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Marcus Vińıcius Silva Cruz ∗ Thaise Poerschke Damo ∗

Leandro Buss Becker ∗

∗ Automation and Control Systems Department, Federal University of
Santa Catarina, Florianópolis, Brazil
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Abstract: The petrochemical industry is becoming increasingly complex and, as a result,
different software platforms are used to assist in system design. Generally, it happens that the
same component of the physical plant is (re)modeled on different software platforms, so the reuse
of these models becomes difficult, compromises system interoperability, and generates the need
for rework in projects. Previous work proposed the infrastructure named M4PIA (Model-Driven
Engineering for Petrochemical Industry Automation), which allows to represent industrial plants
through different, compatible and object-oriented models. By means of model transformations,
it supports automatic code generation from a high-level abstraction model to specific software
platforms. The present work provides the integration of Round-Trip Engineering (RTE) in
the M4PIA infrastructure so that from a platform-specific model it allows to obtain, through
model-to-model (M2M) transformation, a platform-independent model. In order to validate the
implemented RTE transformations, it was developed a case study related to a simplified gas
compression system.

Keywords: Model-Driven Engineering, Round-trip Engineering, Model Transformations,
Petrochemical Industry.

1. INTRODUCTION

Automation systems are of utmost importance for the
Petrochemical industry to maintain quality, high produc-
tion volume, plant safety and profitability (Klatt and Mar-
quardt, 2009). The related control systems are in charge
to maintain optimum and stable operation, anticipating
to problems that might cause operation shutdown (Seborg
et al., 2010).

Typically there exists several distinct software platforms
involved for designing and deploying an automation plant.
As highlighted in Damo et al. (2019), an industrial plant
needs to be modeled several times, at least once for each
platform that will operate on it. Developers should be
aware of the characteristics/behavior of each process and
equipment, to tailor their design according to the target
platform. Thus, the platform specialist also needs to be
a domain expert, with knowledge of the components to
be modeled within each application. On each operating
platform, there are plenty of equipment with individual
control points, instances, process variables, and process
attributes.

Therefore, it is possible to claim that there are advan-
tages on designing a high-level model for representing the
plant to be automated, specially when model transforma-
tions are used. Such practice is aligned with the princi-
ples of Model-Driven Engineering (MDE) that, according
to Schmidt (2006), is a software development approach
with emphasis on domain specification (high-level) mod-

els, contributing to improve design productivity, system
understanding, serviceability, and evolution. Such high-
level model, named Platform-Independent Model (PIM),
goes through one or more model-to-model (M2M) transfor-
mations to constitute a Platform-Specific Model (PSM),
which is further transformed into source code by using
model-to-text (M2T) transformation.

Within this context, it was presented in Damo et al. (2019)
a MDE infrastructure for the development of simulations,
plant operation/supervision, and control applications of
petrochemical industrial plants. Such infrastructure was
named M4PIA (Model-Driven Engineering for Petrochem-
ical Industry Automation). It starts from a higher abstrac-
tion instance and, through M2M transformations, a PSM
model is generated to be used as basis for source-code
generation (M2T transformation).

It happens, for instance, that to implement a complete
MDE-based development process it is very important to
create support for an approach characterized as Round-
trip Engineering (RTE) (see Brambilla et al. (2012)). The
main characteristic that distinguishes RTE from forward
and reverse engineering is the ability to synchronize ex-
isting artifacts that evolved concurrently by incrementally
updating each artifact to reflect changes made to the other
artifacts. Furthermore, forward engineering can be seen as
a special instance of RTE in which only the specification
is present and reverse engineering can be seen as a special
instance of RTE in which only the software is present.
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The present paper proposes a solution for enhancing the
M4PIA infrastructure (see Damo et al. (2019)) for, rather
than supporting a limited MDE Development devoted
simply for code generation, also covering the aspects of
RTE. To be more specific, this work aims to integrate the
functionality of RTE with the M4PIA, giving the possibil-
ity of performing M2M transformation from PSM to PIM.
Such as done in M4PIA, this work uses standardized MDE
technology, providing insights and basis for other projects
with similar goals.

Implementing RTE will allow for improved application
evolution where changes made at the lowest levels - source
code or Platform Specific Models - will not be lost after
re-executing the transformations. This avoids the need for
editing only at the high-level model, making it possible,
to a certain extent, to edit and maintain models at any
modeling level.

The remainder parts of this paper are organized as fol-
lows: Section 2 presents the concepts that provide the
basis of this work and also discuss the related works. Sec-
tion 3 presents the proposed RTE process with the M4PIA
infrastructure, detailing the bidirectional transformation
propose. Section 4 shows an application of the present
proposal within a simplified gas compression system, also
providing an initial evaluation. Finally, section 5 highlights
our conclusions and future work perspectives.

2. BASIC CONCEPTS AND RELATED WORKS

2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) is a software devel-
opment philosophy in which models, not programs, are
the main results of the development process (Schmidt,
2006). Modeling a system consists of building models that
describe its characteristics and behavior. A model is an
abstraction, that is, a deliberate simplification in a given
context (Sommerville, 2011).

Models can represent distinct levels of abstraction and
can be separated into: Platform-Independent Model (PIM)
and Platform-Specific Model (PSM). The PIM is a spec-
ification that abstracts technical details of the system
implementation. The PSM specifies how the functionality
described in PIM is implemented on a given software
platform or programming language.

Using MDE developers can focus on the problem of
expressing domain concepts effectively without wasting
time on the complexities of the implementation platform
(Schmidt, 2006). MDE usage is seeing as advantageous
because it reduces the possibility of errors, speeds imple-
mentation design processes, and enables the creation of
reusable application templates (Sommerville, 2011).

An instantiation of a domain application is represented by
a model, and all models are defined in accordance to their
metamodels. At the metamodeling level, the elements that
can compose the system model, the relevant domain con-
cepts, as well as the possible relationships between these
concepts and the rules for the combination of elements are
identified, thus defining the structure, semantics, and the
variables associated with the concepts. At the modeling

level, real systems and applications are registered with
their characteristics and specifications (Damo et al., 2019).

Models have semantic relationships between them repre-
sented at various levels of abstraction. In the so-called
Model-to-Model (M2M) transformations, which allow the
automation of this generation of models by mapping rela-
tionships. There are also reverse-engineering M2M trans-
formations, in which a platform-specific model can be
automatically generalized to a PIM model. Other typical
transformations are Model-to-text (M2T), that generates
source code in a given programming language), and its
reverse, Text-to-model (T2M), that generates a PSM from
the source code.

2.2 Model-Driven Reverse Engineering

Reverse engineering is the approach of understanding soft-
ware and producing a model at a high level of abstrac-
tion, applicable for maintenance, documentation, or re-
engineering (see Rugaber and Stirewalt (2004); Brambilla
et al. (2012)). This technology has indeed proven useful in
many projects to help a maintenance team gaining a better
awareness of the structure and operation of a software
system. But from a developer’s perspective, there are two
major problems: it is practically impossible to anticipate
how long a reverse engineering effort will take, and there
are no standards to evaluate the quality of the reverse
engineering perform that the supply team works.

In order to overcome these challenges it exists the Model-
Driven Reverse Engineering (MDRE). A known utilization
of models by developers is to precisely specify systems
before they are developed. In some instances, modeling
tools can even create part or all the code automatically,
tending to eliminate programming errors. MDRE adopts
these characteristics of modeling technology, but applies
them differently to address maintenance manager issues.

2.3 Related Works

Palacios-González et al. (2008) review existing tools that
pursue the MDE paradigm. From authors’ point of view,
Eclipse Modeling tools are the best options for support-
ing MDE, as development is done with the standard-
ized Query/View/Transformation Operational (QVTo)
language.

Angyal et al. (2008) exhibit an approach based on dif-
ferencing and merging of abstract syntax trees (AST) for
code and model RTE. In their work, the AST is considered
to be the PSM according to the taxonomy of models in
MDA (Soley et al., 2000). It involves two distinct round-
trip tasks: one between PIM and PSM, and other between
PSM and code. The approach tries to prevent information
loss during round-trip engineering by using a so called
trace model which is used to synchronize the PIM and
the PSM through AST.

Greiner et al. (2016) presents a Query/View/Transforma-
tion (QVT) implementation of a bidirectional model trans-
formation. Therefore it was used the MoDisco framework
(see Bruneliere et al. (2010)) to transform the Java source
code into a model representation. QVT-R is used to for-
malize the bidirectional M2M transformation between the
UML model and the Java one.
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Nagowah et al. (2013) presented a RTE tool that follows
MDE to generate a CRUD (Create-Read-Update-Delete)
oriented application and to perform reverse engineering to
better meet the requirements of Java developers.

Finished our literature analysis it was not possible to find
other works using MDE in the petrochemical industry that
contribute with the design and modeling of Plants and
their Equipment. The present proposal focuses on such
aspects, as discussed in the next section.

3. PROPOSED RTE PROCESS

In order to design models that are part of the system
infrastructure, it is required for the designer to have
expertise in the problem domain, so that she/he is capable
of illustrating the concepts that are part of the respective
domain, considering the need to have a description at a
high-level of generality.

The infrastructure called M4PIA (Model-Driven Engineer-
ing for Petrochemical Industry Automation) was devel-
oped covering in its scope two software platforms devoted
for the petrochemical industry: (1) MPA (Automated Pro-
cedures Module) (see Satuf and Pinto (2009)), which is
used in the automation of oil platforms for development
and execution of industrial process control and automation
applications; (2) EMSO (Environment for Modeling, Sim-
ulation and Optimization) (see Soares and Secchi (2003)),
which is an equation-based dynamic process that is ap-
plied for modeling and simulating petrochemical process.
Follows a description of such software platforms.

3.1 MPA - Operation and Control Software Platform

The MPA software (Satuf and Pinto, 2009) was developed
for oil and gas platforms automation, as a system for devel-
opment and execution of industrial control and automation
applications. MPA consists of an enforcement server and
a setting/management application. Industrial plants are
modeled using object-orientation and diagrams are used to
define the maneuvers in the respective plant. The server is
responsible for executing the configured operation maneu-
vers in the diagrams and handles the equipment interact-
ing with the supervisory system through OPC (OLE for
Process Control) communication bridges.

LUA programming language is used to model processes
equipment. They are treated as specific classes in the
preconfiguration phase of the application. In this step,
Attributes and Methods of each Class are defined. For
example, Equipment classes are described in a preconfig-
uration file and loaded at the MPA configuration stage.
The developer uses the application to define the equipment
instantiation which composes the plants and to model the
operating maneuvers of plant equipment.

3.2 EMSO - Simulation Software Platform

EMSO (Soares and Secchi, 2003) is a software for modeling
and simulating dynamic processes based on equations. It
is composed by a graphical interface and its own object-
oriented modeling and programming language. Such lan-
guage was built from the combination of the best modeling

aspects found in existing languages, resulting in a simpler
language with a better code reusability.

The EMSO modeling language is composed of three major
entities: Models, Devices, and Flowsheets. Model is the
mathematical description of a device and can be composed
of Parameters, Variables, Equations, Initial Conditions,
and Sub-Models and can be based on a preexisting one.
Device is an instance of the model and represents a real
process equipment. Flowsheet means the process to be
analyzed, that is composed of a set of devices.

3.3 M4PIA Infrastructure

Model-driven Engineering typically enforces higher ab-
straction levels along applications development. Such more
abstract models are called Platform Independent Model
(PIM), which go through successive refinements by means
of the defined model-to-model (M2M) transformations to
create Platform Specific Models (PSM). From the PSM
models it is possible to automatically generates the source
code for the application domain by means of model-to-text
(M2T) transformations.

M4PIA infrastructure, detailed in Damo (2019), was built
to support MDE of equipment class definition, including
applications for simulation, control, and operation plat-
forms in petrochemical industry. The main element is the
M4PIA metamodel (PIM metamodel) that represents the
entire domain of the desired applications to be created,
independently of its implementation platform. Then it
was created the two PSM metamodels, MPA and EMSO,
which define the specificities of each platform. Based on
the metamodels, it was defined the M2M transformations
from PIM to PSM model.

Petrochemical industry applications inspired the definition
of a set of generic elements, capable of being shared by a
wide range of industrial automation system. The M4PIA
metamodel, illustrated in Figure 1, is a class diagram
designed using Eclipse Modeling Framework (EMF) and
its Ecore metamodel, similar to UML. It consists in a
set of classes, interfaces, and collaborations with their
respective relationships, expressing results of the structure
and requirements analysis of the problem domain and its
components. Follows a brief description of the M4PIA
metamodel.

The Project class relates to the way that models are
represented and stored. It can be composed of several Files
that can be imported as libraries (ImportedFiles) or be an
entity group to have their source code generated by the
infrastructure, such as in GeneratedFile.

The modeling hierarchy starts with the Entity class, which
is abstract and serves to provide the basic structure for the
more specialized classes, such as Equipment. Equipment is
an entity type that can contain attributes and methods,
defined to reflect physical characteristics and functions
performed by the equipment within a plant.

The Function class represents a logical entity that can ei-
ther represent a high-level or a low-level operation. A func-
tion also can have multiple Variable instances associated,
acting as parameters or results, in addition it may have a
language and an associated code, which textually describes
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Fig. 1. The M4PIA metamodel (Damo et al., 2019)
.

the instructions to be further executed by the interpreter.
The Method class is a specialization from Function, and
has exclusive connection to an Equipment.

The Variable class represents a logical variable that can
be NonTyped or Typed. Typed variables can be of Equip-
mentType or of BasicType, such as Real, Integer, Boolean,
or String. An Attribute is a specialization of Variable.
This metamodel hierarchy allows one to model situations
where there are natural recursions in relationships between
equipment, for example, when an equipment or a machine
have other equipment as attribute.

Moreover, Attribute can be associated with access permis-
sions to manage read/write operations by means of its
association with the Access class. New data types can be
defined through the DeclaredType and can also be used as
the basis for variables and attributes.

3.4 Model-to-Model Transformations

M4PIA enables modeling a petrochemical plant at a
higher-level of abstraction (PIM) and, from this model, it
allows transforming from a M4PIA PIM model to a PSM
model (MPA or EMSO). There is, however, the limitation
of not supporting reverse engineering to allow refactoring.

The reverse engineering developed in this work uses
the (MPA or EMSO) PSM to obtain a M4PIA PIM
through M2M transformations. It is a first step towards
the complete reverse engineering tool support. To de-
velop the set of M2M transformations that can inte-

grate with M4PIA, it was decided to use the Eclipse
tool with the Query/View/Transformation Operational
(QTVo) language. Figure 2 presents the two new M2M
PSM-to-PIM transformations developed in this work,
which add to the previously existing PIM-to-PSM trans-
formations.

Fig. 2. Set of supported M2M Transformations.

Damo et al. (2019) propose the M2M transformation by
PIM model (M4PIA) to PSM model (MPA or EMSO).
The contribution to infrastructure is the transformation
of each PSM metamodel to the PIM metamodel, from the
lowest level of abstraction to the largest. Each class in the
PSM metamodel has its respective representative in the
PIM metamodel, which characterizes the rules of trans-
formations, e.g., in the MPA metamodel, an Equipment
matches a Equipment in M4PIA metamodel of higher level
of abstraction, both with the same name. In the case of the
EMSO metamodel, a Model corresponds to an Equipment
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in the M4PIA metamodel. Each mapping in the QVTo
code is responsible for linking the transformation to its
corresponding concept at another metamodel level.

4. CASES STUDIES AND INITIAL EVALUATION

Damo (2019) presented a study case of the infrastructure
M4PIA in the focused on the application of advanced con-
trol strategies for oil and gas extraction platforms. In order
to represent the use of the proposed solution this section
presents the implementation of a related subsystem, more
specifically the control of a simplified gas compression
system. The emphasis in this implementation is use the
support the design and refinement iterations of the models
and transformations, mainly the reverse engineering that
is the add in the M4PIA infrastructure. The development
were done whitin the Eclipse environment.

The compression system needs to process the gas leak
through the inlet vessel. If the compressor fails, gas builds
up and the pressure in the vessel increases. To prevent
pressure from exceeding safety limits, part of the gas must
be flared. An inlet gas flow below specified limits may lead
the compressor to an unstable operating region (surge). To
prevent compressor downtime, each compression stage has
a recycling line with an anti-surge valve.

The simplified compression system represented in the
Figure 3 is composed of one Surge Tank (a flaring valve
with a knockout drum), one Output Header and two Stage
Compressors. A compression stage has a Heat Exchanger,
a Suction Drum, a Compressor Element and an Recycle
Valve. The output header has three control valves: one
exportation valve and two gas lift injection outlet valves.

Fig. 3. Simplified Gas Compression System (Damo et al.,
2019).

4.1 Initial Evaluation

To test the infrastructure transformation cycles, an em-
pirical evaluation with four scenarios was proposed, as
shown in Figure 4. Our goal is to test the Round-Trip
Engineering in the infrastructure covering some possibles
transformation with the source a PSM model (MPA or
EMSO) and the target is a PSM model as well through
M2M transformation. The intention is to detect possible
information losses and similarity cases. Two models of the
simplified gas compression system at the PSM level, one
for MPA and the other for EMSO were used as starting
point for performing the transformations to be evaluated.

Fig. 4. The four case study scenarios analyzed.

In case (a), taking a MPA PSM as starting point, the
transformation output was equal to the original model,
with exactly the same model with the same number of
Equipment, Methods Variables, and Attributes. The same
was true for case (b), where an EMSO PSM was used
as starting point and the transformation output was the
equal to the initial model, with the same number of Models,
Variables, Parameters, and Equations.

Case (c) started with a MPA PSM, aiming to transform it
into an EMSO PSM. To help analyzing the transformation
process, the generated EMSO PSM is compared with
one created ”manually” by an experienced designer, as
shown in Table 1. Models and Equations obtained the
same quantity of items. However, in MPA, for modeling
the Compressor System and the Stage Compressor, List
attributes were used - and it is not necessary to define the
list size. In EMSO, however, it is necessary a Parameter
therefore, this justifies two of the missing parameters in
the generated EMSO model. The third missing parameter
is due the need, in MPA, of a Variable to receive the
return of a Method. In EMSO this is already integrated
with Equations, so it generated a variable that will not be
useful in the model, but also do not cause errors.

Table 1. MPA to EMSO Transformation (c):
”Manual” vs. Generated EMSO

”Manual” EMSO Generated EMSO

Num. of Models 7 7
Num. of Variables 13 14
Num. of Parameters 3 0
Num. of Equations 2 2

Case (d) performed the transformation of an EMSO PSM
to an MPA PSM. The same comparison approach was used
and an MPA model was ”manually” created by an experi-
enced designer. Table 2 presents the related numbers from
the ”manually” created and the automatically generated
MPA models. The differences occur for the inverse reason
of case (c), the initial EMSO model has two Parameters
for defining the sizes of the List Attributes, but there is no
need for that in the MPA, so there are two more (useless)
Attributes in the Generated MPA. The missing Variable in
the generated model is due to the fact that Equations in
EMSO do not need a Variable to receive the result of the
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operation, which incurs into an error. This helped us to
make the proper adjustments in the transformation rules.

Table 2. EMSO to MPA Transformation (d):
”Manual” vs. Generated MPA

”Manual” MPA Generated MPA

Num. of Equipment 7 7
Num. of Methods 2 2
Num. of Attributes 14 16
Num. of Variable 1 0

Finished the proposed analysis it was possible to conclude
that the developed RTE solution is ready to be used
in more complex systems. It can either use MPA or
EMSO models as starting point, as transformations in
both directions seem to work properly.

Furthermore, additional analysis should be done to allow
reasoning about productivity gains that might be achieved
by design teams when using the proposed RTE solution.

5. CONCLUSIONS AND FUTURE WORKS

This paper presented a round-trip engineering (RTE)
solution implemented within a previously developed MDE
infrastructure and tool support for Petrochemical Industry
Automation (M4PIA). The solution uses standardized
MDE technology, providing insights and basis for other
projects with similar goals. It enables reverse engineering
from (MPA and EMSO) PSM to M4PIA PIM, and is a
first step towards the complete RTE support in M4PIA
infrastructure.

For validation purposes, a simplified gas compression sys-
tem was developed. It was observed that starting with
a given x PSM and then going up and down (PSMx-
PIM-PSMx), the resulting model is the similar. From x
PSM aiming to obtain an y PSM (PSMx-PIM-PSMy),
the resulting model showed few differences justified by
the specifics of each tool. Nevertheless, the obtained y
PSM is similar to a model designed directly in such target
software.

The next step of this work should cover the implemen-
tation of Text-to-Model (T2M) transformations, thus al-
lowing existing equipment libraries to be imported as
M4PIA models, letting it available to all software plat-
forms supported by the infrastructure. It is also desired to
apply a case study with the modeling of a more complex
petrochemical plant to double-check the complete transfor-
mation processes, analyze the losses, and the effectiveness
of the proposed infrastructure. With the complete RTE
implementation it is expected to profit from all benefits of
MDE, like gains in applications maintainability, interop-
erability, traceability between different software platforms,
to reduce development time, and to enhance compatibility
between different models of the same concepts.
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