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Abstract: This paper presents a novel one-shot convex optimization method for finding globally
optimal solutions of a class of mixed-integer non-convex optimal control problems. We consider
problems with non-convex constraints that restrict the input norms to be either zero or lower-
and upper-bounded. The non-convex problem is relaxed to a convex one whose optimal solution
is proved to be optimal almost everywhere for the original problem, a procedure known as lossless
convexification. The solution relies on second-order cone programming and demonstrates that a
meaningful class of optimal control problems with binary variables can be solved reliably and in
polynomial time. A rocket landing example with a coupled thrust-gimbal constraint corroborates
the effectiveness of the approach.
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1 Introduction

We present a convex programming solution to a class of op-
timal control problems with semi-continuous control input
norms. Semi-continuity presents a binary non-convexity
where a variable x ∈ R is constrained x ∈ {0} ∪ [a, b]
with 0 < a ≤ b MOSEK ApS (2019). The constraint az ≤
x ≤ bz with z ∈ {0, 1} models semi-continuity. Practical
rocket landing and spacecraft rendezvous path planning
problems include such constraints, and can take hours
to solve using existing mixed-integer convex programming
(MICP) methods Malyuta et al. (2020). In this paper, we
propose an algorithm based on lossless convexification that
solves these problems to global optimality in seconds.

Lossless convexification is a method for finding the globally
optimal solution of non-convex problems using convex
optimization. The method relaxes the original problem to a
convex one via a slack variable, enabling the use of second-
order cone programming (SOCP). The maximum principle
is used to prove that the solution of the relaxed problem
is globally optimal for the original problem.

Classical lossless convexification deals with non-convexity
in the form of an input norm lower-bound. The first
result was introduced in Açıkmeşe and Ploen (2007) for
minimum-fuel rocket landing and was later expanded to
more general non-convex input sets Açıkmeşe and Black-
more (2011). Extensions of the method were introduced in
Blackmore et al. (2010); Carson III et al. (2011); Açıkmeşe
et al. (2013) to handle minimum-error rocket landing and
non-convex pointing constraints. More recently, lossless
convexification was shown to handle affine and quadratic
state constraints Harris and Açıkmeşe (2013a,b), culmi-
nating in Harris and Açıkmeşe (2014).

A recurring assumption of classical lossless convexification
is that there is a single input which cannot be turned
off. Our interest is in problems that have multiple inputs
which may be turned off. When active, the input norm is

lower-bounded, making it a semi-continuous variable. This
is a richer binary non-convexity than what was handled by
classical lossless convexification.

The concept of lossless convexification with binary vari-
ables implemented via MICP was explored in Blackmore
et al. (2012); Zhang et al. (2017). However, the NP-hard
nature of MICP generally makes the approach computa-
tionally expensive.

Our main contribution is to extend lossless convexification
to a class of mixed-integer non-convex optimal control
problems with multiple inputs and semi-continuous in-
put norms. Unlike mixed-integer programming, lossless
convexification solves the problem in polynomial time.
Compared to Sager (2005); Sager et al. (2007) which de-
velop an iterative scheme, our approach solves the mixed-
integer non-convex program in one shot. The approach
is amenable to real-time onboard optimization for au-
tonomous systems or for rapid design trade studies.

The paper is organized as follows. Section 2 defines the
class of optimal control problems that our method han-
dles. Section 3 proposes our solution method based on
lossless convexification. Section 5 proves that our method
finds the globally optimal solution based on the necessary
conditions of optimality presented in Section 4. Section 6
presents a rocket landing example which corroborates the
method’s effectiveness for practical path planning appli-
cations. Section 7 outlines future work and Section 8
summarizes the result.

Notation: sets are calligraphic, e.g. S. Set Rn− denotes
the n-dimensional non-positive orthant. The operator ◦
denotes the element-wise product. Given a function f :
Rn ×Rm → Rp, we use the shorthand f [t] ≡ f(x(t), y(t)).
In text, functions are referred to by their letter (e.g. f)
and conflicts with another variable are to be understood
from context. The gradient of f with respect an argument
x is denoted ∇xf ∈ Rp×n. Similarly, if f is nonsmooth
then its subdifferential with respect to x is ∂xf ⊆ R1×n.
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Fig. 1. Input set example for m = 2. Multiple overlapping
input sets with different bounds can be modelled.

The normal cone at x to S ⊆ Rn is denoted NS(x) ⊆ Rn.

The set ST , {xT : x ∈ S}. When we refer to an interval,
we mean some time interval [t1, t2] of non-zero duration,
i.e. t1 < t2. We call the Eucledian projection of y ∈ Rn
onto S ⊆ Rn the magnitude of the 2-norm projection of y:

PS(y) ,
∥∥ argminz∈S ‖y − z‖2

∥∥
2
. (1)

2 Problem Definition

This section presents the class of optimal control problems
that can be solved via convex optimization by our method.
We consider mixed-integer non-convex optimal control
problems with linear time-invariant (LTI) dynamics and
semi-continuous input norms:
Problem O.

min
ui,γi,tf

m(tf , x(tf )) +
∫ tf
0
`(x(t))+

ζ
∑M
i=1 ‖ui(t)‖2dt

s.t. (O.a)

ẋ(t) = Ax(t) +B
∑M
i=1 ui(t) + w, x(0) = x0, (O.b)

γi(t)ρ
i
1 ≤ ‖ui(t)‖2 ≤ γi(t)ρi2 i = 1, . . . ,M, (O.c)

γi(t) ∈ {0, 1} i = 1, . . . ,M, (O.d)∑M
i=1 γi(t) ≤ K, (O.e)

Ciui(t) ≤ 0 i = 1, . . . ,M, (O.f)

x(t) ∈ X , (O.g)

b(x(tf )) = 0, (O.h)

where x(t) ∈ Rn is the state, ui(t) ∈ Rm is the i-th input,
and w ∈ Rn is a known external input. Convex functions
m : R × Rn → R, ` : Rn → R and b : Rn → Rnb define
the terminal cost, the state running cost and the terminal
manifold respectively. The binary coefficient ζ ∈ {0, 1}
toggles the input running cost. The state must lie in the
convex set X ⊆ Rn. The input directions are constrained
to polytopic cones called input pointing sets:

Ui , {u ∈ Rm : Ciu ≤ 0}, (2)

where Ci ∈ Rpi×m is a matrix with Ci,j the j-th row.
Figure 1 shows the rich input set geometry that is possible
with this model.
Assumption 1. Matrices Ci in (O.f) are full row rank.
Assumption 2. The control norm bounds in (O.c) are
distinct, i.e. ρi1 < ρi2.

3 Lossless Convexification

This section presents the two main results, Theorems 1a
and 1b, which state that the convex Problem R finds the
global optimum of Problem O under certain conditions.

The input magnitude in Problem O is semi-continuous, i.e.
‖ui(t)‖2 ∈ {0} ∪ [ρi1, ρ

i
2]. This makes the problem mixed-

integer and non-convex, which is readily apparent from
Figure 1. Consider the following convex relaxation:
Problem R.

min
ui,γi,σi,tf

m(tf , x(tf )) + ζξ(tf )+∫ tf
0
`(x(t))dt

s.t. (R.a)

ẋ(t) = Ax(t) +B
∑M
i=1 ui(t) + w, x(0) = x0, (R.b)

ξ̇(t) =
∑M
i=1 σi(t), (R.c)

γi(t)ρ
i
1 ≤ σi(t) ≤ γi(t)ρi2 i = 1, . . . ,M, (R.d)

‖ui(t)‖2 ≤ σi(t) i = 1, . . . ,M, (R.e)

0 ≤ γi(t) ≤ 1 i = 1, . . . ,M, (R.f)∑M
i=1 γi(t) ≤ K, (R.g)

Ciui(t) ≤ 0 i = 1, . . . ,M, (R.h)

x(t) ∈ X , (R.i)

b(x(tf )) = 0. (R.j)

Replacing (O.c)-(O.d) with (R.d)-(R.f) convexifies the
input set of Problem O. Figure 2 illustrates an example.

Consider the following conditions which remove degen-
erate solutions of Problem R that may be infeasible for
Problem O. The conditions use an adjoint system whose
output y(t) ∈ Rm is called the primer vector :

λ̇(t) = −ATλ(t) + v(t), v(t) ∈ ∂`(x(t))T, (3a)

y(t) = BTλ(t). (3b)

It will be seen in Section 5 that we are interested in “how
much” y(t) projects onto the i-th input pointing set. This
is given by the following input gain measure:

Γi(t) , (PUi(y(t))− ζ)ρi2. (4)

Condition 1. The adjoint system (3) is strongly observ-
able Trentelman et al. (2001).
Condition 2. The adjoint system (3) and pointing cone
geometry (O.f) satisfy either:

(a) Γi(t) 6= 0 a.e. [0, tf ] ∀i s.t. y(t) /∈ int(NUi(0));
(b) on any interval where Γi(t) = 0, Γj(t) > 0 for at least

K other inputs.
Condition 3. The adjoint system (3) and pointing cone
geometry (O.f) satisfy either:

(a) Γi(t) 6= Γj(t) a.e. [0, tf ] ∀i s.t. y(t) /∈ int(NUi(0));
(b) on any interval where Γi(t) = Γj(t), there exist K

inputs with Γk(t) > Γi(t) or M − K inputs where
Γk(t) < Γi(t).

Condition 4. `[t]+ζ
∑M
i=1 σi(t)+∇tm[tf ] 6= 0 ∀t ∈ [0, tf ).

We now state the two main results of this paper, which
claim that Problem R solves Problem O under certain
conditions. The theorems are proved in Section 5.
Theorem 1a. The solution of Problem R is globally
optimal a.e. [0, tf ] for Problem O if Conditions 1-4 hold
and the state constraint (O.g) is never activated.
Theorem 1b. The solution of Problem R is globally
optimal a.e. [0, tf ] for Problem O if Conditions 1-4 hold
and the state constraint (O.g) is activated at discrete
times.

3.1 Discussion on Strong Observability

This section describes Condition 1 and its verification.
Strong observability extends the concept of observability
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(a) Original non-convex input set defined by
(O.c)-(O.f).

(b) Non-convexity of individual input sets is
removed by relaxing (O.c) to (R.d)-(R.e).

(c) Semi-continuity of the input norm is con-
vexified by relaxing (O.d) to (R.f).

Fig. 2. Problem R convexifies the input set of Problem O, here shown for M = 2, K = 1 and m = 2. The relaxation
consists of three steps: a) (O.c)-(O.f) originally define a non-convex set of a binary nature; b) by relaxing (O.c) to
(R.d)-(R.e), individual input sets are convexified; c) by relaxing (O.d) to (R.f), a convex hull is obtained.

to the case of non-zero inputs. A strongly observable
system does not have transmission zeroes. To be precise,
let us state strong observability in the context of (3).
Definition 1 (Trentelman et al., 2001, Definition 7.8). A
point λ0 ∈ Rn is weakly unobservable if there exists an
interval T = [τ1, τ2] and an input trajectory v(t) ∈ ∂`[t]T
for t ∈ T such that if λ(τ1) = λ0 then the primer
vector satisfies y(t) = 0 ∀t ∈ T . The set of all weakly
unobservable points is denoted V, which is called the
weakly unobservable set.
Theorem 2 (Trentelman et al., 2001, Theorem 7.16). The
adjoint system (3) is strongly observable if V = {0}.
To verify Condition 1 via simple matrix algebra, it is
sufficient to apply the algorithm for computing V in
(Trentelman et al., 2001, Section 7.3) using the following
alternative to (3a):

λ̇(t) = −ATλ(t) +Dv(t), (5)

where v(t) ∈ Rn and rangeD = span
⋃
t∈[τ1,τ2] ∂`(x(t))T.

This conservative approximation assumes that the input
can come from a subspace spanned by the subdifferentials.
Section 6 uses this approximation to verify Conditions 1-3
for the rocket landing problem.

4 Nonsmooth Maximum Principle

This section states a nonsmooth version of the maximum
principle that we shall use for proving Theorems 1a and 1b.
Consider the following general optimal control problem:
Problem G.

min
u,tf

m(tf , x(tf )) +
∫ tf
0
`(t, u(t), x(t))dt s.t. (G.a)

ẋ(t) = f(t, x(t), u(t)), x(0) = x0, (G.b)

g(t, u(t)) ≤ 0, (G.c)

b(tf , x(tf )) = 0. (G.d)

where the state trajectory x(·) is absolutely continuous
and the control trajectory u(·) is measurable. The dynam-
ics f : R × Rn × Rm → Rn are convex and continuously
differentiable. The terminal cost m : R × Rn → R, the
running cost ` : R × Rm × Rn → R, the input constraint
g : R × Rm → Rng , and the terminal constraint b : R ×
Rn → Rnb are convex. Define the terminal manifold as
T , {x ∈ Rn : (G.d) holds} and the Hamiltonian function:

H(t, x(t), u(t), α, ψ(t)) , α`[t] + ψ(t)Tf [t], (6)

where α ≤ 0 is the abnormal multiplier and ψ(·) is the
adjoint variable trajectory. We now state the nonsmooth
maximum principle, due to (Vinter, 2000, Theorem 8.7.1)
(see also Clarke (2010); Hartl et al. (1995)), which specifies
the necessary conditions of optimality for Problem G.
Theorem 3 (Maximum Principle). Let x(·) and u(·) be
optimal on the interval [0, tf ]. There exist a constant α ≤ 0
and an absolutely continuous ψ(·) such that the following
conditions are satisfied:

(1) Non-triviality:

(α,ψ(t)) 6= 0 ∀t ∈ [0, tf ]; (7)

(2) Pointwise maximum:

u(t) = argmax
v∈(G.c)

H(t, x(t), v, α, ψ(t)) a.e. [0, tf ]; (8)

(3) The differential equations and inclusions:

ẋ(t) = ∇ψH[t]T a.e. [0, tf ], (9a)

ψ̇(t) ∈ −∂xH[t]T a.e. [0, tf ], (9b)

Ḣ[t] ∈ ∂tH[t] a.e. [0, tf ]; (9c)

(4) Transversality:

ψ(tf ) ∈ α∂xm[tf ]T +NT (x(tf )), (10a)

0 ∈ H[tf ] + α∂tm[tf ] +NT (tf ). (10b)

5 Lossless Convexification Proof

This section proves Theorems 1a and 1b. The general
outline is as follows. We first prove Theorem 1a by showing
that (step 1) the solution of Problem R is feasible for
Problem O, and (step 2) the solution is globally optimal.
We then show Theorem 1b via a proof by contradiction in
which Theorem 1a is applied on each interval where the
state constraint is inactive.
Lemma 1. The solution of Problem R is feasible a.e. [0, tf ]
for Problem O if x(t) ∈ int(X ) and Conditions 1-4 hold.

Proof. The proof uses the maximum principle from The-
orem 3. Since there are two states, partition the adjoint
variable as ψ(t) = (λ(t) ∈ Rn, η(t) ∈ R). For Problem R
and x(t) ∈ int(X ), the adjoint and Hamiltonian dynamics
follow from (9b) and (9c):

λ̇(t) = −ATλ(t)− αv(t), v(t) ∈ ∂`[t]T, a.e. [0, tf ], (11a)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6927



η̇(t) = 0 a.e. [0, tf ], (11b)

Ḣ[t] = 0 a.e. [0, tf ], (11c)

Using the subdifferential basic chain rule (Rockafellar and
Wets, 1998, Theorem 10.6), the transversality condition
(10) yields:

λ(tf ) = ∇xm[tf ]Tα+∇xb[tf ]Tβ, (12a)

η(tf ) = αζ, (12b)

H[tf ] = −∇tm[tf ]α, (12c)

for some β ∈ Rnb . Due to (11b)-(11c), (12b)-(12c) and
absolute continuity, we have (Varberg, 1965, Theorem 9):

η(t) = αζ, ∀t ∈ [0, tf ], (13a)

H[t] = −∇tm[tf ]α, ∀t ∈ [0, tf ]. (13b)

We claim that the primer vector y(t) 6= 0 a.e. [0, tf ]. By
contradiction, suppose there exists an interval [τ1, τ2] ⊆
[0, tf ] for which y(t) = 0. Condition 1 implies that λ(τ1) =

0. Due to (13), this implies α(`[τ1] + ζ
∑M
i=1 σi(τ1) +

∇tm[tf ]) = 0. Due to Condition 4, it must be that
α = 0 which implies (α,ψ(τ1)) = 0. Since this violates
non-triviality (7), it must be that y(t) 6= 0 a.e. [0, tf ].
Having eliminated the pathological case, assume α < 0.
In particular, since the necessary conditions in Theorem 3
are scale-invariant, we can set α = −1 without loss of
generality. The pointwise maximum condition (8) implies
that the following must hold a.e. [0, tf ]:

argmax
ui,γi,σi

∑M
i=1 y(t)Tui(t)− ζσi(t) s.t. (14a)

constraints (R.d)-(R.h) hold. (14b)

We shall now analyze the optimality conditions of (14).
For concise notation, the time argument t shall be omitted.
Expressing (14) as a minimization and treating constraints
(R.f) and (R.g) implicitly, we can write the Lagrangian of
(14) Boyd and Vandenberghe (2004):

L(ui, γi, σi, λ
i
1...4) =

∑M
i=1 ζσi − yTui + λi1(‖ui‖2 − σi)+

λi2(γiρ
i
1 − σi) + λi3(σi − γiρi2) + λi4

T
Ciui, (15)

where λij ≥ 0 are Lagrange multipliers satisfying the
following complementarity conditions:

λi1(‖ui‖2 − σi) = 0, (16a)

λi2(γiρ
i
1 − σi) = 0, (16b)

λi3(σi − γiρi2) = 0, (16c)

λi4 ◦ Ciui = 0. (16d)

Next, the Lagrange dual function is given by:

g(λi1...4) = inf
ui,γi,σi

L(ui, γi, σi, λ
i
1...4)

=
∑M
i=1 infσi

[
(ζ + λi3 − λi2 − λi1)σi

]
−∑M

i=1 supui

[
(y − CT

i λ
i
4)Tui − λi1‖ui‖2

]
+

inf(R.f),(R.g)

∑M
i=1(λi2ρ

i
1 − λi3ρi2)γi. (17)

The dual function bounds the primal optimal cost from
above. A non-trivial upper-bound requires:

‖y − CT

i λ
i
4‖2 ≤ λi1, (18a)

ζ + λi3 − λi2 − λi1 = 0, (18b)

where the first inequality is akin to the ‖ · ‖2 conjugate
function (Boyd and Vandenberghe, 2004, Example 3.26).
However, note that if (18a) is strict then ‖ui‖2 = 0

is optimal, which is trivially feasible for Problem O.
Substituting (18b) into (18a) gives the following condition
for non-trivial solutions:

‖y − CT

i λ
i
4‖2 = ζ + λi3 − λi2. (19)

Further simplification is possible by recognizing that a
non-trivial solution implies γi > 0. By Assumption 2, (16b)
and (16c), this means λi2 > 0 and λi3 > 0 cannot occur
simultaneously. Furthemore, (17) reveals that γi > 0 is
not sub-optimal if and only if λi2ρ

i
1 − λi3ρi2 ≤ 0. By this

reasoning, λi2 = 0 and λi3 ≥ 0 are necessary for optimality.
Thus, (19) simplifies to:

‖y − CT

i λ
i
4‖2 = ζ + λi3. (20)

Next, note that at optimality the left-hand side of (20)
equals the Eucledian projection onto Ui, i.e. ‖y−CT

i λ
i
4‖2 =

PUi(y). This can be shown by contradiction using Assump-
tion 1, (16d) and that ui = ‖ui‖2(y − CT

i λ
i
4)/‖y − CT

i λ
i
4‖2

in (17). Note that the degenerate case of ui 6= 0 and ‖y −
CT
i λ

i
4‖2 = 0 is eliminated in the discussion below which

leverages Condition 2. Thus (20) simplifies to the following
relationship, which we call the characteristic equation of
non-trivial solutions to Problem R:

PUi(y) = ζ + λi3. (21)

Substituting (21) into (17) yields:

g(λi1...4) = − sup(R.f),(R.g)

∑K′

i=1(PUi(y)− ζ)ρi2γi, (22)

where we assume that the characteristic equation (21) does
not hold for i = K ′ + 1, . . . ,M such that γi>K′ = 0. To
facilitate discussion, define the i-th input gain as in (4).
Note that Γi ≥ 0 due to (21). Thus (22) becomes:

g(λi1...4) = − sup(R.f),(R.g)

∑K′

i=1 Γiγi. (23)

Without loss of generality, assume a descending ordering
Γi ≥ Γj for i > j. Let K ′′ , min{K,K ′}. By inspection of
(23), the condition:

ΓK′′ > 0 ∧ ΓK′′ > ΓK′′+1, (24)

is sufficient to ensure that it is optimal to set

γi =

{
1 if i ≤ K ′′,
0 otherwise.

(25)

The lemma holds if (24) holds a.e. [0, tf ]. This is assured
by Conditions 2 and 3. Condition 2 case (a) assures ΓK′′ >
0 a.e. [0, tf ]. If on some interval Γk = 0, Condition 2
case (b) assures that k > K ′′. If K ′′ < K then due
to ΓK′′ > 0 and the definition of K ′, it must be that
ΓK′′+1 = 0⇒ ΓK′′ > ΓK′′+1. Else if K ′′ = K, Condition 3
case (a) assures ΓK > ΓK+1 a.e. [0, tf ]. If on some interval
Γk = Γk+1, Condition 3 case (b) assures that k 6= K.

Thus, (24) holds a.e. [0, tf ] and the lemma is proved. From
(25), the structure of the optimal solution is bang-bang
with at most K inputs active a.e. [0, tf ].

Lemma 1 guarantees that Problem R produces a feasible
solution of Problem O. We will now show that this solution
is globally optimal, thus proving Theorem 1a.

Proof of Theorem 1a. The solution of Problem R is fea-
sible a.e. [0, tf ] for Problem O due to Lemma 1. Further-
more, if ζ = 0 then the cost functions of Problems O and
R are the same. This is also true when ζ = 1 because
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Lemma 1 guarantees that ‖ui(t)‖2 = σi(t). The optimal
costs thus satisfy J∗O ≤ J∗R. However, any solution of Prob-
lemO is feasible for ProblemR by setting σi(t) = ‖ui(t)‖2,
thus J∗R ≤ J∗O. Therefore J∗R = J∗O so the Problem R
solution is globally optimal for Problem O a.e. [0, tf ].

Theorem 1a implies that Problem O is solved in polyno-
mial time by an SOCP solver applied to Problem R. This
can be done efficiently with several numerically reliable
SOCP solvers Dueri et al. (2014). Therefore the class of
NP-hard problems defined by Problem O is in fact of P
complexity if x(t) ∈ int(X ) and Conditions 1-4 hold.

5.1 The Case of Active State Constraints

So far it has been assumed that the state constraint (O.g)
is inactive. This section guarantees lossless convexification
in a limited setting when (O.g) is activated at a discrete
set of times. To begin, define the interior time and contact
time sets as follows:

Ti , {t ∈ (0, tf ) : x(t) ∈ int(X )}, (26a)

Tc , [0, tf ] \ Ti. (26b)

A point τ of Tc is called an isolated point if there exists a
neighborhood of τ not containing other points of Tc Stein
and Shakarchi (2005). A set of isolated points is called a
discrete set and any discrete subset of a Eucledian space
has measure zero Açıkmeşe and Blackmore (2011). We can
now prove Theorem 1b.

Proof of Theorem 1b. The proof is similar to (Açıkmeşe
and Blackmore, 2011, Corollary 3). To begin, let ΣO =
{t∗f , x∗, ξ∗, u∗i , γ∗i , σ∗i } be the original solution returned by
Problem R, which achieves the optimal cost value J∗R.
Since Tc is a discrete set, for any consecutive contact times
τ1 < τ2 there exists a large enough real a > 0 such that
τ1 + 1/a < τ2 − 1/a. Let τe = τ1 + 1/a and τf = τ2 − 1/a.
Now consider solving Problem R over [τe, τe + ∆τ ] with
tf = ∆τ , x0 = x(τe), b[tf ] = x(∆τ) − x(τf ). Call the
solution to this problem the subproblem solution ΣS =
{∆̃τ, x̃, ξ̃, ũi, γ̃i, σ̃i}, and let J∗S be the achieved optimal
cost. We claim that the corresponding portion of ΣO
must also achieve J∗S . If it does not, the modified solution

ΣM = {t̂f , x̂, ξ̂, ûi, γ̂i, σ̂i} such that t̂f = t∗f +∆̃τ−(τf−τe)
and {x̂, ξ̂, ûi, γ̂i, σ̂i} =
{x∗(t), ξ∗(t), u∗i (t), γ∗i (t), σ∗i (t)} for t ∈ [0, t̂f ]\

[τe, τe + ∆̃τ ],

{x̃(t), ξ̃(t), ũi(t), γ̃i(t), σ̃i(t)} for t ∈ [τe, τe + ∆̃τ ],

is also feasible for Problem R and achieves a lower cost
than J∗R, which contradicts that the [τe, τf ] segment of
ΣO is optimal. Thus, ΣS must be optimal for the original
problem. By Theorem 1a, ΣS must be globally optimal for
ProblemO. Since a is arbitrarily large, ΣS must be optimal
for Problem O over t ∈ (t1, t2). Let Tc = {τi, i = 1, 2, . . . },
τi < τi+1 ∀i. Hence int(Ti) =

⋃
i(τi, τi+1) and ΣO is

globally optimal for Problem O a.e. Ti. Since Tc is a
discrete set, cl(Ti) = [t0, tf ] and so the Problem R solution
is globally optimal for Problem O a.e. [0, tf ].

6 Numerical Example

This section shows how rocket landing trajectories can be
generated much faster via Problem R than MICP. Python

source code for this example is available online 1 . Consider
the in-plane rocket dynamics:

ẋ(t) = A(ω)x(t) +B
∑M
i=1 ui(t) + w, (27)

where the vehicle is treated as a point mass with x(t) =
(r(t), v(t)) ∈ R4 the position and velocity state and ω ∈ R
the planet rotation rate, which is assumed to be constant
and perpendicular to the trajectory plane 2 . The input
ui(t) ∈ R2 represents an acceleration imparted on the
rocket by a gimballed thruster. The LTI matrices are:

A(ω) =

[
0 I
ω2I 2ωS

]
, B =

[
0
I

]
, w =

[
0

ω2l + g

]
, (28)

where S = [0 1;−1 0] ∈ R2×2, I ∈ R2×2 is identity,
l ∈ R2 is the landing pad position with respect to the
planet’s center of rotation, and g ∈ R2 is the gravity
vector. Note that the dynamics assume constant mass and
gravity for concision, but both can be made variable within
the lossless convexification framework Açıkmeşe and Ploen
(2007); Blackmore et al. (2012).

The rocket is equipped with a single gimballed thruster
which operates in two modes: 1) low-thrust high-gimbal,
and 2) high-thrust low-gimbal. A maximum gimbal angle
range of θi ∈ (0, π) is enforced via (O.f) by setting:

Ci =

[
− cos(θi/2) − sin(θi/2)

cos(θi/2) − sin(θi/2)

]
. (29)

We also impose a glide slope constraint as in Blackmore
et al. (2010) which prevents the rocket from approaching
the ground too closely prior to touchdown:

X = {x = (r, v) ∈ R4 : êTyr ≥ ‖r‖2 sin(γgs)}, (30)

where êy = (0, 1) ∈ R2 is the unit vector along the altitude
axis. We choose the following parameters, corresponding
to a Martian divert maneuver similar to Açıkmeşe and
Ploen (2007):

M = 2, K = 1, ω = 2π/88775 rad s−1, ρ11 = 4 m s−2,

ρ21 = 8 m s−2, ρ12 = 8 m s−2, ρ22 = 12 m s−2, θ1 = 120 °,
θ2 = 10 °, γgs = 10 °, l = (0, 3396.2) km, ζ ∈ {0, 1},
g = (0,−3.71) m s−2, m[tf ] = (1− ζ)tfξmax/tf,max,

`(x(t)) = 10−3ξmax(|r1(t)| tan(γgs) + |r2(t)|)/h0,
r(0) = (1500, h0) m, v(0) = (50,−70) m s−1,

r(tf ) = (0, 0) m, v(tf ) = (0, 0) m s−1,

where tf,max = 100 s is the time of flight upper-bound
and ξmax = tf,maxρ

2
2 is the maximum input integral cost.

The optimal cost is verified to be unimodal in tf such
that golden search can be applied to find the optimal
tf Blackmore et al. (2010); Kochenderfer and Wheeler
(2019). The initial altitude above ground level (AGL) h0
and ζ ∈ {0, 1} are independent variables that we shall vary.
When ζ = 0, we solve for a minimum-time trajectory, while
for ζ = 1 we solve for a minimum-fuel trajectory.

The problem satisfies Conditions 1-4 under a few mild
assumptions. Because the glide slope (30) maintains the
rocket above zero altitude, `[t] > 0 ∀t ∈ [0, tf ) such that
Condition 4 holds irrespective of m. To check Condition 1,
recognize that for our choice of `:

1 https://github.com/dmalyuta/lcvx
2 This is done for simplicity in order to keep the motion planar. A
general 3-dimensional angular velocity vector can also be considered.
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(a) Illustration of the six vectors n̂ that ẏ(t) must not be normal to
for Conditions 2 and 3 to hold.

(b) If the normality check fails, the optimal input could point in the
directions highlighted in red.

Fig. 3. Illustrated verification of Condition 2 and 3 when
ζ = 0. If ẏ(t) can evolve normal to any vector in (a),
the input can point in the directions shown in (b)
while violating (O.d).

∂`[t]T = D∂r`[t]
T, D ,

[
I
0

]
. (31)

Following the discussion in Section 3.1, we confirm that the
LTI system {−AT, D,BT, 0} is strongly observable, hence
Condition 1 holds. To check Conditions 2 and 3, we need
to make the following assumption because replacing ∂r`[t]

T

with R2 is too conservative.
Assumption 3. The downrange and altitude are non-zero
almost everywhere, i.e. r1(t) 6= 0 and r2(t) 6= 0 a.e. [0, tf ].

Leveraging Assumption 3 yields a piecewise constant input
to the adjoint system:

∂r`[t]
T =

10−3ξmax

h0

{[
tan(γgs)

1

]
,

[
− tan(γgs)

1

]}
. (32)

Leveraging (32), consider the following LTI system where
a constant input is modelled as a static state, yielding an
augmented state λ′(t) ∈ R6:

λ̇′(t) =

[
−AT D

0 0

]
λ′(t) = A′λ′(t), (33a)

y(t) = [BT 0]λ′(t) = C ′λ′(t). (33b)

When ζ = 0, checking Conditions 2 and 3 reduces to
ensuring that ẏ(t) = C ′A′λ′(t) cannot evolve perpendic-
ular to certain constant vectors n̂ ∈ R2. The values of
n̂ that need to be checked are illustrated in Figure 3a.
To verify Conditions 2 and 3, we check the observability
properties of the pair {A′, n̂TC ′A′}. Let Vn̂ be a matrix
whose columns span the unobservable subspace. It turns
out for the rocket landing problem that A′Vn̂ = 0 ∀n̂.
Conditions 2 and 3 can thus be violated only by a constant
primer vector. If this occurs, the input is constrained to
point in the directions shown in Figure 3b. Notice that this
constrains the downrange acceleration to always have the
same sign. The following assumption requires the rocket
to experience both acceleration and deceleration. The as-

Table 1. Optimal cost and solver runtime when solving
Problem R versus MICP. Dashes show when MICP took

too long to converge (> 10 min per iteration).

h0 [m] ζ J∗R J∗MICP tR [s] tMICP [s]

650 0 636.2 – 2.9 –
650 1 374.5 – 2.4 –
800 0 577.7 577.8 2.4 232.3
800 1 350.8 350.9 2.3 269.9
1000 0 548.9 – 3.9 –
1000 1 333.7 333.7 2.3 566.8
1500 0 493.4 – 2.5 –
1500 1 316.1 316.1 2.2 177.3
3000 0 558.0 558.0 2.5 73.1
3000 1 323.0 323.1 1.8 505.9

sumption is satisfied if, for example, the rocket is initially
travelling away from the landing site and has to reverse its
velocity.

Assumption 4. The downrange acceleration
∑M
i=1 ui,1(t)

changes sign at least once over [0, tf ].

The assumption is sufficient for Theorem 1a but not
Theorem 1b, because a discontinuity in ẏ(t) may occur
at t ∈ Tc (26b) Hartl et al. (1995). If state constraints
are activated, a “sufficiently rich” gimbal history may be
assumed or Conditions 2 and 3 may be verified a posteriori,
i.e. the solution is lossless if they hold.

When ζ = 1, Condition 2 requires ‖y(t)‖2 6= 1 a.e. [0, tf ].
Modal shape analysis for the pair {A′, C ′} reveals that,
given a constant input in (32), ‖y(t)‖2 = 1 for an interval
is only possible if y(t) is constant. This is eliminated by
Assumption 4 with the same caveat about state constraint
activation. Checking Condition 3 is not possible a priori
when ζ = 1. The condition is verified a posteriori.

The dynamics (27) are discretized via zeroth-order hold
on a uniform temporal grid of 150 nodes. Python 2.7.15
and ECOS 2.0.7.post1 Domahidi et al. (2013) are used on
a Ubuntu 18.04.1 64-bit platform with a 2.5 GHz Intel
Core i5-7200U CPU and 8 GB of RAM. The solution
and runtime are compared to a MICP formulation where
(O.d) is implemented directly as a binary constraint using
Gurobi 8.1 Gurobi Optimization (2018).

Figure 4 shows the resulting state, input and input gain
trajectories. Let us first discuss Figures 4a and 4b. The
top row shows the overall trajectory, from which we
note that Assumptions 3 and 4 are satisfied. The second
and third rows show that the input norm is feasible
almost everywhere for ProblemO. In particular, the thrust
magnitude is bang-bang as predicted in Lemma 1. The
intermediate thrusts occuring at the rising and falling
edges in the third row are discretization artifacts. Recall
that the lossless convexification guarantee is only “almost
everywhere” in nature. These artifacts have been observed
since the early days of lossless convexification theory
Açıkmeşe and Ploen (2007). Note the kink that occurs in
the y(t) trajectory in the second row, which coincides with
the glide slope state constraint activation as highlighted
by the red dot in the first row. Looking at the third row,
σi(t) 6= ‖ui(t)‖2 as expected when ζ = 0 and both inputs
are off, since there is no cost incentive to minimize σi(t).
Note that optimality nevertheless requires ui(t) = 0, as
predicted by Lemma 1. Finally, the fourth row shows the
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(a) Landing from h0 = 800 m AGL, ζ = 0.
Time of flight tf = 46.93 s.
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(b) Landing from h0 = 800 m AGL, ζ = 1.
Time of flight tf = 53.97 s.
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(c) Trajectory sweep over h0 ∈ [650, 6000] m
AGL, ζ = 0 and N = 30.

Fig. 4. Landing trajectories computed by Problem R. Green shows the high-gimbal low-thrust mode and blue shows the
low-gimbal high-thrust mode. In (a) and (b), the top row shows the position trajectory with overlaid thrusts
(−ui(t)). Dotted lines show glide slope (30). The second row shows the input with the (normalized) primer
vector (3b). Dotted lines show the equal-gain manifold Γ1(t) = Γ2(t). The third row shows the input magnitude
history. The bottom row shows each input’s gain (4) and their difference. The background colour shows when the
corresponding input is active. In (c), landing trajectories are shown for a sweep over the initial altitude AGL.

Γi(t) trajectories. As predicted by (25), when Γi(t) >
Γj(t), optimality forces input γi(t) = 1 and γj(t) = 0.

Table 1 compares the achieved optimal cost and solver
runtimes of lossless convexification versus a direct MICP
implementation of (O.d). One can see that the optimal
cost values are quasi-identical, with some slightly lower
values for lossless convexification due to the “intermedi-
ate thrusts” discussed above. More importantly, solving
Problem R is up to two orders of magnitude faster than
using MICP. This is expected, since SOCP has polyno-
mial time complexity in the problem size while MICP has
exponential time complexity. Furthermore, MICP was not
able to find a trajectory in several cases (the computation
was aborted when runtime exceeded 10 min for a single
golden search iteration). The third column of Figure 4
shows a sequence of 50 landing trajectories for a sweep
over h0 ∈ [650, 6000] m AGL. Computing this sequence of

50 trajectories with N = 150 takes 130 s, which is less than
the average MICP solution time for a single trajectory.

7 Future Work

Future work consists of expanding the class of problems
that can be handled. This includes considering different
input norm types in (O.a) and (O.c), time-varying dy-

namics in (O.b), a lower-bound L ≤ ∑M
i=1 γi(t) in (O.e),

a constraint on the input rate of change u̇i(t), persistently
active state constraints in (O.g), and removing the dis-
cretization artifacts observed in Section 6. A minor caveat
of the Lemma 1 proof is that conditions which are proven
to hold “almost everywhere” are assumed not to fail on
nowhere dense sets of positive measure (e.g. the fat Cantor
set) Morgan II (1990). We do not expect this pathology to
occur for any practical problem, and in the future we seek
to rigorously eliminate this artifact.
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8 Conclusion

This paper presented a lossless convexification method for
solving a class of optimal control problems with semi-
continuous input norms. By relaxing the problem to a con-
vex one and proving that the relaxed solution is globally
optimal for the original problem, solutions can be found
via one-shot convex optimization in polynomial time. The
resulting algorithm is amenable to real-time onboard im-
plementation and can also be used to accelerate design
trade studies.
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Açıkmeşe, B., Carson III, J.M., and Blackmore, L. (2013).
Lossless convexification of nonconvex control bound and
pointing constraints of the soft landing optimal con-
trol problem. IEEE Transactions on Control Systems
Technology, 21(6), 2104–2113. doi: 10.1109/tcst.2012.
2237346.
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