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Abstract: In this paper, a proof of asymptotic stability for the combined system-optimizer
dynamics associated with a class of real-time methods for equality constrained nonlinear model
predictive control is presented. General Q-linearly convergent online optimization methods are
considered and asymptotic stability results are derived for the case where a single iteration of
the optimizer is carried out per sampling time. In particular, it is shown that, if the underlying
sampling time is sufficiently short, asymptotic stability can be guaranteed. The results constitute
an extension to existing attractivity results for the well-known real-time iteration strategy.
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1. INTRODUCTION

Nonlinear model predictive control (NMPC) is an opti-
mization based control strategy that relies on the solution
of parametric nonlinear noncovex programs (NLP) in order
to compute an implicit feedback policy. Due to the consid-
erable computational burden associated with the solution
of such NLPs, NMPC has first found application in fields
where the sampling times are generally slow enough to
carry out the required computations. In particular, since
the 1970s, successful applications of NMPC have been
reported in the process control industry (Rawlings et al.,
2017).

In more recent years, due to the significant progress
in the development of efficient algorithms and software
implementations and due to the increasing computational
power available on embedded control units, NMPC has
gradually become a viable strategy for applications with
much shorter sampling times. Among others, we report on
recent applications such as (Zanelli et al., 2019b), (Albin
et al., 2017) and (Besselmann et al., 2015), where sampling
times in the milli- and microsecond range are met.

In order to alleviate the computational burden associ-
ated with NMPC, inexact approaches are often exploited
that rely on the computation of approximate solutions
to the underlying NLPs. The so-called real-time iteration
(RTI) method proposed in (Diehl, 2002) exploits a single
iteration of a sequential quadratic programming (SQP)
algorithm in order to compute an approximate solution
of the current instance of the nonlinear program. By us-
ing this solution to warmstart the SQP algorithm at the
next sampling time, it is possible to track an optimal
solution and eventually converge to it, as the system’s
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state is steered to a steady state. An attractivity proof
for such an algorithm is derived in (Diehl et al., 2007) for
a simplified setting where inequalities are not present or
inactive in the entire region of attraction of the closed-
loop system. Other real-time algorithms with stability
guarantees are the relaxed-barrier anytime MPC for linear-
quadratic problems (Feller and Ebenbauer, 2017), and the
approach for general nonlinear systems in (Graichen and
Kugi, 2010) that assumes a decrease over time of the cost
function. Finally, in the recent paper by Liao-McPherson
et al. (2019), under rather general settings, stability is
established with the requirement that a sufficiently large
number of iterations are carried out per sampling time.

In the present paper, the results in (Diehl et al., 2007)
are extended such that not only attractivity, but also
stability of the combined system-optimizer dynamics can
be guaranteed.

1.1 Notation

Throughout the paper we will denote the Euclidean norm
by ‖ · ‖, when referring to vectors, and, with the same
notation, to the spectral norm

‖A‖ :=
√
λmax (A>A), (1)

when referring to a (real) matrix A. All vectors are column
vectors and we denote the concatenation of two vectors by

(x, y) :=

[
x
y

]
. (2)

We denote the derivative (gradient) of any function by

∇f(x) = ∂f
∂x (x)> and the Euclidean ball of radius r

centered at x as

B(x, r) := {y : ‖x− y‖ ≤ r}. (3)

Finally, we denote the identity matrix by I.
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2. INDEPENDENT SYSTEM AND OPTIMIZER
DYNAMICS

Consider the following continuous-time optimal control
problem:

min
s(·),u(·)

∫ Tf

0

l(s(t), u(t))dt+m(s(Tf ))

s.t. s(0)− x = 0,

ṡ(t) = φ(s(t), u(t)), t ∈ [0, Tf ],

(4)

where s : R → Rnx and u : R → Rnu represent the
state and input of a system, respectively, whose dynamics
are described by φ : Rnx × Rnu → Rnx . The functions
l : Rnx × Rnu → R and m : Rnx → R represent the
Lagrange and Mayer cost terms, respectively. Finally, x is
a parameter describing the current state of the system and
we assume, without loss of generality, that φ(0, 0) = 0.

We will regard a discretized version of (4) obtained with
some discretization method (e.g. multiple shooting):

P (x) :
min
y

f(y)

s.t. g(y) +Bx = 0,
(5)

where y ∈ Rn describes the primal variables of the
discretized problem, f : Rn → R and g : Rn → Rng . The
parameter x enters the equality constraints through the
linear map defined by the constant matrix B ∈ Rng×nx .

Assumption 1. The functions f and g are twice contin-
uously differentiable and have bounded first and second
order derivatives.

Let X ⊆ Rnx denote the set that contains all the possible
values of x such that P (x) has at least one solution. We will
restrict our attention to the set XV̄ := {x : V (x) ≤ V̄ },
with

V (x) := f(ȳ(x)), (6)
and where ȳ(x) solves P (x). Let ū(x) denote the feedback
policy

ū(x) := Mu,y ȳ(x) (7)
implicitly defined by P (x), for some constant projection
matrix Mu,y, where ‖Mu,y‖ = 1 is assumed for simplicity.

2.1 System Dynamics

The system under control obeys the following sampled-
feedback closed-loop dynamics:

Definition 2. (System Dynamics). Let the following dif-
ferential equation describe the dynamics of the system
controlled using a constant input u0:

dψ

dt
(t;x0, u0) = φ(ψ(t;x0, u0), u0),

ψ(0;x0, u0) = x0.
(8)

Here ψ : R×Rnx×Rnu → Rnx describes the trajectories of
the system, x0 denotes the state of the system at a given
sampling instant and u0 the corresponding constant input.
We will refer to the strictly positive parameter T > 0 as the
sampling time associated with the corresponding discrete-
time system

xnext = ψ(T ;x, u). (9)

In the following, we summarize an adapted version of stan-
dard assumptions used to ensure the stability properties
of the nominal NMPC scheme.

Assumption 3. (Lyapunov Stability). Assume that there
exists positive constants a1, a2, a3 and T0 such that the
following holds for any x ∈ XV̄ and any T ≤ T0:

a1‖x‖2 ≤ V (x) ≤ a2‖x‖2, (10a)

V (ψ(T ;x, ū(x)))− V (x) ≤ −T · a3‖x‖2. (10b)

Remark 4. Notice that Assumption 3, for a fixed T boils
down to the standard assumption for exponential asymp-
totic stability (see e.g. Theorem 2.21 in (Rawlings et al.,
2017)). Moreover, the dependency on T in (14) can be
justified, for example, by assuming that a continuous-time
Lyapunov function Vc(x(t)) exists such that d

dtVc(x(t)) ≤
−a‖x‖2, for some positive constant a and that V (x) is a
sufficiently good approximation of Vc(x) in the following
sense.

In particular, regard the simpler case in which the system
under consideration is linear time-invariant, i.e. ẋ(t) =
φ(x(t), u(t)) = Acx(t)+Bcu(t). Its discretized counterpart
reads xnext = Adx+Bdu, where

Ad := exp (AcTd), Bd :=

(∫ Td

0

exp (Acτ)dτ

)
Bc.

When controlling a discrete-time linear time-invariant
system with the linear feedback policy u = Kdx, we know
that, if x>Pdx is a Lyapunov function for the resulting
closed-loop system xnext = (Ad + BdKd)x, then it must
satisfy the following discrete-time Lyapunov equation:

(Ad +BdKd)
>Pd(Ad +BdKd)− Pd +Qd = 0, (11)

for some positive-definite Qd. It is easy to show that, if the
discretization time Td is sufficiently small, then x>Pdx is
a Lyapunov function for the continuous-time closed-loop
system ẋ(t) = (Ac+BcKd)x(t), where we use the discrete-
time gain Kd. In particular, it suffices to show that a
positive-definite matrix Qc exists such that the following
continuous-time Lyapunov equation is satisfied:

(Ac +BcKd)
>Pd + Pd(Ac +BcKd) +Qc = 0. (12)

To this end, we note that Ad = I + TdAc + O(T 2
d ) and

Bd = TdBc +O(T 2
d ), such that we obtain(

Ad − I
Td

+O(Td) +

(
Bd
Td

+O(Td)

)
Kd

)>
Pd

+ Pd

(
Ad − I
Td

+O(Td) +

(
Bd
Td

+O(Td)

)
Kd

)
+Qc = 0

and, multiplying by Td,

(Ad − I +BdKd)
>Pd + Pd(Ad − I +BdKd)

+ E>E = −TdQc,
(13)

where E = O(Td). Let Ãd := Ad +BdKd. Simplifying, we
obtain

(Ad − I +BdKd)
>Pd + Pd(Ad − I +BdKd) + E>E

=Ã>d Pd + PdÃd − 2Pd + E>E

�Ã>d Pd + PdÃd − 2Pd + E>E+

(Ãd − I)>Pd(Ãd − I)
=Ã>d PdÃd − Pd + E>E = −Qd + E>E,

where we have exploited the fact that (Ãd − I)>Pd(Ãd −
I) � 0. Due to the fact that E>E = O(T 2

d ) and Qd �
0, we obtain that −TdQc � −Qd + O(T 2

d ), and, for
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any sufficiently small discretization time Td, there must
exist a positive-definite Qc such that the continuous-time
Lyapunov equation (12) is satisfied. Finally, with similar
arguments it is possible to show that, if Td is small
enough, for any sufficiently small sampling time T , x>Pdx
is a valid Lyapunov function for the closed-loop system
xnext = (As +BsKd)x, where

As := exp (AcT ), Bs :=

(∫ T

0

exp (Acτ)dτ

)
Bc.

Assumption 5. (Second Order Growth). Assume that, for
any u ∈ Rnu , for any x ∈ XV̄ and any T ≤ T0, the
following holds:

V (ψ(T ;x, u))− V (x) ≤
− T · a3‖x‖2 + T ·O(‖u− ū(x)‖2).

(14)

Remark 6. Assumption 5 can be informally justified by
analyzing the properties of an underlying continuous-time
Lyapunov function Vc(x) and using an argument similar
to the one used in Assumption 2.18 in (Diehl et al., 2007)
in a discrete-time setting. In particular, under suitable
differentiability assumptions, for any δ > 0, we can write

Vc(x) = min
uδ(·)

{∫ δ

0

l(ψ(τ, x, uδ(τ)), uδ(τ))dτ

+ Ṽc(ψ(δ, x, uδ(·)))
}

= Ṽc(ψ(δ, x, uδ(·))) +

∫ δ

0

l(ψ(τ, x, uδ(τ)), uδ(τ))dτ

+ δ ·O(‖uδ(·)− ūδ(·)‖2),

where Ṽ (x) is the optimal value function for a problem
with shrunk horizon Tf − δ. Using the fact that Vc(x) ≤
Ṽc(x) and a quadratic lower bound on l we can conclude

Vc(ψ(δ, x, uδ(·))) ≤ Ṽc(ψ(δ, x, uδ(·)))

≤ Vc(x)−
∫ δ

0

l(ψ(τ, x, uδ(τ)), uδ(τ))dτ

+ δ ·O(‖uδ(·)− ūδ(·)‖2)

≤ Vc(x)− δ·ã3‖x‖2 + δ ·O(‖uδ(·)− ūδ(·)‖2),

which justifies Assumption 5, if V (x) is a “sufficiently”
good approximation of Vc(x) in the sense of Remark 4.

The following slightly tailored version of (Rawlings et al.,
2017, Theorem 2.21) provides asymptotic stability of the
closed-loop dynamics.

Theorem 7. Let Assumption 3 hold. Then, the origin is
an exponentially asymptotically stable equilibrium for the
closed-loop system xnext = ψ(T ;x,Mu,y ȳ(x)) for any T ≤
T0.

Proof. See (Rawlings et al., 2017).

2.2 Optimizer Dynamics

The first-order necessary optimality conditions associated
with (5) read as follows:

0 = ∇f(y) +∇g(y)λ,

0 = g(y) +Bx
(15)

where λ ∈ Rng is the Lagrange multiplier associated with
the equality constraints. Introducing

F (z) :=

(
∇f(y) +∇g(y)λ

g(y)

)
, (16)

where z = (y, λ), Equations (15) can be expressed as

0 = F (z) + Cx, (17)

where C := [ 0 B>]>. Let Z̄(x) be the set of all stationary
points satisfying (17) for a given x. The following assump-
tions are made.

Assumption 8. (Regularity). Assume that, for any x ∈
XV̄ there exists a unique solution z̄(x) and that second
order sufficient conditions hold at z̄(x). Moreover, assume
that the steady-state solution is z̄(0) = 0, i.e. Z̄(0) = {0}.
Remark 9. Although most classical NMPC stability re-
sults rely on the fact that the optimizer finds the global
solution, the assumption that a unique solution exists in
XV̄ is somewhat restrictive and deserves further discus-
sion. On the one hand, this is similar to (Diehl et al., 2007,
Assumption 2.3) and to some extent a strong assumption.
On the other hand, notice that, loosely speaking, it would
suffice to assume that there is a unique “branch” of the
solution manifold in a neighborhood N of the origin in
Rnz × Rnz . For the sake of simplicity, in this paper, we
will however assume that z̄(x) is the unique solution in
XV̄ . One further additional implication is the fact that the
value function V (x) is continuous. This is again similar
to what assumed in (Diehl et al., 2007) and in some
of the work on inherent robustness of NMPC (see e.g.
(Pannocchia et al., 2011)).

Proposition 10. Let Assumptions 1 and 8 hold. Then there
exist strictly positive constants σ, r̄z and r̄x, such that,
for any x ∈ XV̄ , the solution z̄(x) is uniquely defined over
B(z̄(x), r̄z) and the following holds:

‖z̄(x′′)− z̄(x′)‖ ≤ σ ‖x′′ − x′‖ , (18)

for any x′′, x′ ∈ B(x, r̄x).

Proof. The result is a direct consequence of the implicit
function theorem (also known as Dini’s theorem).

Definition 11. (Optimizer Dynamics). Let the following
discrete-time system describe the dynamics of the opti-
mizer used to solve the parametric problem (5)

z+ = ϕ(ψ(T ;x,Mu,zz), z), (19)

where ϕ : Rnx ×Rnz → Rnx and where Mu,z is a properly
defined projection matrix. For simplicity, we will assume
that ‖Mu,z‖ = 1.

Assumption 12. (Contraction). There exists a radius r̂z >
0 and a positive constant κ̂ < 1 such that, for any given
stationary point z̄(x) at x ∈ XV̄ , and any z in B(z̄(x), r̂z),
the optimization routine produces z+ such that

‖z+ − z̄(x)‖ ≤ κ̂ ‖z − z̄(x)‖ . (20)

Since we are interested in a real-time strategy that seeks an
approximate solution to (17) as the parameter x changes
over time, we will exploit the following result on general
real-time methods.

Lemma 13. Let Assumptions 1, 8 and 12 hold. Then there
exist strictly positive constants rz and rx, and finite
positive constants σ, κ̂ > 0, with κ̂ < 1, such that, for
any x in XV̄ , any z in B(z̄, rz), and any x+ in B(x, rx), it
holds that

‖z+ − z̄(x+)‖ ≤ κ̂ ‖z − z̄(x)‖+ σκ̂ ‖x+−x‖ . (21)

Proof. See e.g. (Zanelli et al., 2019a).
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3. SYSTEM-OPTIMIZER DYNAMICS

Theorem 7 and Lemma 13 provide key properties of the
system and optimizer dynamics, respectively. In this sec-
tion, we analyze the interaction between these two dy-
namical systems. In particular, we interested in analyzing
the behavior of the following coupled system-optimizer
dynamics.

Definition 14. (System-Optimizer Dynamics). Let the fol-
lowing equations describe the evolution of the state of the
system and of the optimizer’s iterates:

x+ = ψ(T ;x,Mu,zz),

z+ = ϕ(ψ(T ;x,Mu,zz), z).
(22)

In particular, after a simple coordinate change, we can
refer to the following error dynamics in compact form:

ξ+ = Φ(T ; ξ), (23)

where ξ := (x, z − z̄(x)) and Φ : R × Rnx+nz → Rnx+nz .
We will refer to (23) as system-optimizer dynamics.

An attractivity proof for real-time iterations based on the
assumption that no inequalities are present in the problem
formulation or that, equivalently, no active constraints are
present in the region of interest, has been proposed in
(Diehl et al., 2007). Similarly, an attractivity proof where
shifted iterations and a zero terminal constraint are used
is derived in (Diehl et al., 2005).

In this paper, we prove instead asymptotic stability for
the system-optimizer dynamics, which is in general not
implied by attractivity. Moreover, the general contraction
considered in Assumption 12 covers a broader class of
algorithms where the iterations need not be iterations of
a sequential quadratic programming method.

3.1 Perturbed Error Contraction

In order to be able to use the contraction from Lemma 13,
we will make a general assumption on the behavior of the
closed-loop system in a neighborhood of the equilibrium
and for a bounded value of the numerical error.

Assumption 15. There exist positive finite constants Lψ,x
and Lψ,u such that, for all x ∈ XV̄ and all z such that
‖z − z̄(x)‖ ≤ rz, the following inequality holds:

‖ψ(x, u)− x‖ ≤ T (Lψ,x‖x‖+ Lψ,u‖Mu,zz‖). (24)

Proposition 16. Let Assumptions 1, 8 and 15 hold and
define the following constants:

η := Lψ,u + Lψ,xσ (25)

and
θ := Lψ,u. (26)

Then, the following holds:

‖ψ(x, u)− x‖ ≤ T (η‖x‖+ θ‖z − z̄(x)‖), (27)

for any x ∈ XV̄ and any z such that ‖z − z̄(x)‖ ≤ rz.

Proof. In the following let u = Mu,zz for ease of notation.
Due to Assumption 15 we have that

‖ψ(x, u)− x‖ ≤ T (Lψ,x‖x‖+ Lψ,u‖u‖) (28)

and, due to the assumption of regularity at the solution
z̄(x) and the fact that z̄(0) = 0, we can write

‖u‖ ≤ ‖z̄(x)‖+ ‖z − z̄‖ ≤ σ ‖x‖+ ‖z − z̄‖ ,

and the following holds:

‖ψ(x, u)− x‖ ≤ T (Lψ,x + Lψ,uσ) ‖x‖
+ TLψ,u ‖z − z̄‖ . 2

Proposition 17. Let Assumptions 1, 8, 12 and 15 hold.
Moreover, define

T ′1 := min

{
rx

ηrV̄ + θrz
,

rz(1− κ̂)

σκ̂(θrz + ηrV̄ )

}
, (29)

where

rV̄ :=

√
V̄

a1
. (30)

Then, for any x ∈ XV̄ , any ‖z − z̄(x)‖ ≤ rz and any
T ≤ T1 :=

{
T ′1, T0

}
, the following holds:

‖z+ − z̄(x+)‖ ≤ κ‖z − z̄‖+ T · γ‖x‖, (31)

where
κ := κ̂(1 + Tσθ) < 1, γ := σκ̂η. (32)

Moreover, ‖z+ − z̄(x+)‖ ≤ rz.

Proof. Given that ‖z− z̄‖ ≤ rz and that, due to Assump-
tion 15 and the definition of T ′1, we have ‖x+−x‖ ≤ rx for
all x ∈ XV̄ and we can apply the contraction from Lemma
13:

‖z+ − z̄(x+)‖ ≤ κ̂ ‖z − z̄‖ + σκ̂ ‖x+ − x‖ . (33)

Applying the inequality from Proposition 16, we obtain

‖z+ − z̄(x+)‖ ≤ κ‖z − z̄‖+ Tγ‖x‖, (34)

where
κ := κ̂(1 + Tσθ), γ := σκ̂η. (35)

Finally, due to the second term in the definition of T ′1, we
have that ‖z+ − z̄(x+)‖ ≤ rz and κ < 1 since

T ≤ T ′1 =
rz(1− κ̂)

σκ̂(θrz + ηrV̄ )

=
rz
rz

(1− κ̂)

σκ̂(θ + ηrV̄ /rz)
<

1− κ̂
κ̂σθ

. 2

(36)

3.2 Perturbed Lyapunov Contraction

In the following, we analyze the impact of the fact that
the approximate feedback policy Mu,zz is used, instead
of the optimal one Mu,z z̄(z), on the nominal Lyapunov
contraction. Throughout the rest of the paper, we will
make use of the following shorthands:

V := V (x) (37)

and
V+ := V (ψ(T ;x,Mu,zz)) (38)

to denote the values taken by the optimal cost at the
“current” state and at the one reached applying the
suboptimal control actionMu,zz starting from x. Similarly,
we introduce

E := ‖z − z̄(x)‖ (39)

and

E+ := ‖ϕ(ψ(T ;x,Mu,zz), z)− z̄(ψ(T ;x,Mu,zz))‖ (40)

to denote the numerical error attained at the “current”
and next iteration of the optimizer, where the error is
computed with respect to the exact solution associated
with the “current” and next state of the system. Note
that, although V, V+, E,E+ depend on (x, z), we omit that
dependency for a more compact notation.
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In Lemma 20, we will show that, under the condition that
the sampling time T is sufficiently small, we can guarantee
positive invariance of a properly defined set.

Proposition 18. Let Assumptions 1, 3, 5 and 8 hold. Then,
there exist finite positive constants µ, V̄q ≤ V̄ and rq ≤ rz,
such that, for any E ≤ rq and any x in XV̄q , where

XV̄q
:= {x : V (x) ≤ V̄q}, the following holds:

V+ ≤ (1− T ā)V + TµE2, (41)

with ā := a3
a2

.

Proof. Assumption 5 implies that there must exist
strictly positive constants µ, V̄q ≤ V̄ and rq ≤ rz such
that the following holds

V (ψ(x,Mu,zz)) ≤ V (x)− Ta3‖x‖2 − TµE2

≤ V (x)− T a3

a2
V (x)− TµE2

= (1− T ā)V (x)− TµE2,

(42)

for any E ≤ rq, any x ∈ XV̄q and any T ≤ T1. 2

Definition 19. Define the following set:

Σ := {(x, z) : V (x) ≤ V̄q, ‖z − z̄(x)‖ ≤ r̃q}. (43)

The following theorem shows positive invariance of Σ.

Lemma 20. (Invariance of Σ). Let Assumptions 1, 3, 5, 8,
12 and 15 hold. Define

r̃q := min

{
rq,

√
āV̄q
µ

}
andT ′2 :=

(1− κ)r̃q
√
a1√

V̄ γ
. (44)

Then, for any (x, z) ∈ Σ and any T ≤ T2 := min{T ′2, T1},
it holds that (x+, z+) ∈ Σ. Moreover, the following coupled
system-optimizer contractions hold:

V+ ≤ (1− T ā)V + TµE2,

E+ ≤ T γ̂V
1
2 + κE,

(45)

where γ̂ = γ√
a1

.

Proof. Given that E ≤ r̃q ≤ rq and x ∈ XV̄q , we can
apply the contraction from Proposition 18, such that

V+ ≤ (1− T ā)V + TµE2, (46)

holds. Moreover, due to the definition of r̃q, V+ ≤ V̄q holds,
which implies that x+ is in XV̄q . Similarly, due to the fact
that E ≤ r̃q ≤ rz and x ∈ XV̄q ⊆ XV̄ , we can apply the
result from Proposition 17, which shows that

E+ ≤ κE + Tγ‖x‖ and E+ ≤ rz (47)

must hold. Using Assumption 3 in Equation (47), we
obtain

E+ ≤ κE + T γ̂V
1
2 . (48)

Moreover, due to (44), E+ ≤ r̃q holds. 2

Lemma 20 shows that, we can guarantee that the state
of the combined system-optimizer dynamics (x, z) will not
leave Σ under the assumption that the sampling time T is
short enough. Moreover, due to subadditivity of the square
root, the following holds:

V
1
2

+ ≤ (1− T ā)
1
2V

1
2 + (Tµ)

1
2E (49)

such that we can regard the following simpler dynamics:

Definition 21. (Auxiliary Dynamics). We will refer to the
following (linear) dynamical system:

ν+ = (1− T ā)
1
2 ν + (Tµ)

1
2 ε,

ε+ = T γ̂ν + κε
(50)

0.00 0.05 0.10 0.15 0.20

T

1.00

1.02

1.04

1.06

1.08

− (x+)⊤Px+ − x⊤Px

T

a3

Fig. 1. Lower bound on V (x) and Lyapunov decrease as a
function of T . Here we regard x+ := (AT + BTKd)x
and check that x>Px is a still a Lyapunov function
for such closed-loop system and estimate the decrease
rate.

with states ν, ε ∈ R as auxiliary dynamics.

Remark 22. Notice that the considerations made by Diehl
et al. (2007), in a similar setting, lead to the same type
of coupled contraction from Lemma 20. An attractivity
proof that implicitly uses auxiliary dynamics that would
be obtained directly from (45) is derived in (Diehl et al.,
2007). However, due to the fact that such auxiliary system-
optimizer dynamics are not Lipschitz at (0, 0), it would not
be possible to prove stability with standard linear analysis
tools.

4. ASYMPTOTIC STABILITY RESULT

Due to linearity of the auxiliary dynamics (50), we can
study asymptotic stability with standard tools from linear
systems analysis.

Theorem 23. (Asymptotic Stability). Let Assumptions 1,
3, 5, 8, 12 and 15 hold. Then, the origin (ν, ε) = (0, 0) is
asymptotically stable for the auxiliary dynamics (50).

Proof. A sufficient and necessary condition for the
asymptotic stability of (50) is that the eigenvalues of the
matrix

A =

[
(1− T ā)

1
2 (Tµ)

1
2

T γ̂ κ

]
, (51)

are smaller than one in absolute value. In order to compute
the eigenvalues, we need to solve

det(λI−A) = (λ− (1− T ā)
1
2 ) · (λ− κ) +O

(
T

3
2

)
= 0,

which entails

λ1 = (1− T ā)
1
2 +O

(
T

3
2

)
, λ2 = κ+O

(
T

3
2

)
. (52)

Hence, for a sufficiently small sampling time T , the origin
(ν, ε) = (0, 0) is asymptotically stable. 2

Theorem 23 shows asymptotic stability of the auxiliary
dynamics (50), but not of the original system-optimizer
dynamics (23). The following corollary shows that we can
easily extend the stability result in this sense.

Corollary 24. Let Assumptions 1, 3, 5, 8, 12 and 15
hold. Then, the origin ξ = (x, z) = (0, 0) is locally
asymptotically stable for the system-optimizer dynamics
(23).
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Proof. Let χ := (ν, ε) denote the state of the auxiliary
dynamics in compact form and regard the sequences {χk}
and {ξk} generated by the auxiliary and original coupled
dynamics for any compatible initial conditions χ0 =
(ν0, ε0) and ξ0 = (x0, z0), with V (x0)

1
2 = ν0 and ‖z0 −

z̄(x0)‖ = ε0, respectively. Due to the definition of the
auxiliary dynamics, we have that, for any compatible
initial conditions chosen in such a way, V (xk)

1
2 ≤ νk and

‖zk−z̄(xk)‖ ≤ εk holds for any k ≥ 0. Then, for any k ≥ 0,
we can write

‖ξk‖ =
√
‖xk‖2 + ‖zk − z̄(xk)‖2 ≤

√
1

a1
V (xk) + E2

k

≤
√

1

a1
ν2
k + ε2k ≤ ã

− 1
2

1

√
ν2
k + ε2k = ã

− 1
2

1 ‖χk‖,

where ã1 = min{a1, 1}.
Since (ν, ε) = (0, 0) is locally asymptotically stable for the
auxiliary dynamics, we have that, for any ε′ > 0, there
exists a δ′ > 0 such that, if ‖χ0‖ < ε′, then ‖χk‖ < δ′, for
any k ≥ 0. Since

‖χ0‖ ≤
√
ã2 ‖ξ0‖ , (53)

where ã2 = max{a2, 1}, we can choose an arbitrarily small

ε = ã
− 1

2
2 ε′, such that ‖ξ0‖ ≤ ε = ã

− 1
2

2 ε′ =⇒ ‖χ0‖ ≤
ε′ =⇒ ‖χk‖ ≤ δ′,∀k ≥ 0 and ‖ξk‖ ≤ δ := ã

− 1
2

1 δ′,∀k ≥ 0,
which proves stability.

Finally, local attractivity can be trivially shown by observ-
ing that limk→∞ ‖χk‖ = 0 =⇒ limk→∞ ‖ξk‖ = 0. 2

5. ILLUSTRATIVE EXAMPLE

In this section, although the results derived apply to a
much more general class of problems (twice-continuously
nonlinear dynamics and cost), we discuss an illustrative
numerical example where we exploit a simplified setting
in order to be able to explicitly compute all the constants
used in the assumptions of Theorem 23. In particular,
we regard the following unconstrained, linear-quadratic
optimal control problem:

min
s(·),u(·)

∫ ∞
0

[
s(t)
u(t)

]> [
Qc 0
0 Rc

] [
s(t)
u(t)

]
s.t. s(0)− x = 0,

ṡ(t) = Acs(t) +Bcu(t), t ∈ [0,∞],

(54)

where the continuous-time dynamics are defined by

Ac :=

[
0 1
0 0

]
, Bc :=

[
0
1

]
(55)

and the matrices

Qc := I2 and Rc := 1 (56)

define the cost.

Problem (57) is discretized using multiple shooting with
a single shooting node and a fixed discretization time
Td = 0.1s as follows:

min
s0,s1,u0

Td

[
s0

u0

]> [
Qc 0
0 Rc

] [
s0

u0

]
+ s>1 Ps1

s.t. s0 − x = 0,

s1 = ATds0 +BTdu0,

(57)
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Fig. 2. Eigenvalues as a function of the sampling time T for
problem (57). For sufficiently short sampling times,
the auxiliary system in Definition 21 is asymptotically
stable.

where the discrete-time dynamics are obtained using an
exact discretization with piece-wise constant parametriza-
tion of the control trajectories:

ATd := exp (AcTd), BTd :=

(∫ Td

0

exp (Acτ)dτ

)
Bc.

(58)
Finally, the symmetric positive-definite matrix P that
defines the terminal cost for the discretized problem is
computed by solving the discrete-time algebraic Riccati
equation

P = A>TdPATd−
(A>TdPBTd)(R+B>TdPBTd)−1(B>TdPATd) +Q,

(59)

where R := TdRc and Q := TdQc. After elimination of s0,
the first-order optimality conditions of problem (57) read

Hu0 +Gx = 0, (60)

where

H := (TdR+B>TdPBTd), G := B>TdPATd . (61)

We solve (60) with the following real-time gradient descent
method:

u0,+ = −H̃−1
(

(H − H̃)u0 +Gx+

)
, (62)

where H̃ = ρ I for some positive constant ρ > 1. Using
standard arguments from convergence theory for Newton-
type methods (see e.g (Diehl, 2016)), it is easy to show,
that, for a fixed value of the parameter x, the following
contraction estimate holds:

‖u0,+ − ū0(x)‖ ≤ κ̂‖u0 − ū0(x)‖, (63)

where
κ̂ := ‖H̃−1(H − H̃)‖. (64)

Since V (x) = x>Px and ū0(x) = −H−1Gx, we can
compute exactly the constants µ = 2λmax(H) and σ =
‖H−1G‖. Let

AT := exp (AcT ), BT :=

(∫ T

τ=0

exp (Acτ)dτ

)
Bc (65)

describe the dynamics discretized according to the sam-
pling time T . Given that

x+ = ATx+BTu = x+
T

T
((AT − I)x+BTu), (66)
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we can compute the constants

Lψ,x =
1

T
‖AT − I‖ and Lψ,u =

1

T
‖BT ‖. (67)

Following the definitions in Propositions 16 and 17, we
have γ̂ = 1√

a1
σκ̂η and κ = κ̂(1 + Tσθ), where η = Lψ,u +

Lψ,xσ and θ = Lψ,u. In order to validate Assumption 3
and compute an estimate for constant a3, we compute the
largest eigenvalue λmax(∆P ) of the matrix

∆P (T ) :=
1

T
((x+)>Px+ − x>Px), (68)

where
x+ = (AT +BTK)x (69)

and K = −H−1G. Figure 1 shows the estimated decrease
rate compared with the minimum eigenvalue of P . Choos-
ing

a3 = min
T
λmax(∆P (T )), (70)

we obtain a value of a3 that satisfies (14) for any T such
that 0 ≤ T ≤ Td. Finally, we can compute the constants
in (10a) as a1 = λmin(P ) and a2 = λmax(P ).

Given that we can numerically compute all the constants
involved in the Assumptions of Theorem 23, it is possible
to compute the longest sampling time for which the
auxiliary system in (50) is asymptotically stable. Figure 2
shows the eigenvalues of the auxiliary system as a function
of T .

6. CONCLUSIONS AND OUTLOOK

In this paper we present an asymptotic stability proof for
real-time methods for unconstrained NMPC. We extend
the well-known attractivity results derived in (Diehl et al.,
2005) and (Diehl et al., 2007) under similar settings. The
interaction between system and optimizer is analyzed us-
ing an auxiliary system whose states are the square root of
the optimal value and the numerical error associated with
the approximate solution. Asymptotic stability of such
auxiliary system is established under the assumption that
the sampling time is sufficiently short. Ongoing research
involves the extension of the results to the case where the
optimal control formulation includes inequality constraints
and the derivation of practical conditions under which
Assumptions 3 and 5 hold, using arguments along the
lines of Remarks 4 and 6. Similarly, Assumption 8 will be
adapted to the more general setting described in Remark
9.
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