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Abstract: In recent years Reinforcement Learning (RL) has achieved remarkable results.
Nonetheless RL algorithms prove to be unsuccessful in robotics applications where constraints
satisfaction is involved, e.g. for safety. In this work we propose a control algorithm that allows to
enforce constraints over a learned control policy. Hence we combine Nonlinear Model Predictive
Control (NMPC) with control-state trajectories generated from the learned policy at each time
step. We prove the effectiveness of our method on the Pendubot, a challenging underactuated

robot.
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1. INTRODUCTION

In recent years Reinforcement Learning (RL) has proven
to be particularly successful in extremely complex appli-
cation scenarios. From beating professional gamers (Silver
et al., 2016; Vinyals et al., 2019) to dexterous in-hand
manipulation for solving a Rubik’s cube (OpenAl et al.,
2018), the RL methods are at the forefront of the artificial
intelligence research. These results are possible because
in RL the learning process generally does not require any
analytical model of the controlled system. The final policy,
which can be highly nonlinear, is the result of the optimiza-
tion of the expected sum of the reward signals gathered by
the agent while interacting with the environment, as shown
by Sutton and Barto (1998).

Nonetheless, real robotics applications pose many chal-
lenges which greatly diverge from the classical RL assump-
tions (Kober et al., 2013): continuous control and state
spaces, need to be data efficient if the learning procedure is
performed directly on the robot, and the necessity of state
and control constraints which can guarantee, for example,
safety conditions.

In the last two decades many efforts have been devoted
to improve the effectiveness of RL in robotics scenarios.
Policy Search (PS) methods (Deisenroth et al., 2013) rep-
resent a first attempt to overcome the issue of directly
estimating the optimal cost-to-go for each state, a problem
that becomes rapidly intractable for robotics applications.
PS approaches optimize directly the expected return of a
parametrized policy. More recently, other solutions have
been proposed to deal with continuous control-state space
such as Deep Deterministic Policy Gradient (DDPG) (Lil-
licrap et al., 2016). Moreover, in the literature it has been
shown that PS approaches can effectively cope with the
data efficiency issue if a model of the controlled system
is learned in combination with a control policy (Deisen-
roth and Rasmussen, 2011). Chatzilygeroudis et al. (2017)
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Fig. 1. The Pendubot performing a swing-up maneuver
with the proposed approach.

present a state-of-the-art model-based PS method which
combines a black-box optimization with a gaussian process
surrogate model.

Fewer works consider the problem of constraints satis-
faction. In RL this issue is usually addressed by extend-
ing the reward with a penalty term. This approach has
however several drawbacks and feasibility is not always
assured. Achiam et al. (2017) propose an actor-critic ap-
proach based on a constrained Markov decision process
formulation, which is solved by approximations. Similarly
as in Cheng et al. (2019), a penalization term is added
to limit constraint violations, thus increasing the safety
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of the learned policy. Another recent work (Heim et al.,
2019) introduces an algorithm to learn the viability kernel
directly in the control-state space. Even though it provides
an estimation of a safety measure while learning, this pro-
cedure is conservative by construction and might converge
slowly in a large control-state space.

On the other hand, Model Predictive Control (MPC) is an
optimization-based control technique applied to dynamical
systems. MPC optimizes an objective function based on
a predicted evolution of the system state (Rawlings and
Mayne, 2009; Borrelli et al., 2017). The possibility of
including input and state constraints in the optimization
problem, together with its inherent robustness, make MPC
one of the most successful strategies. Even though a large
number of algorithms have been developed for efficiently
computing a solution, in general, for nonlinear control
problems, the use of MPC in real time is typically not
straightforward. Usually a simplified prediction model is
convenient and, when the final state is not reachable in a
small time frame, the knowledge of a reference trajectory
for the entire task is required.

Many works aim at achieving better performance through
the combination of an MPC with data driven approaches.
One of the first attempt to combine RL and MPC has
been presented by Zhong et al. (2013), where an offline
estimation of the value function is used as a final cost
in an unconstrained iterative linear quadratic regulator.
Tamar et al. (2017) propose iterative learning of a term in
the objective function to incorporate long-term reasoning
into the MPC. Other works have applied data driven tech-
niques to learn a predictive model for MPC (Nagabandi
et al., 2018; Kamthe and Deisenroth, 2018). More recent
contributions towards the combination of MPC and RL are
due to Mansard et al. (2018) and Farshidian et al. (2019).

Here we introduce an algorithm for combining MPC and
RL that tries to overcome the aforementioned issues.
We propose an optimal controller based on state-of-the-
art Nonlinear MPC (NMPC) solvers that allows for con-
straints satisfaction and can be used in real-time on chal-
lenging robotic systems. We explore how the continuous
interaction between the control policy and the MPC can
take care of constraints satisfaction in a real application
scenario. The performance of our method is tested both
in simulation and experiments on a challenging underac-
tuated robotic system, the Pendubot (see Fig. 1).

This paper is organized as follows. Sec. 2 describes the
control architecture, the RL algorithm and the NMPC
formulation. The Pendubot case study is developed in
Sec. 3, which also presents the simulation and experimen-
tal results. Future developments are briefly discussed in
Sec. 4.

2. THE CONTROL ALGORITHM

The proposed method consists of two different phases. In
the first phase any RL approach can be used to learn
an offline policy that solves the desired task. In our case
we use Deep Deterministic Policy Gradient (DDPG) from
Lillicrap et al. (2016). In the second phase, once a control
policy is learned, we can employ this information online to
provide a guidance for an MPC. Here we define an NMPC
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Fig. 2. Block scheme of the proposed approach.

problem and provide an online solution using the Real-
Time Iteration scheme (RTI) (Diehl et al., 2005), which
is a Sequential Quadratic Programming (SQP) variant.
At each time step, starting from the current state, the
learned policy is applied to a simulated robot model
over a fixed prediction horizon. The resulting control-state
trajectory is passed as a reference to the cost function of
the NMPC, which allows to transfer the policy learned
offline into an optimal control problem to enforce the
constraints satisfaction. Afterwards, the resulting optimal
control action is applied to the physical robot, which in
turn reaches a new state where the procedure is then
restarted. A block scheme of the proposed algorithm is
shown in Fig. 2.

Our method is capable to find a successful solution under
the assumption that the control policy has learned a
sequence of actions to accomplish the given task at least
in a subset of the feasible region. In practice, an extensive
training phase and a large exploration of the control-
state space can ensure the validity of the aforementioned
hypothesis.

2.1 Offline Policy Learning

Let us consider X C R" and U C R™ the state and
control space of our system. Moreover, we denote with
w(x) : X — U the control policy, and with u; € U,
x; € X respectively the control action and the system
state defined at time t¢.

DDPG is an actor-critic algorithm where the control policy
7(x]|0™) and the Q-Value function Q(z, w(z|69)) : X x
U — U are both approximated with two neural networks,
where 8™ € R~ and 69 € R"@ are their parameters. The
actor 7, given the actual state x;, outputs a control action
u, while the critic @ provides an estimate of the Q-Value
function for the pair (u:, ;). During the offline training
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phase, at each time step, the agent applies an action u; =
7 (x¢) to the simulated robot and collects a reward r; from
the environment. The generated experience represented by
(z¢, ut, e, @ y1) s stacked inside the Replay Buffer (RB),
an array that contains a fixed number of elements I. To
stabilize the learning procedure, two additional copies of
the actor, w’(m\@”/) and the critic Q’(m,w($)|0Q/) are
used in the algorithm.

The DDPG alternates between updating the Q-Value
function and the control policy. The learning process is
performed at a fixed frequency during the exploration
phase of the agent. The update of the parameters 6 =

(OQ,B”,HQ,B"/) follows the subsequent steps: first, we
randomly retrieve n samples from the RB, where n rep-
resents the chosen batch size. For each experience i only
the new state x;y; is passed to the actor copy network
7/ which returns the action w;y1. The pair (w; 41, ®;41) is
used as input to Q' that estimates the associated Q-Value.
The obtained result is then combined with the sampled
experience reward r; to compute the temporal difference,
which is defined as

Yi =71 +7 Q (i1, 7 (wi 1|07 )|9Q )s

where 7 is the discount factor. The final loss L, calculated
by subtracting to y; the @ function computed over the
sampled values (u;, ;) as

1
L= (v~ Qlai,uil09)?),
3
is then used to retrieve the gradient for the critic Q.
Finally the actor gradient 7 can be approximated as

1 -
Vorm = ; Z qu(wa u|0Q)|wi7ﬂ'(wi)v9‘"Tf($|0 )

i

Each gradient is then back-propagated to update the
values of the parameters 6.

At the end of the training phase, the control policy
is obtained and will be quickly used to generate the
reference trajectory for the NMPC. During the offline
policy learning phase constraints cannot be explicitly
enforced, but their violation can only be penalized trough
the reward function.

2.2 NMPC for Online Constraints Satisfaction

NMPC is an advanced control method that uses a nonlin-
ear dynamic model of a system to define a finite-time con-
strained Optimal Control Problem (OCP) that is solved
numerically in an iterative fashion. We define with N the
prediction horizon length. Let

T(mt) = {(urlk,m:|k)7k = 0,,N}

represents the control-state reference trajectory where Ty
and ug, = m(xy),) are the state and control input at
t + k generated by forward integrating the simulation
robot model with 7r(-) from the initial condition x; € X.
Given xy, € X, uyp, € U and sy, € R which denote,
respectively, states, controls and slack variables for hard
constraints relaxation, the resulting NMPC problem is

1 N-1
: 2
ut\Uvmg}ﬁ\N—l 5 H(wtlk _w;k’ utlk _u;\k)HW—i_
S¢105+1St|N k=0

1 0 N
§||15t|N — )y, + 5 Z |84kl
k=0

s.t.

Tio — ¢ =0,

Ty o1 — f(®yp,wyy) =0, k=0,...,N—1,
h(zy s, wyr) + Sy <0, k=0,...,N—1,
hy(xypqn) + Seppyn <0,

where the nonlinear function f(-) represents the discrete
model dynamics, and h(-), hy(-) € R™ the vector of path
and terminal constraints. Finally, the positive-definite ma-
trices W, Wy > 0 and the scalar p > 0 represent the
weights terms.

It is important to notice that each time the system reaches
a new state x;y1, before solving the NMPC problem, an
update of the reference control-state trajectory is required.
Hence, to generate the new trajectory, the policy 7 learned
offline is applied to the simulated robot. The resulting
control-state trajectory T (z¢11) is used as a reference in
the cost function of the NMPC problem. Updating the
reference trajectory plays a central role in the proposed
algorithm. Thus, in the event that the current reference
trajectory violates the constraints, the NMPC will drive
the system away from the current reference trajectory,
which will become obsolete.

In real-time applications, the NMPC needs to be solved at
every sampling instant under tight runtime requirements.
Here we employed the real-time iteration (RTT) scheme.
The main idea consists in warm-starting the problem
with the previous solution shifted by one sample and
performing only one SQP iteration with Gauss-Newton
Hessian approximation per each time step. A complete
overview of the algorithm can be found in (Diehl et al.,
2005).

3. CASE STUDY

We tested the proposed controller on the Pendubot
(Fig. 1), an underactuated, planar, robotic system com-
posed by two links and two rotary joints used in education
and in research as a benchmark for nonlinear control
schemes. The Pendubot moves in a plane. The base link is
directly connected (no reduction gears) to a motor while
the second link can only be passively driven by the existing
dynamic coupling with the first link.

We consider the problem of swinging up and balancing the
robot around the up-up equilibrium starting from the sta-
ble down-down equilibrium, while satisfying the imposed
velocity constraints. We define a coordinate system where
the desired final state is ¢, = (g1 g2 ¢1 ¢2)* = (000 0)7,
with ¢; and ¢; respectively the position and the velocity of
the i-th joint (Fig. 3). The joint position ¢; is measured
with respect to the upwards vertical axis, while the angle
g2 is defined relatively to the first joint.

In the following we will describe the mathematical model
of the system, and the setup of the learning and control
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Fig. 3. Schematic of the Pendubot coordinate system.

phases. Moreover, we will show the behaviour of the
Pendubot under two different constraint settings, either in
simulation and on the real platform. Finally, we will show
that the continuous update of the reference trajectory is
critical to successfully achieve the desired task.

3.1 The Simulated Robot Model

Given the dynamics formulation of the system
B(q)q+c(q,q) + 9(q) = u,

where ¢ = (q1 ¢2)” and ¢ = (g1 ¢2)7, the Pendubot model
can be written as

(A1 +2A5co8q2 A+ Ascosqgo
B(q) = ( symmetric As ’

As sin gagi 2
_ [Aagsing: + Asgsin (q1 + ¢2) (7
9(a) = ( Asgsin (1 + q2) E\(

where g represents the gravity and 7 the torque input. The
A; coefficients can be written as

A =11+ 1, + mlaf + mg(l% + a§)7
Az = malias,

c(q,q) = (—A3 sin gagag1 — Assin g2(g1 + 42)d2> 7

)

Ay =15 + mgag,

Ay =miar +mali,  As =maaz,
where I; and m,; are, respectively, the moment of inertia
and the mass of the i-th link, I; represents the length of
i-th link and a; is the distance of the center of mass of the
i-th link from the center of the i-th joint. Moreover, the
physical parameter values for the Pendubot are listed in
Table 1.

Table 1. Pendubot physical parameters.

i (m) [ m (kg) | i (kgm?) [ a; (m)
joint 1 0.1492 0.193 0.0004 0.1032
joint 2 0.1905 0.073 0.0002 0.1065

3.2 Offline Learning Phase

The learning of the control policy 7 is performed offline
using the simulated robot model described in Sec. 3.1.
In order to train =, a reward function must be defined.
The function used here penalizes the distance between the
current state and the desired one x, = (0 0 0 0)”. Thus,
we define the reward r(x) as

7“(33) = —Tl(Q) - Oszg(i]) - O‘T‘T|7 (2)
where «,,, a, are weighting parameters, and 1 (q) = |q1|+
|g2]. Moreover, as it is desired to have an upper limit on the

joint velocities, both in experiments and in simulations,
the quantity 72(q) = |¢1| + |gz| is introduced in eq. (2).
Finally, the term —c|7| is used to minimize the control
effort.

3.8 Online Control Phase

We show that our approach can enforce constraints over
an offline learned control policy while still successfully per-
forming the task. The Pendubot system is characterized
by an highly nonlinear and fast dynamics. Therefore an
high frequency controller is necessary to reach the desired
goal. The proposed framework runs in real-time with a
control frequency of 500 Hz. To solve the NMPC for both
the simulations and the experiments we used the ACADO
Toolkit (Houska et al., 2011), with a fixed prediction
horizon of N = 10. The simulated robot model defined
in Sec. 3.1 is used both within the NMPC optimization
problem and for generating the desired reference trajectory
with the policy 7 at each time step.

The swing-up of the Pendubot can be performed either
rapidly or with an energy pumping maneuver, reaching the
desired state x, through an oscillatory motion. In both
cases, when the state is close to x4, a local controller,
usually based on a linearization of the system around
the final equilibrium point, can be used for the balancing
phase. To this end we implemented a Linear Quadratic
Regulator (LQR) for the experiment on the real platform.

Since the robot is only equipped with encoders, angular
velocities are numerically derived from position measures.

8.4 Simulation and Experimental Results

In this section we show the results obtained in simulation
and on the real robot, under two different constraint set-
tings. The control policy, learned as explained in Sect. 2.1,
is able to solve the swing-up including the balancing phase.
The maximum velocities reached in simulation during the
motion are 9.2 rad/sec and 9.8 rad/sec for the first and
second joint, respectively. For clarity, in Fig. 4, Fig. 5 and
Fig. 6, we represent with blue lines the solution obtained
with the NMPC, and with the red dashed lines the state
trajectory g obtained using only the control policy .

In the first setting, we impose a symmetric velocity con-
straint ¢; , = 7.2 rad/sec on the first joint and a maximum
admissible torque 713, = 0.4 N -m. We compare our
approach with an NMPC where the reference trajectory
obtained by the control policy is never updated. In the
first row of Fig. 4 we show the results obtained with our
approach. Due to the imposed constraints, the proposed
controller steers the system to new feasible states, forcing
the policy to recalculate a different trajectory, while suc-
cessfully reaching the up-up configuration. On the other
hand, if an NMPC with a fixed reference trajectory is used,
the robot does not reach the desired final configuration
as shown in Fig. 4 (bottom). It is therefore clear from
these results, that recomputing the control-state trajectory
at each time step is crucial to successfully complete the
desired task.

In the next simulation, we define a second constraints
setting, with ¢1, = 7.8 rad/sec, 71, = 0.4 N-m and
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Fig. 5. Simulation result obtained with the constraints ¢; , = 7.8 rad/sec, g2, = 5 rad/sec.

go,p = b rad/sec for the angular velocity of the second
joint. As shown in Fig. 5, our controller is still able
to perform the desired task. The maximum admissible
velocity for the second joint is quickly reached, and the
final motion of the system has a larger change with respect
to the solution obtained with the first constraints setting.

Finally, we validated our approach on the real Pendubot
system using the second constraints setting. Controlling
the real robot involves additional challenges due to model
uncertainties. Fig. 6 shows that our method is able to
successfully perform the swing-up maneuver despite the
velocity constraints. In this experiment a final LQR is
used to stabilize the system around the equilibrium point,
and the use of soft constraints in the NMPC formulation
becomes necessary to avoid infeasibility due to model
inaccuracies. Indeed, the introduction of slack variables
determines small constraint violations of 0.1 rad/s and 1
rad/s, respectively on the first and second joint velocities
(see Fig. 6). Thus, the oscillatory behaviour, that is visible
on the velocity of the second joint (Fig. 6), depends
on the effect of the cost minimization associated to the
constraints violation. Model and parameters uncertainties,
due to mechanical wear and time varying dynamics (like
the dynamic friction induced by the sliding contacts for
the encoder of link 2), explain the difference between the
results obtained in simulation and on the real robot.

A video with the experimental results is available at
https://youtu.be/5KATfbDwK1I.

4. CONCLUSIONS AND FUTURE WORK

In this work we present an approach for imposing con-
straints to a learned control policy. We test the proposed
controller both in simulation and on a real Pendubot
robot, showing that the continuous interplay between the
NMPC and the learned policy is at the base of the con-
straints enforcement.

In the future, we plan to extensively study the NMPC
steering capabilities. Not every constraint can be arbitrar-
ily imposed in the optimization problem, since no assump-
tion is made over the policy capability @ to generate a
satisfactory trajectory in the feasible region. A possible
solution will be to automatically retrieve an index that
measures the ability of the policy to accomplish the given
task from any state, relaxing the constraints when it is
needed using the slack variables. A second extension will
be the improvement of the robustness over model uncer-
tainties. Multiple policies can be learned in simulation
with different dynamical parameters, and the choice of the
appropriate 7 can be recomputed online within the NMPC
formulation.
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