufoalor et al., 2019).
However, these systems usually have strictly defined op-
erational constraints or limited available decision spaces
in which they are explicitly allowed to make autonomous
decisions. Conditions such as these are normally the de-
fault operational stages, like the transit phase of a fjord-
crossing autonomous ferry. In order to reach higher levels
of autonomy, a more high-level supervisory system for
risk or threat assessment and decision-making (Anderson
et al., 2011), (Samuelson and Yang, 2018), (Chen et al.,
2018) for maritime operations is needed. Thus, the main
purpose of this paper is to investigate the use of MPC
for handling emergency situations that are normally taken
care of by human operators, through the use of some

risk model and optimization-based decision-making. The
approach is summarized as follows: The ship control is
performed using a receding horizon approach, based on a
dynamic ship model, a cost function and operational con-
straints. Each term in the constructed cost function targets
different aspects of trajectory planning during normal op-
erations and various emergency scenarios. Specifically, the
developed algorithm handles a selection of abnormal or
hazardous operational situations in which some degree of
uncertainty is involved. As such, the novel contribution
of this paper is to include a separate risk term as an
additional optimization cost, which makes it possible to
address the uncertainty inherent in emergency scenarios
directly. This term combined with other costs for resource
management and mission objectives may collectively form
a total emergency management algorithm, capable of han-
dling all of the presented scenarios simultaneously. The
resulting risk-based decision-making method may in turn
serve as a foundation for a decision support system for
human operators and as an autonomous navigation system
for fully autonomous vessels.

2. PROBLEM DESCRIPTION

2.1 Scope and simplifications

The main objective of this work is to control the trajectory
of a ship along a preplanned path in a challenging mar-
itime environment, demonstrated by simulating a crossing
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through a strait with grounding obstacles on both sides.
A simplified dynamic environment is used in this work, in
which only variables related to the horizontal movement
of the ship position are considered. The ship model is
equipped with two freely rotating azimuth thrusters (one
at the bow and one at the stern) with given maximum
power specifications, and wind and currents velocities are
assumed to be constant. No collision avoidance or sensor
data quality handling is considered in this work, as these
concepts are assumed to be added as natural extensions in
a more exhaustive system (Johansen et al., 2016). Docking
is also disregarded here, as it may be viewed as a separate
control mode. Lastly, the approach presented in this paper
assumes that the ship and/or the operator is able to stop
or react quickly when the risk is too large. However, it
is considered a trivial task to appropriately increase the
related risk coefficients to account for the stopping dy-
namics of the anchor drop or other significant delays as a
consequence of higher velocities. These simplifications and
approximations are used to develop a simple model serving
as a proof of concept.

2.2 Failure modes and emergency scenarios

A collection of scenarios are presented in Table 1 to
showcase the proposed method in this work:

1. Impaired thrusters

In this failure mode, the propulsion system has reduced maneu-
vering capabilities. No wind disturbances are assumed.

a) Both thrusters lose the ability to rotate for a period of time,
leaving the ship with constant thruster azimuth angles.
Steering along the path is achieved by changing thrust
magnitude only, until azimuth rotation capabilities are
restored.

b) The bow thruster goes offline. Thus the MPC scheme must
use reduced degrees of freedom, i.e. the stern thruster only,
to complete its mission.

2. Total blackout

The ship experiences a complete loss of propulsion due to a
temporary power blackout, until the crew is able to restart the
engines. Moderate wind disturbances lead to drifting. If and when
to drop the anchor is continuously assessed by the algorithm.

a) If the ship recovers its propulsion capabilities before the
grounding hazard is too large, an alternative trajectory is
calculated after drifting away from the original path.

b) An anchor drop is triggered if the maximum grounding risk
threshold becomes violated.

3. Strong winds

The increased grounding risks due to exceedingly strong winds
are assessed in order to perform sufficiently safe control actions.

a) A reference scenario demonstrates how the added risk term
contributes to adjustments in the ship trajectory close to
grounding obstacles.

b) Crossing the strait is deemed too dangerous due to strong
winds. As a result, the ship holds its position and waits for
improved weather conditions for some time.

c) The ship avoids the narrow strait in its entirety and opts
to navigate around the nearby smaller isles, as a result of
an alternative risk cost tuning approach.

Table 1. Demonstration scenarios

3. MATHEMATICAL MODELING

3.1 Variables and reference frame definitions

First, the locally flat North-East (NE) coordinate frame
{n} and the body coordinate frame {b} are defined as
presented in Figure 1. The variables are defined as follows:
x and y denote the position of the ship along the North
and East axes, u and v are the surge and sway velocities
of the ship, X and Y are the surge and sway forces of the
ship, ψ, r and N are the yaw angle, velocity and moment
of the ship, and at = [a1 a2]> and ft = [f1 f2]> are the
azimuth angles and propulsion forces of the ship’s stern
and bow thrusters, respectively.

3.2 Ship model and dynamics

The model variables are given in Table 2. From (2.1) and
(2.2) in Fossen (2011), the reduced three-dimensional ship
kinematic and kinetics equations in the horizontal NE-
plane (disregarding Coriolis, wave, ballast, buoyancy or
gravitational forces) are given as

η̇ = JΘ(η)ν (1)

ν̇ = M−1(τ + d−Dν) (2)

where d = τwind+τcurrent is the system disturbance vector.
The ocean currents forces τcurrent , 0 in the example
simulations presented in this work, for simplicity. The wind
forces are defined as

τwind =

[ −cx cos(γw)AFw
cy sin(γw)ALw

cn sin(2γw)ALwLoa

]
1

2
ρaV

2
w (3)

from Fossen (2011), where Vw is the wind velocity relative
to the ship’s velocity, γw = ψ − ψw − π, and ψw is the
clockwise wind angle relative to the North axis. The wind
coefficients cx, cy and cn are in this work set to 0.7, 0.8
and 0.1, respectively. See Section 5.3 for all remaining
model parameter definitions and their given values, and
see Fossen (2011) for generalizations to other propulsion
and steering configurations.

f2

f1

a2

a1
v, Y

u,Xψ, r,N

y (E)
(N)

x

{b}
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Fig. 1. The model variables and coordinate frames used in
this work.
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Entity Symbol Elements

North-East ship position pn
b/n

[
x
y

]
North-East ship attitude Θnb

[
ψ
]

Ship position and orientation η

[
pn
b/n

Θnb

]
Body-fixed linear velocity vb

b/n

[
u
v

]
Body-fixed angular velocity ωb

b/n

[
r
]

Linear and angular ship velocities ν

[
vb
b/n

ωb
b/n

]
System state vector x

[
η
ν

]
Principal rotation matrix Rn

b (Θnb)

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
Ship pose Jacobian JΘ(η)

[
Rn

b (Θnb) 0
0 1

]
North-East linear velocity ṗn

b/n
Rn

b (Θnb)vb
b/n

North-East angular velocity Θ̇nb ωb
b/n

Thrusters transformation matrix

s∗ := sin(a∗) c∗ := cos(a∗)
T (at)

[
c1 c2
s1 s2

−lxs1 lxs2

]
Body-fixed propulsion forces fb

b

[
X
Y

]
Body-fixed moment (torque) mb

b

[
N
]

Ship forces and moments τ T (at)ft =

[
fb
b
mb

b

]
Control input vector u

[
ft
ȧt

]
Constant damping matrix D diag(Xu, Yv , Nr)

Hydrodynamic added mass MA diag(Xu̇, Yv̇ , Nṙ)

Rigid-body ship mass MRB diag(m,m, Iz)

Total model mass M MRB +MA

Table 2. Model terminology and definitions

3.3 Optimal control problem formulation

An optimal control problem (OCP) is defined as follows:

min
x(.),u(.)

∫ T

t=0

φ̃(x(t),u(t),θ(t)) dt

s.t. ẋ(t) = f(x(t),u(t),d(t))

h(x(t),u(t)) ≤ 0

x(0) = x0, 0 ≤ t ≤ T

(4)

where φ̃ is a scalar stage cost function, θ is a parameter
vector, x0 is the initial state, T is the prediction horizon,
and ẋ is given by the system dynamics (1) and (2). The
constraints h(x(t),u(t)) are given as:

−fmax ≤ u1 ≤ fmax

−fmax ≤ u2 ≤ fmax

−ωmax ≤ u3 ≤ ωmax

−ωmax ≤ u4 ≤ ωmax

(5)

where u = [u1 u2 u3 u4]
>

from Table 2, and fmax and
ωmax are the maximum propulsion force and rotational
turning rate of the azimuth thrusters, respectively. The
solution to problem (4) will be deployed in a receding
horizon fashion, yielding an MPC scheme.

3.4 Nonlinear programming

Next, the model is discretized in order to solve the problem
numerically. The continuous time variable t is divided
into a time grid of N intervals, defined by discrete time
instants tk ∈ {t0, t1, ..., tN}. The system inputs are dis-
cretized as piecewise constant over that time grid, i.e.
uk = u([tk, tk+1]). The system state is discretized using
a numerical integration function xk+1 = Fk(xk,uk,dk),
based on the widely used Runge-Kutta 4th order method.
The discretization allows one to treat (4) as a nonlinear
program (NLP) by defining a vector of decision variables

w =
[
x>0 q>0 u>0 . . . x>N−1 q

>
N−1 u

>
N−1 x

>
N q>N

]>
(6)

where qk is a vector of additional decision variables related
to mission objectives to be defined in Section 4.1. Addi-
tionally, a parameter vector comprised of various control
settings, desired states and coefficients through time is

denoted as θ =
[
θ>0 . . . θ>N

]>
. The only parameters con-

sidered in this work are

θk =

[
sref

αstep

σ

]
∈ R2+3J (7)

for each tk where sref is a constant reference transit speed
and αstep is a path progression parameter (see Section 4)
across all N control intervals. The grounding obstacles are
modeled as a union of J circles. Thus, σ is the collection
of all grounding hazard vectors of the form

σj =

[
cj
rj

]
, cj =

[
xj
yj

]
, j = 1, ..., J (8)

where cj and rj are the center point and radius of each
obstacle, respectively. The resulting NLP is defined as

C(θ,x0) = min
w

φ(w,θ)

s.t. g(w) = 0

h(w) ≤ 0

(9)

where C(θ,x0) ∈ R is the minimum cost generated by
a given set of parameter values and initial conditions x0.
The inequality constraints h(w) are given by (5), and the
equality constraints g(w) hold the system dynamics:

Fk(xk,uk,dk)− xk+1 = 0, k = 0, 1, ..., N−1 (10)

The cost function φ is defined and discussed in Section 4.2.
Note that the discretization chosen here is based on the
direct multiple-shooting approach (Morrison et al., 1962).
Because of the nonlinear dynamics and since the obstacles
yield a non-convex feasible set, the NLP (9) is non-convex.
As a result, the goal is to compute a feasible and local
optimal solution for a given control horizon N and initial
conditions. The preplanned path and ship speed reference
parameters are used to calculate a reasonable initial guess
for the ship trajectory. Rather than using hard constraints
in addition to the ship dynamics and the natural input
constraints, only costs balancing is utilized to achieve the
desired control behavior. This ensures feasibility of the
NLP solutions.
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4. PLANNING AND DECISION-MAKING

The decision-making of the MPC algorithm consists of two
main tasks: the planning of the ship trajectory achieved
by propulsion and steering control, and the decision to
drop the anchor in emergency situations. If the planning
algorithm is unable to produce a trajectory that does not
violate the given grounding risk thresholds, emergency
procedures are triggered in order to minimize damages and
costs – such as dropping the anchor. It may be noted that
this can also be achieved by a formulation based on mixed-
integer programming, allowing for more complex decisions
to be made during emergency situations. The following
subsections describe the chosen path-following method, as
well as how different mission objectives are evaluated and
weighted in order to produce desired ship trajectories.

4.1 The path following method

There are many different methods readily available for
following a preplanned path, e.g. by using a predefined
stride each time interval along the path, or a line-of-sight
method (Fossen et al., 2003). A time-invariant method
is chosen in this work to generate consistent and robust
solutions at any time interval. First, a preplanned path
is chosen by designing a piecewise linear (spline) function
given an initial position, discrete intermediate points and
a destination. It is assumed that the path is designed such
that fuel/resource consumption, time spent and distance
traveled is considered (close to) optimal for the given
mission. Next, the reference path is parameterized, giving
the two-dimensional reference function

r(α) =

[
x(α)
y(α)

]
(11)

for calculating path points where α ≥ 0 is an advance-
ment parameter acting as a decision variable along the
preplanned path, and x(α) and y(α) are piecewise linear
functions. As such, advancing along the path is a simple
matter of increasing α. The desired ship speed along the
path is furthermore established by penalizing ship transit
velocities larger than the given reference speed sref . This is
achieved by minimizing a speed penalty decision variable
β, where

u2 + v2 ≤ s2
ref + β, 0 ≤ β (12)

By collecting the additional decision variables into a vector
for each time step through the control horizon N , we have

qk =

[
at
αk
βk

]
, k = 0, 1, ..., N − 1 (13)

and the NLP decision variable vector w is well defined.

4.2 Objectives and cost function definitions

In order to complete the NLP, a cost function to be min-
imized is constructed. In this research, the cost function
is heuristically defined with the purpose of producing a
safe ship trajectory that fulfills the mission objectives. The
primary cost function is denoted as

φ(w,θ) =

N∑
k=1

ξ(xk, qk, qk-1)+ε(uk,uk-1)+ρ(xk,θk) (14)

where the individual cost terms are defined as follows:

i. The path progression cost function

ξ(xk, qk, qk−1) = κ>

 ||r(αk)− pk||2
||αk − αk−1 − αstep||2

βk

 (15)

where κ > 0. These terms are responsible for driving
the ship position pk (trajectory) along the precomputed
feasible path, through the constant path step parameter
αstep and the reference function r(αk). The βk term pe-
nalizes violations of the transit speed reference as detailed
in Section 4.1. It is recommended that αstep is chosen such
that sref ≈ αstep/t∆, where t∆ is the sampling period of
the NLP.

ii. Next, the control input cost function is defined as

ε(uk,uk−1) = u>k Λuk + (uk−uk−1)>∆(uk−uk−1) (16)

where Λ = diag(λ) > 0 and ∆ = diag(δ) > 0 are tuning
matrices. These terms collectively help conserve power
and reduce the input variations, consequently lowering
environmental and operational costs.

iii. Finally, an ad hoc risk cost function is introduced to
keep the risk levels present in the system acceptable:

ρ(xk,θk) =

J∑
j=1

(µ1 + µ2χjVw)e−ζ(||cj−pk||−rj) (17)

with µ > 0. Moreover, χj = max(0, ι̂j · ω̂) where ι̂j is
the unit vector from the ship to each obstacle center
and ω̂ is the unit wind direction vector. Note that the
risk costs are not formulated as explicit constraints to
ensure safe distances between the ship and obstacles.
Rather, this formulation utilizes violatable risk costs in
order to acknowledge that grounding risks may still be
evaluated even if they are very high. Using exponential
terms for the obstacle or grounding risk costs serves to
strongly dominate the other objectives in the cost function,
heavily favoring staying safe from grounding obstacles.
The grounding risk sensitivity constant ζ may for this
purpose be tuned for optimal behavior. Lastly, the dot
product scales the wind force contribution toward the land
obstacles in any orientation around the ship, i.e. increasing
the risk close to an obstacle to the east of the ship if the
wind is coming from the west, etc. Negative dot products
are however set to zero, disregarding favorable winds with
respect to perceived risks.

5. IMPLEMENTATION AND SETTINGS

5.1 MPC scheme overview

Pseudo-code for the complete MPC algorithm is presented
in Algorithm 1, and a more detailed rundown is as follows:
Vectors, matrices, cost functions and custom functions
for numerical integration are set up using the CasADi
symbolic framework (Andersson et al., 2012). The im-
plemented MPC module then solves one NLP for each
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Algorithm 1 MPC algorithm

Result: optimal control input
initialize empty solution
while not arrived at destination do

if any thrusters online then
construct NLP ← last state
optimal states and inputs ← solve NLP
current state ← extract first optimal step

else
current state ← simulate drifting ship

end
if risk > accepted maximum threshold then

activate emergency protocol
else

solution ← current state and control inputs
last state ← current state

end
end

control interval, using the nonlinear optimization pack-
age Interior Point OPTimizer (IPOPT) and the linear
solver MUltifrontal Massively Parallel sparse direct Solver
(MUMPS). However, if all inputs are constrained to zero,
i.e. during the drifting ship or blackout scenarios, an open
loop simulation is used instead. Finally, the total risk at
each time step is evaluated through the risk cost model
from (17). If the risk level rises above a given maximum
acceptable threshold, the algorithm is terminated with
the assumption that emergency procedures such as remote
control or automatic drop of anchor would be applied.

5.2 Initialization and performance factors

Due to the non-convex nature of the control problem,
the initial values given to each NLP for solving have
a significant impact on its solutions. In this work, the
current state and input vectors, the previous solution as
well as the internal solver parameters are given to the
next NLP to be solved as initial guesses (warm start),
as described in Algorithm 1. However, for the first NLP
solve, initial guesses are generated by assuming that the
ship will follow the path with a velocity equal to the
given reference transit speed. The sampling period of
t∆ = 30 s was chosen to have a reasonable balance between
the slowest time constant of the ship dynamics and a
desired long prediction horizon. Longer sampling periods
give faster MPC tuning and testing, but for certain time-
sensitive scenarios however, this may be inadequate. It is
recommended that this interval should be reduced if used
in applications. Similarly, a control horizon of N = 40 was
chosen, resulting in a total of 570 decision variables for
each NLP. This was set by assessing the solving time of
the algorithm with respect to the quality of the computed
solutions. Increasing the control horizon past this point
seemed not to improve the NLP solutions noticeably,
and the average solving time of 2 s across all scenarios
was deemed appropriate compared to the total prediction
horizon of 20 min. If the NLP solver does not converge to
a solution within the maximum limit of 300 iterations, the
last solution calculated is used. This maximum iteration
limit was set such that the maximum solve time during
any emergency scenario would be 27s < t∆.

5.3 Model parameters and values

The model parameters and MPC settings are given in
Table 3, based on the dimensions and onboard systems
of a cargo vessel with a maximum surge velocity of ∼15
knots. The rest of the initial and final values are all set to
zero. The remaining cost coefficients of κ, λ, δ, µ and ζ are
set constant throughout all scenarios, and were empirically
determined in order to produce desired trajectories: The
path following and speed-related costs were first estab-
lished to encourage path progress. Next, the input force
costs were tweaked to smooth out gradients and reduce
power consumption. Finally, appropriate risk costs were
estimated by assessing the resulting trajectories during
various wind angle and velocity configurations. This ad
hoc evaluation approach should however be replaced by
more systematic and robust methods for approximating
or learning risk coefficient values in future works.

Parameter Symbol Value Unit

Path step size αstep 75 m
Overall ship length Loa 75 m

Thruster arm lengths lx 33 m
Transit reference speed sref 2.5 m/s
Frontal projected area AFw 110 m2

Lateral projected area ALw 624 m2

Max thruster force fmax 200 kN
Max thruster azimuth rate ωmax 2.0 rpm

Viscous damping force surge Xu 5.0 × 101 kN s/m
Viscous damping force sway Yv 2.0 × 102 kN s/m
Viscous damping force yaw Nr 3.0 × 104 kN s/rad

Hydrodynamic added mass surge Xu̇ 4.4 × 104 kg
Hydrodynamic added mass sway Yv̇ 8.6 × 105 kg
Hydrodynamic added mass yaw Nṙ 4.9 × 107 kgm2

Rotational inertia yaw Iz 9.8 × 108 kgm2

Rigid-body ship mass m 1.5 × 106 kg

Table 3. Model parameters

5.4 Visualization

Figure 2 illustrates how the slope of the separate risk cost
term influences path planning and decision-making. The
risk values along the z-axis are given as percentages of
the maximum risk cost present at a selected time instant,
and the x and y axes are given in meters. The surface
plot indicates how the gradient of the obstruction- and
disturbance-related terms naturally push the trajectory
of the ship (the dashed line) down into the ”valley” of
lower costs between two grounding obstacle examples.
This topography is similar to that of artificial potential
fields and is unique for each time step, as well as for

ρ

yx

Fig. 2. Surface plot of MPC risk costs at some time instant.
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each predicted time step into the control horizon N . The
risk term surface thus evolves dynamically based on the
current ship position and the disturbance circumstances
influencing the ship. That is, if the ship moves closer to
an obstacle with wind disturbances directed toward it, the
slope of the risk cost around that obstacle steepens and
rises accordingly. Figure 3 presents the map module used
for visualization of the scenario simulations, which displays
polygon data of a Norwegian fjord area shown using
the Mercator projection. A color bar indicates the ocean
depths for the surrounding maritime environment, here
used for display purposes only. The preplanned reference
path is shown as a dashed gray line. Additionally, red
circles mark the grounding obstacles σ used by the MPC
for cost function calculations. In this work, these obstacle
circles are static, and are deliberately made simplistic
for proof of concept. Methods for dynamic calculation of
grounding areas more shallow than the maximum draft of
the ship should however be used in applications. This is
left to be further expanded upon in future works.

6. RESULTS

Ceasing normal operations mid-transit is considered a
costly action. The main goal of the decision-making al-
gorithm is thus to assess and optimize the risk levels
against other operational costs at each time interval, and
determine to what degree the ship should follow its initial
route within some safety threshold. This section presents
the MPC performance of seven scenarios in a simulated
maritime environment, to demonstrate the capabilities
of the algorithm during extreme circumstances. System
stability follows in general from optimality of solutions
and by utilizing an adequately long horizon (Grüne and
Pannek, 2017), as well as through low-level controllers used
by the ship’s propulsion subsystems. Figures 4, 5, 6, and
8 show the generated ship trajectories for the investigated
scenarios, plotted every 2 min for visibility. Figure 7 shows
time series plots of the azimuth thrusters during runtime.

6.1 Impaired thrusters

The defective propulsion system failure mode is split into
two separate faults, with no wind disturbances for analysis
purposes. Figure 4 shows both scenario simulations in
red and yellow, as well as a trajectory during normal

Fig. 3. Visualization of the circular obstacles used by the
MPC algorithm during cost function calculations.

Fig. 4. Simulations during normal operations (cyan), a
temporary loss of steering power scenario (red), and
a single offline thruster scenario (yellow).

operations in cyan, for reference. It may be noted how
the normal operations trajectory deviates slightly from the
planned path, due to imposed thruster input costs and the
internal prediction horizon each time step. This is a result
of the preplanned piecewise reference path being linear and
non-optimal. The red ship trajectory depicts the scenario
(1.a) in which the azimuth thruster rotators are disabled
after 5 min e.g. due to an auxiliary system fault, effectively
leaving the ship with limited steering capabilities for a time
period. However, the algorithm is capable of adjusting the
thruster propulsion forces appropriately to continue along
an almost identical trajectory until the thruster rotation
capabilities are restored, by utilizing the current azimuth
angles and varying their propulsion output appropriately.
Straying away some distance from the path and closer
to the shoreline is considered sufficiently safe, and the
ship thus continues ahead despite the imposed system
faults. In the second scenario (1.b) shown in yellow, the
bow thruster shuts down after 3 min, and stays offline
until the ship reaches its destination. It is nevertheless
apparent that the ship is still able to continue its voyage
safely and almost as quickly as the nominal trajectory,
even with only the stern thruster available. Note that the
algorithm has no access to information about future faults,
and consequently is forced to operate with only its current
knowledge each control interval. It is considered trivial to
investigate less extreme scenarios than the total steering
and propulsion loss cases presented here.

6.2 Total blackout

In this failure mode, the ship experiences a power blackout
and drifts due to moderate disturbances. An open-loop
simulation produces new states each time step during this
time period, as there are no available degrees of freedom
through the zero-constrained system inputs. If and when
to drop the anchor is consequently the only decision left
to make in these circumstances. The act of dropping the
anchor is assumed to be an exceptionally costly action, and
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Fig. 5. A temporary blackout and recovery scenario.

is thus postponed as long as reasonably possible in order
to give the crew a chance to restart the engines before
doing so. Both scenarios have Vw = 10 m/s set constant
for consistency and proof of concept. Color-coded risk
gradient vectors are added to the ship trajectory plots
every time step. These vectors show how the perceived risk
cost penalizes staying close to the shoreline during difficult
weather conditions. The arrows have lengths inversely
proportional to ||cj − pk|| − rj , and are parallel to −ι̂j .
Yellow to red arrow colors represent a medium to large
scalar product χj , respectively. Figure 5 shows the first
scenario (2.a) with ψw = 90◦ (east), demonstrating how
the ship may still salvage the situation and complete its
mission if a blackout is recovered from quickly. Though
the ship deviates from the planned path, the solutions of
the NLP solver are able to swiftly find their way back to
resume the mission as normal. The second scenario (2.b)

Fig. 6. A blackout too close to the shoreline, leading to an
anchor drop.

Fig. 7. Thruster inputs for the temporary blackout and
blackout with anchor drop scenarios, respectively.

with ψw = −90◦ (west) is shown in Figure 6, in which the
ship gets too close to the shoreline after a blackout. Thus,
the risk rises above the given threshold, and the anchor is
ultimately dropped. Figure 7 contains the time series plots
of the azimuth thrusters for each blackout scenario. The
time axis is given in minutes, and azimuth angles at for
the stern and bow thrusters are shown in green and yellow,
respectively. The propulsion forces ft applied by the stern
and bow thrusters are respectively shown in blue and red,
given as percentages of the maximum thruster force fmax.

6.3 Strong winds and risk cost tuning

The choice of specific cost tuning strategies play a critical
part in both the trajectory planning algorithm and the
anchor drop decision-making. In these hazardous scenarios
with strong winds where Vw = 20 m/s and ψw = 45◦

(north-east), it is demonstrated in Figure 8 how particular
risk cost tuning strategies may lead to different desired
behaviors. First, the cyan trajectory (3.a) shows a fully
completed transit. The risk level does not exceed the max-
imum threshold, and the algorithm is allowed to continue
as normal despite the increased perceived risk levels due
to greater wind disturbances. The second trajectory in

Fig. 8. Different cost tuning approaches generate diverse
behaviors during strong winds.
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red, however, (3.b) shows how the ship alternatively may
hold a position for some time and await improved weather
conditions. This tuning approach is based on a significantly
increased emphasis on safety. Here, the ship is prohibited
to pass the narrow strait due to too high predicted risk
levels introduced by the strong winds, until the wind ve-
locities recedes after 25 min. This temporary dynamic po-
sitioning (DP)-like behavior demonstrates some of the in-
herent versatility of the MPC scheme, due to the combined
steep gradients of the nominal grounding risk and the wind
disturbance risk from (17) creating a local minimum (in
an undesirable crosswind pose due to initial conditions),
blocking the path progression forward. An appropriate sys-
tem improvement in this situation may be to also consider
making an anchor drop if the wait time exceeds some given
time period. Alternatively, a second similar approach may
be applied, in which the control of the ship is given to a
separate DP controller if the opposing risk cost gradients
rises above some threshold. The last scenario in yellow
(3.c) showcases a different cost tuning philosophy, in which
the NLP solutions steer the ship around the smaller isles of
the narrow strait if the reference path cost coefficient κ1 is
sufficiently relaxed. Which of these approaches is the most
suitable for any given scenario may vary greatly depend-
ing on specific environmental conditions, ship dimensions
and system configurations. These diverging trajectories do
however demonstrate another aspect of the flexibility of
the MPC algorithm, allowing one to carefully tune cost
parameters for several alternative desired behaviors.

7. CONCLUSION

The results from various simulation scenarios show that
the MPC algorithm is capable of managing extreme cases
of different ship failure modes to a satisfying degree.
The implemented system typically solves each nonlinear
program with a prediction horizon of 20 min in approx-
imately 2 s, and is thus considered a relatively fast and
online decision-making algorithm. There is however much
potential for improvement within both the algorithm itself
and the complexity of the investigated scenarios, e.g. by
combining scenarios to produce more intricate behaviors.
Furthermore, it is recommended that the ad hoc risk
function implemented for proof of concept should be re-
placed with probabilistic risk models, and that further
advancements of the path progression or risk cost functions
may be achieved by adding additional terms related to
other operational objectives. This is left to be explored in
future works. Ultimately, risk-based MPC is considered an
appropriate method for trajectory planning and decision-
making for autonomous ships during emergencies.
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