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Abstract: Motivated by vibration control of a mining cable elevator avoiding frequent actions of
the actuator which is a massive hydraulic cylinder at the head sheave, we present an event-triggered
backstepping boundary controller for a 2×2 coupled hyperbolic PDE-ODE system. A two-step design
is proposed including the design of a low-pass-filter-based backstepping boundary stabilization law and
the sequent design of an event-trigger mechanism. The proof of the existence of a nonzero minimal
dwell-time between two triggering times, and the exponential stability result of the event-based closed-
loop system are given in this paper.
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1. INTRODUCTION

A mining cable elevator is a vital device used to transport the
mines and miners between thousands of metres underground
and ground. In order to suppress vibrations in the long compli-
ant cable to reduce the fatigue damage, a vibration control force
is applied at the head sheave, which is designed based on the
PDE model of the mining cable elevator Wang et al. (2018b)-
Wang et al. (2018d) via backstepping. Two challenges existing
in implementation of the designed PDE backstepping controller
into practice are 1) the control input signal is changing rapidly
so that it is hard for the actuator which is a heavy hydraulic
cylinder shown in Fig. 1 to follow; 2) the high-frequency com-
ponents in the control input may in turn become a vibration
source for the cable. It is thus required to reduce the action fre-
quency of the actuator, and meanwhile ensure the suppression
of the vibrations in the cable.

Designing sampling schemes applied into the control input
is a potential solution. Designs of sampled-data control laws
of parabolic and hyperbolic PDEs were presented in Fridman
et al. (2012); Karafyllis et al. (2018) and Davo et al. (2018);
Karafyllis et al. (2017) respectively. Compared with the period-
ic sampled-data control where unnecessary movements of the
massive actuator may exist, event-triggered control where the
massive actuator is only animated at the necessary times which
are determined by an event-triggered mechanism of evaluating
the operation of the elevator, is more feasible for the mining
cable elevator from the point of view of energy saving.

The event-triggered control system consists of two elements,
namely, a continuous-time feedback control law, and an ETM
that determines triggering times of updating the control law
Heemels et al. (2012). The key task in the design of ETM is
to make sure the minimal dwell time between two triggering
times is nonzero meanwhile the exponential stability of the
closed-loop system is ensured. Most of ETM implementations
are based on feedback control laws of ODE systems. Tabua-
da (2007) introduced a static ETM based on the existence of
an input to state stable control Lyapunov function (ISS-CLF)
and a dynamic triggering mechanism which uses an internal

dynamic variable was proposed in Girard (2015). The event-
triggered algorithms by the value of the derivative of the Lya-
punov function were proposed in Marchand et al. (2013) and
Seuret et al. (2014). Recently, Espitia et al. (2016a) and Espitia
et al. (2016b) originally developed event-triggered strategies to
boundary control of linear hyperbolic PDEs with dissipativity
boundary conditions. Event-triggered boundary control of 2×2
coupled transport PDEs and reaction-diffusion PDEs are also
addressed in Espitia et al. (2018) and Espitia et al. (2019),
respectively.

Compared with Espitia et al. (2018) which designed an event-
triggered backstepping controller for a 2×2 hyperbolic PDEs,
in addition to an ODE coupled at the uncontrolled boundary
of the PDE in our paper, the main contribution here lies in
considering the proximal reflection term in the 2×2 hyperbolic
PDEs, where ETM design would become more difficult because
a higher-order continuous-time boundary stabilization law is
required. A two-step design is proposed to solve this problem,
where a low-pass-filter-based backstepping boundary stabiliza-
tion law is designed, based on which the ETM is designed
sequently to determine the triggering times, shown in Fig.2.

The rest of the paper is organized as follows. The concerned
model and a continuous-time state-feedback controller com-
bining the backstepping method and low-pass filter design are
presented in Section 2. The event-trigged mechanism is built
in Section 3, and the exponential stability of the event-based
closed-loop system is proved via Lyapunov analysis in Section
4. The conclusion and future work are proved in Section 5.

2. PLANT AND CONTINUOUS-TIME CONTROL LAW

The plant considered in this paper is

z(0, t) = pw(0, t)+U(t), (1)
zt(x, t) =−q1zx(x, t)+ c1w(x, t)+ c1z(x, t), (2)

wt(x, t) = q2wx(x, t)+ c2w(x, t)+ c2z(x, t), (3)
w(1, t) = qz(1, t)+C1X(t), (4)

Ẋ(t) = AX(t)+Bz(1, t) (5)
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Fig. 1. Motivation from mining cable elevator with hydraulic-
driven head sheaves.

∀(x, t) ∈ [0,1]× [0,∞). X(t) ∈ Rn×1 are ODE states. z(x, t) ∈
R,w(x, t) ∈ R are states of the 2×2 coupled hyperbolic PDEs.
U(t) is the control input to be designed. q1 and q2 are positive
transport velocities and p, q 6= 0 are arbitrary constants. Damp-
ing coefficients c1,c2 are negative constants. The plant param-
eters satisfy ec2/q2+c1/q1 |pq| < 1, which holds in the elevator
application and also meets the condition of existence of delay-
robust stabilization proposed in Auriol et al. (2018). (A,B) is
assumed as controllable.
Remark 1. That axial vibration dynamics of the mining cable
elevator consisting of the mining cable and cage is described
by a wave PDE -ODE system, which can be transformed to the
2× 2 coupled transport PDE-ODE system considered in this
paper via Riemann transformation Wang et al. (2018d).

For the concern plant, a feedback controller would be designed
via traditional PDE backstepping as follows. Introduce a PDE
backstepping transformation in the following form Meglio et al.
(2018); Wang et al. (2018a):

α(x, t) =z(x, t)−
∫ 1

x
M(x,y)z(y, t)dy

−
∫ 1

x
N(x,y)w(y, t)dy− γ(x)X(t), (6)

β (x, t) =w(x, t)−
∫ 1

x
D(x,y)z(y, t)dy

−
∫ 1

x
J(x,y)w(y, t)dy−λ (x)X(t) (7)

the inverse transformation of which is

z(x, t) =α(x, t)−
∫ 1

x
M (x,y)α(y, t)dy

−
∫ 1

x
N (x,y)β (y, t)dy−G (x)X(t), (8)

w(x, t) =β (x, t)−
∫ 1

x
D(x,y)α(y, t)dy

−
∫ 1

x
J (x,y)β (y, t)dy−P(x)X(t). (9)

Through the above backstepping transformation, (1)-(5) is con-
verted to

α(0, t) =pβ (0, t)+
∫ 1

0
K̄1(x)α(x, t)dx

+
∫ 1

0
K̄2(x)β (x, t)dx+ K̄3X(t)+U(t), (10)

αt(x, t) =−q1αx(x, t)+ c1α(x, t) (11)
βt(x, t) =q2βx(x, t)+ c2β (x, t) (12)
β (1, t) =qα(1, t), (13)

Ẋ(t) =ÂX(t)+Bα(1, t), (14)

where Â is Hurwitz recalling (A,B) is controllable, and
K̄1(x), K̄2(x), K̄3 satisfy

K̄1(x) =pD(0,x)−M(0,x)+
∫ x

0
K̄1(y)M(y,x)dy

+
∫ x

0
K̄2(y)D(y,x)dy, (15)

K̄2(x) =− pJ(0,x)+N(0,x)+
∫ x

0
K̄1(y)N(y,x)dy

+
∫ x

0
K̄2(y)J(y,x)dy, (16)

K̄3 =
∫ 1

0
K̄2(x)λ (x)dx+

∫ 1

0
K̄1(x)γ(x)dx

+ pλ (0)− γ(0). (17)
The condition of the kernels M(x,y), N(x,y), γ(x), D(x,y),
J(x,y), λ (x), M (x,y), N (x,y), G (x), D(x,y), J (x,y), P(x)
are obtained by matching (10)-(14) and (1)-(5) via (6)-(9). De-
tails and the well-posedness proof of the equations of condition
on those kernels are shown in Meglio et al. (2018); Wang et al.
(2018a).

Taking Laplace transformation into (10)-(14), we have
sα(x,s) =−q1αx(x,s)+ c1α(x,s), (18)
sβ (x,s) = q2βx(x,s)+ c2β (x,s), (19)
β (1,s) = qα(1,s), (20)

(sI− Â)X(s) = B1α(1,s). (21)
We obtain the following relationship

α(x,s) = e
(c1−s)x

q1 α(0,s), (22)

β (1,s) = qα(1,s) = qe
(c1−s)

q1 α(0,s), (23)

β (x,s) = e
(c2−s)(1−x)

q2 β (1,s) = e
(c2−s)(1−x)

q2 qe
(c1−s)

q1 α(0,s), (24)

β (0,s) = e
(c2−s)

q2 qe
(c1−s)

q1 α(0,s), (25)

X(s) = (sI− Â)−1B1e
(c1−s)

q1 α(0,s). (26)
(10) can thus be written in the frequency domain as

α(0,s) =U(s)+
[

pe
(c2−s)

q2 qe
(c1−s)

q1 +
∫ 1

0
K̄1(x)e

(c1−s)x
q1 dx

+ K̄3(sI− Â)−1B1e
(c1−s)

q1

+
∫ 1

0
K̄2(x)e

(c2−s)(1−x)
q2 qe

(c1−s)
q1 dx

]
α(0,s). (27)

Choosing the controller as

U(s) =−Ω(s)
[

pe
(c1−s)

q2 qe
(c1−s)

q1 +
∫ 1

0
K̄1(x)e

(c1−s)x
q1 dx

+ K̄3(sI− Â)−1B1e
(c1−s)

q1
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+
∫ 1

0
K̄2(x)e

(c1−s)(1−x)
q2 qe

(c1−s)
q1 dx

]
α(0,s)

=−Ω(s)ψ̄(s)α(0,s) (28)
where Ω(s) is a first-order low-passing filter as follows

Ω(s) =
a0

s+a0
(29)

which can be realized by RC circuits. The constant a0 is a
design parameter making sure

0 < |1−Ω(s)|< 1
|ψ̄(s)|

(30)

for s ∈ C, R(s) ≥ 0. Note that ψ̄(s) in (28) is a proper transfer
function. Inserting (28) into (27), one obtain

[1− (1−Ω(s))ψ̄(s)]α(0,s) = 0 (31)
which means α(0,s)= 0 because 1−(1−Ω(s))ψ̄(s) is nonzero
considering (30). Therefore, applying the backtepping transfor-
mation and the control input U(t) which is realized from U(s)
in (28), then (10) can be regarded as

α(0, t) = 0. (32)
Therefore, the target system is obtained (11)-(14) and (32) and
an extend dynamic of the dynamic controller (28), of which the
realization is shown as following.

Realization of U(s): U(t) is the output signal of the low-passing
filter Ω of which the input signal is Ub(t) derived from previous
backstepping design Meglio et al. (2018),

Ub(t) =− pβ (0, t)−
∫ 1

0
K̄1(x)α(x, t)dx

− K̄3X(t)−
∫ 1

0
K̄2(x)β (x, t)dx. (33)

Recalling the structure of the low-pass filter Ω (64), U(t) is the
solution of the following ODE driven by Ub(t)

U̇(t)+a0U(t) = a0Ub(t). (34)

3. EVENT-TRIGGER MECHANISM

In this section, we introduce an event-triggered control scheme
for stabilization of the 2× 2 coupled hyperbolic PDE-ODE
system (1)-(5). It relies on both the continuous-time control
U(t) and a dynamic event-triggered mechanism (ETM) which
determines triggering times tk (k ≥ 0 and t0 = 0) when the
actuator signal is updated. In other words, the event-triggered
form Ud(t) is the value of the continuous-time U(t) at the time
instants tk for t ∈ [tk, tk+1), i.e.,

Ud(t) =U(tk). (35)
Inserting Ud(t) into (1), we have

z(0, t) =pw(0, t)+Ud(t). (36)
A deviation d(t) between a continuous-time controller and the
event-based one is given as

d(t) =U(t)−Ud(t). (37)
Then (36) can be written as

z(0, t) = pw(0, t)+U(t)−d(t). (38)
Recalling the backstepping transformations and designs of U(t)
in Section 2, the target system becomes (11)-(14) with

α(0, t) =−d(t), (39)
and an extend dynamics of the dynamic controller (34). The
ETM to determine the triggering times of Ud is designed as

tk+1 = inf{t ∈ R+|t > tk|d(t)2 ≥ θV (t)−m(t)}, (40)

where m(t) satisfies the ordinary differential equation,

ṁ(t) =−ηm(t)+λdd(t)2−σV (t)−κ1α(1, t)2−κ2β (0, t)2

(41)

with an initial condition m(0)< 0. Positive constants θ , η , λd ,
σ , κ1, κ2 are to be determined later. V (t) is given as

V (t) =rcX(t)T PX(t)+
1
2

ra

∫ 1

0
eδ1x

β (x, t)2dx

+
1
2

rb

∫ 1

0
e−δ2x

α(x, t)2dx (42)

where a positive definite matrix P = PT is the solution to the
Lyapunov equation ÂT P+PÂ = −Q̂, for some Q̂ = Q̂T > 0.
The positive constants ra,rb,rc,δ1,δ2 are to be determined in
the next section.
Lemma 1. Considering d(t) defined in (37), there exists a pos-
itive constant λa such that

ḋ(t)2 ≤λa

(
d(t)2 +α(1, t)2 +β (0, t)2 +‖α(·, t)‖2

+‖β (·, t)‖2 + |X(t)|2
)

(43)

for t ∈ (tk, tk+1), where λa only depends on the parameters of the
plant, the continuous-time control law and the low-pass filter.

Proof. Recalling (36), (8)-(9) and applying Cauchy-Schwarz
inequality, we have

Ud(t)2 ≤λud

(
α(0, t)2 +β (0, t)2 +‖α(·, t)‖2

+‖β (·, t)‖2 + |X(t)|2
)

(44)

for some positive λud .

Taking the time derivative of (37) and recalling (33)-(34), we
have

ḋ(t)2 = U̇(t)2

≤ a2
0U(t)2 +a2

0Ub(t)2

≤ 2a2
0Ud(t)2 +2a2

0d(t)2 +a2
0Ub(t)2

≤ λa
[
d(t)2 +α(1, t)2 +β (0, t)2 +‖α(·, t)‖2

+‖β (·, t)‖2 + |X(t)|2
]
, t ∈ (tk, tk+1) (45)

for some positive λa, where (44) and (39) are used. Note that
U̇d(t) = 0 because it is constant for t ∈ (tk, tk+1). The proof is
completed.
Lemma 2. Considering m(t) defined in (41), it holds that
m(t)< 0.

Proof. According to (40), events are triggered to guarantee,

d(t)2 ≤ θV (t)−m(t). (46)
Inserting (46) into (41), one obtain

ṁ(t)≤−[η +λd ]m(t)+ [λdθ −σ ]V (t)

−κ1α(1, t)2−κ2β (0, t)2

≤−[η +λd ]m(t) (47)
with choosing

θ ≤ σ

λd
. (48)

Hence, we conclude that m(t)< 0 recalling the initial condition
m(0)< 0.
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The following lemma proves the existence of a nonzero mini-
mal dwell time independent of initial conditions. It contributes
to reduction of the actuation frequency and the well-posedness
of the resulting closed-loop system.
Lemma 3. There exists a minimal dwell-time τ > 0 between
two triggering times, i.e., tk+1− tk ≥ τ > 0 for all k ≥ 0.

Proof. We know from (46), the events are triggered to guar-
antee d(t)2 ≤ θV (t)−m(t) for all t ≥ 0. Define a function ψ

as

ψ(t) =
d(t)2 + 1

2 m(t)

θV (t)− 1
2 m(t)

. (49)

Note that ψ(tk+1) = 1 because the event is triggered and
ψ(tk) ≤ 0 because of m(t) ≤ 0 and d(tk) = 0. Note that ψ(t)
is a continuous function on [tk, tk+1] due to continuity and well-
posedness of this class of 2× 2 hyperbolic PDE-ODE system
according to Meglio et al. (2018). By the intermediate value
theorem, there exists t∗ ∈ [tk, tk+1] to make ψ(t∗) = 0. The
minimal τ depends on the time it takes for ψ(t) from 0 to 1.

Taking the time derivative of V (t) (42), we obtain,

V̇ (t) =− rcX(t)T QX(t)+2rcXT PBα(1, t)

+q2ra

∫ 1

0
eδ1x

β (x, t)βx(x, t)dx

−q1rb

∫ 1

0
e−δ2x

α(x, t)αx(x, t)dx

+ rac2

∫ 1

0
eδ1x

β (x, t)2dx+ rbc1

∫ 1

0
e−δ2x

α(x, t)2dx

=− rcX(t)T QX(t)+2rcXT PBα(1, t)

+
1
2

q2raeδ1β (1, t)2− 1
2

q2raβ (0, t)2

− 1
2

δ1q2ra

∫ 1

0
eδ1x

β (x, t)2dx

− 1
2

q1rbe−δ2α(1, t)2 +
1
2

q1rbd(t)2

− 1
2

δ2q1rb

∫ 1

0
e−δ2x

α(x, t)2dx+ rac2

∫ 1

0
eδ1x

β (x, t)2dx

+ rbc1

∫ 1

0
e−δ2x

α(x, t)2dx (50)

where (39) is used. It is straightforward to have

V̇ (t)≥−µ0V −λα α(1, t)2−λβ β (0, t)2 +λ1dd(t)2 (51)

for some positive µ0,λα ,λβ and λ1d = 1
2 q1rb.

According to (42), defining Ω(t) = ‖α(·, t)‖2 + ‖β (·, t)‖2 +
|X(t)|2, the following inequality holds

ξ1Ω(t)≤V (t)≤ ξ2Ω(t) (52)
for some positive ξ1,ξ2 Taking the derivative of (49) and using
(41), (43), (51), (52), we have

ψ̇(t) =
2d(t)ḋ(t)+ 1

2 ṁ(t)

θV (t)− 1
2 m(t)

−
θV̇ (t)− 1

2 ṁ(t)

θV (t)− 1
2 m(t)

ψ(t)

≤ 1
θV (t)− 1

2 m(t)

[
2λa

(
d(t)2 +α(1, t)2 +β (0, t)2

+‖α(·, t)‖2 +‖β (·, t)‖2 + |X(t)|2
)
+4d(t)2 +

1
2

ṁ(t)
]

− 1
θV (t)− 1

2 m(t)

[
θ

(
−µ0V (t)−λα α(1, t)2

−λβ β (0, t)2 +λ1dd(t)2
)
− 1

2
ṁ(t)

]
ψ(t)

≤ 1
θV (t)− 1

2 m(t)

[
2λad(t)2 +2λaα(1, t)2 +2λaβ (0, t)2

+2λa‖α(·, t)‖2 +2λa‖β (·, t)‖2 +2λa|X(t)|2

+4d(t)2− 1
2

ηm(t)+
1
2

λdd(t)2

− 1
2

σV (t)− 1
2

κ1α(1, t)2− 1
2

κ2β (0, t)2
]

− 1
θV (t)− 1

2 m(t)

[
−θ µ0V (t)−θλα α(1, t)2

−θλβ β (0, t)2 +θλ1dd(t)2 +
1
2

ηm(t)− 1
2

λdd(t)2

+
1
2

σV (t)+
1
2

κ1α(1, t)2 +
1
2

κ2β (0, t)2
]

ψ(t)

≤ 1
θV (t)− 1

2 m(t)

[(
2λa +4+

1
2

λd

)
d(t)2

+

(
2λa−

1
2

κ1

)
α(1, t)2

+

(
2λa−

1
2

κ2

)
β (0, t)2 +

2λa

ξ1
V (t)− 1

2
ηm(t)

]
+

1
θV (t)− 1

2 m(t)

[
θ µ0V (t)+

(
θλα −

1
2

κ1

)
α(1, t)2

+

(
θλβ −

1
2

κ2

)
β (0, t)2−

(
θλ1d−

1
2

λd

)
d(t)2

− 1
2

ηm(t)− 1
2

σV (t)
]

ψ(t). (53)

Note that the following inequalities

−
1
2 ηm(t)

θV (t)− 1
2 m(t)

≤−
1
2 ηm(t)

− 1
2 m(t)

= η ,

V (t)
θV (t)− 1

2 m(t)
≤ V (t)

θV (t)
=

1
θ
,

d(t)2

θV (t)− 1
2 m(t)

=
d(t)2 + 1

2 m(t)− 1
2 m(t)

θV (t)− 1
2 m(t)

≤ ψ(t)+1

hold because of m(t)< 0. Choose

κ1 ≥max{2λa,2θλα},κ2 ≥max{2λa,2θλβ}, (54)

we thus obtain

ψ̇(t)≤
(2λa +4+ 1

2 λd)d(t)2 + 2λa
ξ1

V (t)− 1
2 ηm(t)

θV (t)− 1
2 m(t)

+ηψ(t)

+µ0ψ(t)+
(

1
2

λd−θλ1d

)
(ψ(t)2 +ψ(t))

≤
(

2λa +4+
1
2

λd

)
ψ(t)+2λa +4+

1
2

λd

+
2λaV (t)

ξ1θV (t)− 1
2 m(t)

+
− 1

2 ηm(t)

θV (t)− 1
2 m(t)

+µ0ψ(t)+
(

1
2

λd−θλ1d

)
ψ(t)2

+

(
1
2

λd−θλ1d +η

)
ψ(t)
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Fig. 2. Event-based closed-loop system.

≤
(

1
2

λd−θλ1d

)
ψ(t)2 +4+

1
2

λd +2λa +
2λa

ξ1θ
+η

+(2λa +4+λd−θλ1d +η +µ0)ψ(t). (55)
This differential inequality has the form

ψ̇ ≤ n1ψ
2 +n2ψ +n3 (56)

where

n1 =
1
2

λd−θλ1d , (57)

n2 = 2λa +4+λd−θλ1d +η +µ0, (58)

n3 = 4+
1
2

λd +2λa +
2λa

ξ1θ
+η (59)

are positive constants by choosing

θ ≤min
{

λd

2λ1d
,

σ

λd

}
(60)

considering (48). The estimate of the minimal time taken by
ψ(t) from 0 to 1 is at least Espitia et al. (2018):

τ =
∫ 1

0

1
n1 +n2s̄+n3s̄2 ds̄ > 0. (61)

The proof of this lemma is completed.

4. STABILITY ANALYSIS OF THE EVENT-BASED
CLOSED-LOOP SYSTEM

The event-based closed-loop system is built as Fig. 2, where a
backstepping control law Ub(t) (33) going through a low-pass
filter to generate a “smooth” continuous-time stabilization law
U(t) (34) which is updated at time instants tk determined by ET-
M (40)-(41), producing an event-triggered control input Ud(t)
to regulate the PDE plant (1)-(5). Because w(0, t) associated
with H1 norm exists in the control law, initial conditions of the
plant belonging to H1 is required to ensure the control law being
well-defined.
Theorem 1. For any initial data (z(x,0),w(x,0)) ∈ H1(0,1)×
H1(0,1), exponential stability of the system (1)-(5) under the
event-based controller Ud(t) holds in the sense that exists
positive constants ϒ1 and λ1 such that(

‖z(·, t)‖2 +‖w(·, t)‖2 + |X(t)|2 + |m(t)|2 +U(t)2
) 1

2

≤ϒ1

(
‖z(·,0)‖2 +‖w(·,0)‖2 + |X(0)|2

+ |m(0)|2 +U(0)2
) 1

2
e−λ1t ,

where ‖ · ‖ denotes L2 norm and | · | is Euclidean norm.

Proof. Define a Lyapunov function as

Va(t) =V (t)−m(t)+
1
2

U(t)2 (62)

where m(t) < 0 is defined in (41) and V (t) is given in (42).
U(t) is the state of the extend dynamics, i.e., the output of the
low-pass filter. There exist positive constants ξ̄1, ξ̄2 such that

ξ̄1Ω̄(t)≤Va(t)≤ ξ̄2Ω̄(t), (63)

Ω̄(t) = |X |2 +‖α‖2 +‖β‖2 + |m(t)|2 +U(t)2. (64)

Taking the derivative of (62) along (11)-(14), (34), (39), recall-
ing (41), (50), one obtain

V̇a(t) =V̇ − ṁ(t)+U(t)U̇(t)

=− rcX(t)T QX(t)+2rcXT PBα(1, t)

+
1
2

q2raeδ1β (1, t)2− 1
2

q2raβ (0, t)2

− 1
2

δ1q2ra

∫ 1

0
eδ1x

β (x, t)2dx

− 1
2

q1rbe−δ2α(1, t)2 +
1
2

q1rbd(t)2

− 1
2

δ2q1rb

∫ 1

0
e−δ2x

α(x, t)2dx+ηm(t)

−λdd(t)2 +σV (t)+κ1α(1, t)2 +κ2β (0, t)2

+a0U(t)(Ub(t)−U(t))

≤−
(

3rc

4
λmin(Q)−2a0|K̄3|2

)
|X(t)|2−

[
1
2

q1rbe−δ2

− |PB|2rc

λmin(Q)
− 1

2
q2raeδ1q2−κ1

]
α(1, t)2

−
(

1
2

q2ra−κ2−2p2a0

)
β (0, t)2

−
(

1
2

δ1q2ra−2a0‖K̄2‖2
)∫ 1

0
eδ1x

β (x, t)2dx

+

(
1
2

q1rb−λd

)
d(t)2

−
(

1
2

δ2q1rb−2a0‖K̄1‖2eδ2

)∫ 1

0
e−δ2x

α(x, t)2dx

+ηm(t)+σV (t)− a0

2
U(t)2,

where

Ub(t)2 ≤4p2
β (0, t)2 +4‖K̄1‖2

∫ 1

0
α(x, t)2dx

+4|K̄3|2|X(t)|2 +4‖K̄2‖2
∫ 1

0
β (x, t)2dx (65)

which holds by recalling (33), is used.

κ1,κ2,ra,rb,rc,λd are chosen as

rc >
16a0|K̄3|2

3λmin(Q)
, (66)

ra >
1
q2

max
{

8max{λa,θλβ},8p2a0,
8a0‖K̄2‖2

δ1

}
, (67)

rb >
1
q1

max
{

8max{λa,θλα}eδ2 ,
4rc|PB|2

λmin(Q)
eδ2

+2q2raeδ1q2eδ2 ,
8a0

δ2
‖K̄1‖2eδ2

}
, (68)

2max{λa,θλα} ≤ κ1 ≤
1
2

q1rbe−δ2 − rc|PB|2

λmin(Q)
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− 1
2

q2raeδ1q2, (69)

2max{λa,θλβ} ≤ κ2 ≤
1
2

q2ra−2p2a0, (70)

λd =
1
2

q1rb, (71)

and δ1,δ2 can be arbitrary positive constants. Note that (67) en-
sures 1

2 q2ra−2p2a0 >
1
4 q2ra > 2max{λa,θλβ} and 1

2 δ1q2ra−
2a0‖K̄2‖2 > 1

4 δ1q2ra, and (68) has the same purpose. The left
terms in (69)-(70) are from (54).

We thus arrive
V̇a(t)≤−(νa−σ)V +ηm(t)− a0

2
U(t)2

≤−min{(νa−σ),η ,a0}Va(t) (72)
where

νa =
1
ξ1

min
{

3rc

8
λmin(Q),

1
4

δ1q2ra,
1
4

δ2q1rbe−δ2

}
(73)

and ξ1 is in (52). By choosing
σ < νa, (74)

(72) then becomes
V̇a ≤−λ̄1Va(t) (75)

where λ̄1 = min{(νa − σ),η ,a0} > 0 and η > 0 is a free
constant. Recalling (63)-(64), we obtain

|X |2 +‖α‖2 +‖β‖2 + |m(t)|2 +U(t)2 ≤ ξ̄2

ξ̄1

(
|X(0)|2

+‖α(·,0)‖2 +‖β (·,0)‖2 + |m(0)|2 +U(0)2
)

e−λ̄1t . (76)

Recalling the backstepping transformation and its inverse in
(6)-(9) which guarantee the equivalence between the target
system-(α,β ,X) and the original system-(z,w,X). The proof
of Theorem 1 is completed.
Remark 2. Adding an additional condition θ < min{ 1

λα
, 1

λβ
}

can decouple the sufficient conditions (60), (66)-(71), (74) of
the nonzero dwell time and exponential stability of the event-
based closed-loop system, and make the solution easier to get
in practice.

5. CONCLUSION

In this paper, an event-triggered backstepping boundary con-
troller for a 2× 2 hyperbolic PDE-ODE system is proposed
via a two-step design, including the design of a low-pass-filter-
based backstepping boundary stabilization law and the design
of an ETM which determines triggering times of updating the
continuous-time control law. The nonzero minimal dwell time
between two triggering times and the exponential stability of
the event-based closed-loop system are proved. This design can
be applied into vibration control of a mining cable elevator
driven by hydraulic cylinders at the head sheaves, where the
frequent actions of the massive cylinder can be avoided. The
design of an output-feedback form of the event-triggered back-
stepping boundary controller and the simulation test would be
conducted in the future work.
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