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Abstract: Hierarchical control approaches have been one of the elective methods for the optimal
control of large-scale systems in the last decades. In (Petzke et al., 2018) we presented a
multirate hierarchical MPC scheme for linear systems, with remarkable flexibility and scalability
properties. In this paper we extend the former approach to ensembles of Hammerstein systems
and we complement the method by proposing a suitable high-level optimizer. The theoretical
properties are discussed in the light of the theoretical properties of the former method. Lastly,
an example case study is presented to show the effectiveness of the proposed method.

Keywords: Hierarchical control, model predictive control, Hammerstein systems.

1. INTRODUCTION

Recently, thanks to the widespread of distributed small-
scale production units in many different realms, there has
been a diffusion of virtual plants, i.e., complex plants where
several similar systems operate in parallel to jointly pro-
duce a common product. This trend is presently impacting
on different applications areas e.g. electrical generation
systems, micro-grids, HVAC systems, steam generation,
and water distribution. In all these applications, dedicated
advanced control systems are required to coordinate an
ever increasing number of subsystems that act towards a
main goal, but also commonly operate in a limited range
and with limited shared resources. Many other features
must also be verified, e.g., adaptivity to changing environ-
ments, scalability, and flexibility.

Hierarchical approaches are an often necessary compro-
mise between centralized methods, guaranteeing nominal
system-wide optimality but impractical for large-scale sys-
tems, and decentralized/distributed approaches, that often
trade optimality for scalability, flexibility and robustness.
Furthermore, they can guarantee optimal performances in
system supervision and in coordination of subunits.
Different hierarchical control schemes have been proposed
in the recent years, with particular focus on constrained
systems, i.e., based on model predictive control (MPC)
and reference governor methods (Scattolini, 2009; Barcelli
et al., 2010; Farina et al., 2018; Petzke et al., 2018; Garone
et al., 2017; Kalabić et al., 2012).

All these approaches, however, have been designed for
linear systems, which may limit the applicability range of
the methods proposed therein. While the generalization of
those methods to general-type nonlinear systems may be
impractical, in view of the inherent computational com-
plexity that this may produce, the use of block-oriented
models, composed of linear dynamic parts and nonlinear

static functions can be advantageous. In fact, besides being
more prone to control design, they often provide good
approximation accuracy, they are easy to develop and
identify, and they may allow to easily incorporate a priori
process knowledge.
Hammerstein models, for example, share all of these ad-
vantages and have been shown to be particularly suitable
in many application areas, e.g., micro-turbines (Jurado,
2006), wind turbines (van der Veen et al., 2013), and syn-
chronous generators (Sadabadi et al., 2007). MPC control
algorithms have been also devised, during the last decades,
to specifically address Hammerstein-type systems, e.g.,
(Fruzzetti et al., 1997; Patwardhan et al., 1998; Bloemen
et al., 2001; Jurado, 2006; Chan and Bao, 2007; Har-
nischmacher and Marquardt, 2007; Lawrynczuk, 2015).

In this paper we extend the work in (Petzke et al., 2018)
in two directions: First, we consider Hammerstein-type
systems and, secondly, we complement the formerly pre-
sented scheme with a high-level resource sharing optimizer,
inspired by (Farina et al., 2018).
In Sec. 2 the problem is formulated, while Sec. 3 illustrates
the proposed three-layered hierarchical optimization con-
trol architecture. In Sec. 4 the theoretical properties are
discussed, while a simulation example is provided in Sec.
5. Finally, some conclusions are drawn in Sec. 6.

Notation: Throughout the paper, the identity matrix of
dimension N ×N is denoted as IN , and the zero matrix of
dimension N ×M as ON×M . Double-lined letters denote
sets (e.g. U), with ⊕ being the Minkowski sum of two sets

and
⊕N

i=1 Wi = W1 ⊕ · · · ⊕ WN . We use two different
timescales, where κ indicates steps on a fast timescale with
step size τ , and k indicates steps on a slow timescale with
step size T , respectively, with τ � T and T

τ = Nτ ∈ N.
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2. PROBLEM SETUP

The general focus of this paper is the optimal control of
an ensemble of Hammerstein-type systems, i.e. a set of
subsystems that have similar dynamics and act towards
a joint goal (Morton, 2007). In this context we interpret
similarity of the systems as variations in the model pa-
rameters and possibly dimensions.

We assume an ensemble of N Hammerstein-type subsys-
tems modeled in discrete-time input-output form as

yi(κ) =

Pi∑
τ=1

Aτ,iyi(κ− τ) +

Mi∑
τ=1

Bτ,izi(κ− τ) (1)

with yi ∈ Rp, Aτ,i ∈ Rp×p, Bτ,i ∈ Rp×m,

zi(κ) = gi(ui(κ)), (2)

where gi : Rm → Rm is the static nonlinear input map,
and, consistently, zi, ui ∈ Rm. Note that while all outputs
yi of different subsystems are assumed to have the same
dimension p, they might depend on different delay orders
Pi and Mi.

We can derive the state-space model corresponding with
(1) by defining xi(κ) =

[
yi(κ), . . . , yi(κ − Pi + 1), zi(κ −

1), . . . , zi(κ−Mi + 1)
]> ∈ Rni , ni = pPi +m(Mi− 1). We

obtain

Si :


xi(κ+ 1) = Aixi(κ) + Bizi(κ),

zi(κ) = gi(ui(κ)),

yi(κ) = Cixi(κ),

(3)

where

Ai =
[
Θ>i , Y

>
i , Z

>
i

]> ∈ Rni×ni , (4)

Θi =
[
A1,i, . . . , APi,i, B2,i, . . . , BMi,i

]
∈ Rp×ni , (5)

Yi =
[
Ip(Pi−1), Op(Pi−1)×p+m(Mi−1)

]
∈ Rp(Pi−1)×ni , (6)

Zi =
[
Om(Mi−1)×pPi , Im(Mi−1)

−m
]
∈ Rm(Mi−1)×ni , (7)

where INd denotes an N ×N -matrix with ones on the d-th
subdiagonal, and

Bi =
[
B>1,i, O

m×p(Pi−1), Im, Om×m(Mi−2)
]>∈Rni×m, (8)

Ci =
[
Ip, Op×p(Pi−1)+m(Mi−1)

]
∈ Rp×ni . (9)

We assume all systems to be asymptotically stable and
controllable. Furthermore, we make the following assump-
tions on the nonlinear input mappings gi:

Assumption 1. For all u, v ∈ Ui the functions gi(·) are

(i) element-wise bounded, i.e. ‖gi(u)‖ ≤ ḡi, ḡi > 0,
(ii) Lipschitz continuous, i.e. ‖gi(u)− gi(v)‖ ≤ γ‖u− v‖,

with γ > 0,
(iii) element-wise strictly monotone, i.e. u < v ⇔ gi(u) <

gi(v), with gi(0) = 0.

The subsystems are subject to the input constraints

ui ∈ Ui ⊂ Rm, (10)
N∑
i=1

ui ∈ Ū, (11)

as well as an aggregated output constraint

ȳ =
∑
i

yi ∈ Ȳ, (12)

where we assume the sets Ui, Ū, and Ȳ to be convex and
compact. The overall goal is to drive the ensemble output

ȳ towards a total requested, constant output reference yref.
In this work we employ a three-level hierarchy where

• at the high level a static optimization is employed to
calculate optimal resource sharing (ORS) factors αi
for all subsystems given a constant reference signal
yref (cf. Sec. 3.1),
• at the medium level an aggregated dynamic model

of the ensemble is used to set up a model predictive
controller (MPC) that computes an average control
signal z̄, which is broadcasted and applied to the low-
level subsystems (cf. Sec. 3.2),
• at the low level a local shrinking horizon controller

is used for each subsystem to optimize the individ-
ual performance and to ensure that the deviations
between outputs of the subsystems and the medium
level are within user-defined bounds (cf. Sec. 3.3).

Every level therefore gives a distinct contribution to the
overall control signal ui of each subsystem (cf. Fig. 1):
the high level ORS factors αi distribute the medium level
average control signal z̄ amongst all subsystems controlling
the long-term behavior, while the signal vi from the low
level controls the short-term behavior. Consequently, the
input signals ui, i = 1, . . . , N are

ui = ūi + vi, ūi = g−1
i (αiz̄). (13)

Note that the invertibility of the map gi follows from
Assumptions 1.(ii) and 1.(iii). A sketch of the resulting
overall proposed control structure for the ensemble is
shown in Fig. 2.

αi g−1
i (·) SiMedium level input

z̄

High level optimization

ūi

vi Low level input

ui yi

Fig. 1. Block diagram of a single subsystem of the ensemble
with input contributions of the different layers.

3. HIERARCHICAL CONTROL STRUCTURE

The control structure employed in this paper aims to
achieve three main goals, each one associated with one
layer of the hierarchy: optimal resource sharing, reference
tracking, and error minimization, where each layer oper-
ates on a different timescale.
The high level optimizes resource sharing between all sys-
tems of the ensemble in steady state. Since we assume the
output reference to be constant, this can be done offline.
The medium level tracking MPC runs on a slow timescale
with steps of size T indicated by k. It aims to drive the
ensemble output ȳ towards the constant output reference
yref in an optimal way. At the low level, the individual
subsystems’ performances are optimized and the error
between the output predictions of the medium level and
the actual output of the ensemble is minimized. This is
achieved via a shrinking horizon MPC that operates on a
fast timescale with steps of length τ indicated by κ. The
according time scaling factor is defined as Nτ = T

τ , i.e. one
(slow) step on the medium level corresponds to Nτ (fast)
steps on the low level. This section provides details on how
the optimization problems at each layer are constructed.
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3.1 High Level: Optimal Resource Sharing

As stated in equation (13), the input signal z̄ of the
medium level is distributed between the low-level systems
via the resource-sharing factors αi, such that

αi ∈ [0, 1] ∀i,
N∑
i=1

αi = 1. (14)

To obtain their optimal values we adapt the scheme
introduced in (Farina et al., 2018) for the presented setup.
In steady-state, the high-level input z̄ = zs has to fulfill

Ĉ(Inref − Â)−1
N∑
i=1

B̂iαizs = rs, (15)

where Ĉ(Inref − Â)−1B̂iαizs is the contribution of subsys-
tem i to the ensemble output and rs ∈ Ȳ is the closest
feasible reference to the given reference yref the ensemble
can reach under constraint (10). When in steady state,
vi = 0 for all subsystems: in this case each subsystem ap-
plies input ūi = g−1

i (αiz̄), and therefore the actual amount

of resources consumed by the ensemble is given by
∑N
i=1 ūi.

In order to minimize this overall consumed resource and,
at the same time, find an rs as close as possible to yref, we
define the nonlinear optimization problem n

min
rs,zs,α

‖yref − rs‖2T̄ +

N∑
i=1

qi‖g−1
i (αiz

s)‖

s.t. (14), (15),

rs ∈ Ȳ
g−1
i (αiz

s) ∈ Ui (→ cf. (10)),
N∑
i=1

g−1
i (αiz

s) ∈ Ū (→ cf. (11)),

(16)

with α = {α1, . . . , αN} and where the term qi denotes
a suitable cost associated with the usage of subsystem i,
which yields the resource-optimal sharing factors α?i for a
given constant output reference yref.

ORS

TR
MPC

yref α1

αN

g−1
1

g−1
N

Ŝ1

ŜN

SH
MPC

SH
MPC

ū1

ūN

v1

vN

x̂1

x̂N
z̄

S1
u1

SN
uN

β1
x1

βN
xN

...
...

...

Resampling
x̄(κ)x̄(k)

Slow scale T Fast scale τ

Fig. 2. Proposed hierarchical control structure. The high
level optimizes weights αi to achieve optimal resource
sharing. The medium-level tracking (TR) MPC and
the low-level shrinking-horizon (SH) MPCs run on
different timescales.

3.2 Medium Level: Slow Tracking MPC

This section is concerned with the derivation of the
medium-level MPC and the prediction model used therein.
To this end, we need to derive an aggregated model of the
entire ensemble. To do so, we first need to define the so-
called reference models for the individual systems.

Individual Reference Models For each subsystem Si we
devise an associated reference model Ŝi. A key aspect in
the derivation of these reference models is that they all
have the same state dimension nref, being nref ≤ ni for
all i. The state of the i-th reference model is defined as
x̂i(κ) = βixi(κ), where βi, for each i = 1, . . . , N , is a
suitable map of rank nref. All reference models have the
system matrix Â and output matrix Ĉ. Indeed, the i-th
reference model is defined as

Ŝi :


x̂i(κ+ 1) = Âx̂i(κ) + B̂iẑi(κ) + ŵi(κ),

ẑi(κ) = gi(ūi(κ))

yi(κ) = Ĉx̂i(κ).

(17)

The term ŵi(κ) (referred to as the reference deviation)
has been introduced to account for the mismatch between
systems Si and their respective references Ŝi. As specified
in (Petzke et al., 2018), two steady-state consistency

conditions must be fulfilled by Ŝi with respect to Si, and
more specifically we must verify that βi(I

ni −Ai)−1Bi =

(Inref−Â)−1B̂i and Ĉβi = Ci. Note that these conditions do
not account for the gains of the nonlinear input couplings
gi(ui) but only for the gain mismatch in the (linear) system
dynamics. It is straightforward to verify them provided
that

• βi is a selection matrix that allows to define x̂i as a
collection of (possibly selected) past lags of yi and

ẑi, i.e., x̂i(κ) =
[
yi(κ), . . . , yi(κ − P̂ + 1), ẑi(κ −

1), . . . , ẑi(κ− M̂ + 1)
]>

where P̂ ≤ Pi and M̂ ≤Mi,

• matrices Â, B̂i, and Ĉ have the same general structure
as Ai, Bi, and Ci, i.e.,

Â =
[
Θ̂>, Ŷ >, Ẑ>

]> ∈ Rnref×nref ,

Θ̂ =
[
Â1, . . . , ÂP̂ ,i, B̂2, . . . , B̂M̂

]
∈ Rp×nref ,

Ŷ =
[
Ip(P̂−1), Op(P̂−1)×p+m(M̂−1)

]
∈ Rp(P̂−1)×nref ,

Ẑ =
[
Om(M̂−1)×pP̂ , Im(M̂−1)

−m
]
∈ Rm(M̂−1)×nref ,

B̂i =
[
B̂>1,i, O

m×p(P̂−1), Im, Om×m(M̂−2)
]>∈Rnref×m,

Ĉ =
[
Ip, Op×p(P̂−1)+m(M̂−1)

]
∈ Rp×nref ,

(18)

• the first block B̂1,i of matrix B̂i is adjusted in order
to fulfill

B̂i = (Inref − Â)βi(I
ni −Ai)−1Bi. (19)

Note that the matrix Â defines the ”reference dynamics”
and may be an arbitrarily chosen and possibly reduced-
order system matrix Ai from the ensemble, while the ma-
trices B̂i account for the static gain mismatch introduced
by the mismatch in system dynamics. Furthermore, due
to this static gain consistency, the previously introduced
reference deviations ŵi(k) are indeed nonzero only during
the transient phase.
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Aggregated Ensemble Model The reference model derived
in this section is used as the prediction model for the
output of the entire ensemble in the medium-level MPC.
It is defined on a slower timescale than the individual
references Ŝi and - loosely speaking - is obtained by

defining its state and its output as x̄ =
∑N
i=1 x̂i and

ȳ =
∑N
i=1 yi, respectively. As a result, the aggregated

ensemble model is

S̄ :

{
x̄(k + 1) = Āx̄(k) + B̄z̄(k) + w̄(k),

ȳ(k) = Cx̄(k)
(20)

with Ā = ÂNτ , w̄(k) =
∑N
i=1 ŵi(Nτk), and

B̄ =

N∑
i=1

αi

Nτ−1∑
j=0

ÂjB̂i. (21)

The set where w̄(k) lies is denoted W̄ and will be defined
in details later in the paper. Several thing are to be
noted. Firstly, the definitions of Ā and B̄ correspond to
a resampling of the fast individual reference systems to
the slow timescale. Secondly, the ensemble reference does
not include any information about the nonlinear input
couplings gi(ui) but only considers their resulting effects
zi on the linear parts of the subsystems.

Tracking MPC Problem The main objective of the
medium level controller is to drive the ensemble output
ȳ towards a constant reference yref under the unknown
reference deviation w̄(k) in (20) and while enforcing

ȳ(k) ∈ Ȳ, (22a)

z̄(k) ∈ Z̄, (22b)

g−1
i (αiz̄(k)) ∈ Ui, ∀i (22c)

∆z̄(k) = z̄(k)− z̄(k − 1) ∈ ∆Z̄. (22d)

The set ∆Z̄ in (22d) is chosen compact and convex,
containing the origin in its interior. In Sec. 4 we show
that enforcing (22d) is necessary to constrain the reference
deviations ŵi(κ) for all κ ≥ 0, and in turn that w̄(k) ∈ W̄
for all k ≥ 0. In order to guarantee all of the desired control
properties listed above we employ a robust MPC scheme.
The one presented in (Betti et al., 2013) is here used for a
threefold reason.

• It guarantees offset-free tracking properties by refor-
mulating the system in velocity form, i.e.,

S̄∆ :

{
χ̄(k + 1) = Āχ̄(k) + B̄ζ̄(k) + ω̄(k),

ε̄(k + 1) = C̄Āχ̄(k) + ε̄(k) + C̄B̄ζ̄(k) + C̄ω̄
(23)

where χ̄(k) = x̄(k) − x̄(k − 1), ε̄(k) = ȳ(k) − r̄,
ζ̄(k) = z̄(k) − z̄(k − 1), ω̄(k) = w̄(k) − w̄(k − 1),
and r̄ is the current output reference value.
• It allows to address the presence of the noise term

using the tube-based approach previously presented
in (Mayne et al., 2005). This, in a nutshell, requires
to define the nominal system corresponding with (23),
i.e.,

Ŝ∆ :

{
χ̂(k + 1) = Āχ̂(k) + B̄ζ̂(k)

ε̂(k + 1) = C̄Āχ̂(k) + ε̂(k) + C̄B̄ζ̂(k)
(24)

where ζ̂(k) and ζ̄(k) are related together. This ap-
proach makes it possible to recast the robust control
problem as a non-robust one (expressed in terms of

the variables of the nominal system (24)) by just suit-
ably tightening constraints (22) and adding a further
one relating (χ̂, ε̂) to (χ̄, ε̄).

• Similarly to (Limon et al., 2008) it accounts for
the set-point r̄, used in the optimization problem,
as a further free variable, which allows to preserve
recursive feasibility properties also in case of set-point
variations and enhances the initial feasibility region.
The resulting cost function to be minimized at any
slow sampling time k is

V̄H =

k+NH−1∑
j=k

(
‖ξ̂(j)‖2Q̄ + ‖ζ̂(j)‖2R̄

)
+ ‖ξ̂(NH)‖2P̄ ,+‖yref − r̄(k)‖2T̄

(25)

where ξ̂ = [χ̂>, ζ̂>]>, and where the weights Q̄, P̄ ,
R̄, and T̄ are symmetric and positive definite.

3.3 Low level: Fast Shrinking Horizon MPC

The low-level systems employ local MPCs in a shrinking
horizon fashion between each two consecutive slow time
steps k of the medium level, which use the original system
models Si in (3) for their predictions. The control objective
is to reduce the reference deviations ŵi(Nτk) at the end
of each shrinking horizon MPC instance. To formulate the
low-level problems we first define, for each value of the
medium-level control signal z̄(k), the corresponding steady
state of the i-th subsystem, i.e.,

xs
i(k) = (Ini −Ai)−1 Biαiz̄(k). (26)

The cost function to be minimized at a given fast sampling
time κ ∈ {kNτ , . . . , (k + 1)Nτ − 1} is defined as

VL,i =

(k+1)Nτ−1∑
j=κ

(
‖βixi(j)− x̂oi (j)‖2Qi + ‖vi(j)‖2Ri

)
+ ‖βixi((k + 1)Nτ )− x̂oi ((k + 1)Nτ )‖2Pi ,

(27)

where the weights Qi, Pi, and Ri are symmetric and
positive definite and where x̂oi is computed as in (17)
but setting ŵi = 0 and x̂oi (kNτ ) = βixi(kNτ ). The i-th
resulting low-level MPC problem is then given by

min
vi

VL,i

s.t. system Si,
g−1
i (αiz̄(k)) + vi(j) ∈ Ui, j = κ, . . . , (k + 1)Nτ − 1

xi((k + 1)Nτ )− xs
i(k) ∈ XF,i

ŵi((k + 1)Nτ ) ∈Wi

(28)

where vi = {vi(κ), . . . , vi(κ + Nτ − 1)} and the sets XF,i
are robust positively invariant (RPI), satisfying

AiXF,i ⊕Ai∆Z̃ ⊆ XF,i, (29)

with

∆Z̃i = − (Ini −Ai)−1 Bi∆Z̄i. (30)

If ∆Z̃ is polytopic, an approximation of the minimal RPI
set can be, e.g., calculated using the method proposed in
(Rakovic et al., 2005). Finally, the sets Wi, which bound
the reference deviations ŵi(k) of the low level subsystems

Si from their respective reference systems Ŝi, are defined
as

Wi =
(
βiAi − Âβi

)(
XF,i ⊕∆Z̃i

)
. (31)
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4. MAIN PROPERTIES

In this section we briefly discuss the main properties of
the presented approach. For space reasons, we rely on
the results presented in previous papers. A more detailed
analysis will be the subject of future work.

Since the medium-level problem is formulated as a stan-
dard robust control one, recursive feasibility and the con-
vergence properties of the ensemble controller follow di-
rectly from Theorem 1 in (Betti et al., 2013),
In turn, this is possible thanks to the fact that the distur-
bance term w̄ can be guaranteed to lie in a time-invariant
set. The proof of the latter is provided in (Petzke et al.,
2018) where we showed that, for a similar hierarchical con-
trol structure, the deviation ŵi(kNτ ) between the systems

Si and their respective references Ŝi is guaranteed to lie
within the set Wi, defined in (31). The latter property
is implied by the constraints enforced by the low-level
controller but, importantly, can be guaranteed even if no
control action on the low level (i.e. vi ≡ 0) is exerted.
Indeed, the recursive feasibility of the low level shrinking
horizon controller follows directly from Lemma 1 in (Pet-
zke et al., 2018), since by construction vi(κ) ≡ 0 for all κ
is always a feasible solution to problem (28).
While this result was formerly derived for linear systems,
the setup at hand still underlies the same reasoning since
under the assumption above the effective input of each
subsystem is equal to gi(ui) = gi(ūi) = gi(g

−1
i (αiz̄)) =

αiz̄, which is linear.

5. CASE STUDY

To illustrate the presented control scheme we adapt the
MIMO distillation column example in Bloemen et al.
(2001) with y1 = w1, y2 = w2, D = O2×2, and the
nonlinear input coupling functions

gi(ui;µi) =

[
exp(µ1,iu1,i)− 1

exp(µ1,iu1,i) + 1
,

exp(µ2,iu2,i)− 1

exp(µ2,iu2,i) + 1

]
(32)

with ui = [u1,i, u2,i]
> and slope parameters µ1,i and µ2,i.

Fig. 3 shows gi(ui;µi) for different values of µj,i.
The first subsystem (which also served as the reference
system) corresponds to the one presented in Bloemen et al.
(2001) with µ1,i = µ2,i = 1. It is given by

y1(κ) =

4∑
τ=1

Aτ,1y1(κ− τ) +

4∑
τ=1

Bτ,1z1(κ− τ) (33)

with

A1,1 =

[
3.45 0

0 3.35

]
, A2,1 =

[
−4.45 0

0 −4.18

]
,

A3,1 =

[
2.54 0

0 2.31

]
, A4,1 =

[
−0.54 0

0 −0.47

]
,

B1,1 =

[
−0.73 0.61
0.64 −0.80

]
, B2,1 =

[
1.08 −0.93
−0.87 1.17

]
,

B3,1 =

[
−0.25 0.24
0.12 −0.18

]
, B4,1 =

[
−0.11 0.09
0.13 −0.20

]
,

which we then transformed into a state-space representa-
tion according to Eq. (3). We artificially created another
4 similar systems by randomly disturbing the nonzero

-5 -4 -3 -2 -1 0 1 2 3 4 5
u

-1

-0.5

0
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1

g
(u

;7
)

7 = 1
7 = 1:5
7 = 2

Fig. 3. Nonlinear input couplings g(u;µ) for different
values of the slope-parameter µ (indices have been
dropped for better readability).
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Fig. 4. Step responses of the subsystems in the ensemble.

elements of Aτ,1 and Bτ,1 as well as the parameters µ1,1

and µ2,1. The resulting step responses are shown in Fig.
4. In this case, all models – including the aggregated en-
semble reference model for the medium-level MPC – have
the same state dimension of n = 14. For the simulation
we used the following parameters: τ = 1 s, T = 20 s,
u1,i, u2,i ∈ [−5, 5], ∆Z̄ = {[−0.4, 0.4] × [−0.4, 0.4]} Q̄ =
Qi = I14×14, R̄ = Ri = I2×2. The output reference for the
high-level ORS problem was set to yref = [100,−80], which
returned α? = [0.2091, 0.2901, 0.0737, 0.1381, 0.2889] as
optimal resource sharing parameters. During the system
simulation shown in Fig. 5 we changed the output reference
after 150 s to yref = [100,−60] and again after 300 s to
yref = [110,−60]. This shows that, while the resource shar-
ing might not be optimal anymore, the presented approach
can still handle small changes around the operating point
very well. Furthermore, note that the outputs of the sub-
systems in Fig. 5 are not just ”scaled down” versions of the
aggregated system model used on the medium level, but
can show very different individual behavior (e.g. between
150 s and 250 s).

6. CONCLUSIONS

In this work we presented a three-layer hierarchical MPC
scheme for Hammerstein systems. By employing the in-
verse of the nonlinear input map we were able to set
up a linear optimization problem for the medium level
controller, which allowed us to rely on previous results
concerning recursive feasibility and convergence. However,
this also meant that the thusly acquired results are gen-
erally suboptimal with respect to the consumed resource.
In future work we will focus on analyzing and alleviating
this optimality gap, either by using a nonlinear MPC
formulation on the medium level or by employing the high
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Fig. 5. Output of the controlled ensemble. Medium level
predictions of the ensemble output are very close to
the actual aggregated output. Outputs of individual
subsystems are shown by thin colored lines. The
output reference is the red dashed line.

level ORS problem in a more dynamic fashion.
The analysis of varying shares along the lines of the work in
(Farina et al., 2018) is of particular interest since it would
ensure overall optimality in case of significant changes in
the output demand, and would allow for plug-and-play
operations but, on the other hand, can compromise the
feasibility of the scheme.
Furthermore, we will take a closer look at time-variant
output references as well as suitable output constraint
tightening approaches, and analyze their effect on the
overall feasibility. Lastly, while the presented case study
illustrated the general idea of the control approach, we
plan on applying it to a more practical and larger scenario
and also compare our results to a centralized approach.
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