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Abstract: This work focuses on the computation of a candidate Lyapunov function for a
Low Earth Orbit satellite which is actuated using only magnetorquers. A satellite having
only electromagnetic actuation is not controllable when the magnetic moment produced by
the magnetorquers is parallel to the geomagnetic field. Further, the dynamics of the system
are periodic due to the periodic nature of the geomagnetic field. Previously, a locally stable
Proportional-Derivative control has been designed for such a satellite. In this work, we have
found a polynomial candidate Lyapunov function for the resultant closed loop system using
Sum-of-Squares (SoS) polynomials and Putinar’s Positivstellensatz. Unlike previous applications
of SoS techniques on rigid bodies, the kinematics have been defined using unit quaternions.
The unit quaternions have a well-known advantage of being a singularity free representation
of attitude kinematics with only a single constraint. The unit quaternion constraint has
been ensured using semialgebraic sets. Furthermore, special emphasis has been placed on the
verification of the candidate Lyapunov function and we have simulated the closed loop system
with the candidate Lyapunov function.
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1. INTRODUCTION

In recent years, many control theorists have proposed using
Sum-of-Squares (SoS) polynomials as a possible candidate
Lyapunov function for proving stability of the solutions of
dynamical systems (see Parrilo (2000), Papachristodoulou
and Prajna (2005) and Sloth (2016)). This is due to the
fact that checking global non-negativity of an arbitrary
polynomial is an NP-hard problem (see Parrilo (2000)) and
one way to avoid this is to search for an SoS polynomial
(instead of an arbitrary non-negative polynomial) which is
guaranteed to be non-negative. Furthermore, the problem
of searching for a SoS polynomial can be posed as an
semidefinite program (SDP) which can then be solved
using SDP solvers like MOSEK or SeDuMi. Thus, we
can relax the strict condition of non-negativity with an
SoS condition which is referred to as an SoS relaxation.
Suitable MATLAB based toolboxes have been developed
for converting SoS problems into a standard SDP such as
SOSTOOLS and YALMIP.

It is important to note that for multivariate polynomials,
there can exist non-negative polynomials which are not
SoS. This is relevant in the study of dynamical systems
because a dynamical system having many states will have
a multivariate polynomial candidate Lyapunov function,
which is required to satisfy Lyapunov’s stability theo-
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rem. Further, for a locally stable dynamical systems, we
need to check whether the polynomial satisfies Lyapunov’s
stability theorem over the considered domain. Thus, we
need representation theorems for writing polynomials non-
negative on a semialgebraic set. Such theorems are re-
ferred to as Positivstellensatz in the literature (see Lasserre
(2010)) and one such theorem is Putinar’s Positivstellen-
satz which we have used in this work. The above method-
ology has been applied to a variety of dynamical systems
such as motion planning for robots in Tedrake et al. (2010)
and Van der Pol equations in Tan (2006).

Computing candidate Lyapunov function for a satellite
having only electromagnetic actuation using the above
methodology is non-trivial due to the periodic nature
of the dynamical system and the lack of controllability
whenever the satellite magnetic moment and geomagnetic
field are parallel. Further, we have used unit quaternions
which provide a singularity-free representation of kinemat-
ics at the cost of having to ensure the unit quaternion
constraint. Previously such satellites have been studied
in Martel et al. (1988) and Byrnes and Isidori (1991).
The book Markley and Crassidis (2014) provides a good
introduction to fundamental topics on the subject. This
work is based on attitude control design for Ørsted satel-
lite which was studied in Wisniewski (1996). SoS and
Positivstellensatz have previously been applied for prov-
ing stability of satellite with kinematics defined using
Modified Rodrigues Parameters instead of quaternions in
Tobenkin et al. (2011). Modified Rodrigues Parameters
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are a projection of quaternions in R3 and they are not
sufficient for a singularity free global representation of
attitude. This is because global representation of atti-
tude requires minimum 4 parameters Wertz (1978). As an
alternative approach, the quaternion constraint can also
be maintained by using Stengle’s Positivstellensatz which
can handle equality constraints. However, the resulting
SDP may contain constraints in the form of a bilinear
matrix inequality instead of constraints in the form of a
standard linear matrix inequality. Proposition 2.1 in Tan
(2006) mentions a relaxation for avoiding bilinear matrix
inequality with Stengle’s Positivstellensatz. In this work,
however the authors focus on Putinar’s Positivstellensatz
instead.

To the best of the authors knowledge, the aforementioned
methodology for finding candidate Lyapunov functions
has not yet been applied on satellites with kinematics
defined by unit quaternions and the goal of this work is to
demonstrate that this can be done by carefully construct-
ing suitable semialgebraic sets. We have also emphasized
the verification of candidate Lyapunov function firstly, by
checking whether the constraints of the SDP (formulated
when searching for a candidate Lyapunov function) has
been satisfied and secondly, by simulating the closed loop
dynamical system with the obtained candidate Lyapunov
function. The rest of the paper is organized as follows: The
next section formally introduces the theorems used in this
work. The third section defines the coordinate system and
the model used for the satellite. Thereafter, we compute
the candidate Lyapunov function in the fourth section.
In the fifth section, we present the simulation results and
lastly, we state concluding remarks.

2. PRELIMINARIES

In this section we introduce SoS polynomials, semialge-
braic sets, Putinar’s Positivstellensatz and Lyapunov’s
stability theorem for nonautonomous system.

2.1 SoS polynomials

Consider the state variables X ∈ Rn. It should be noted
that when we write a polynomial as an algebraic object, we
will useX to denote variables but if we want to write a real
vector, we will use x. Let vd(X) be a vector of monomials
vd(X) = [1, X1, X2, .., Xn, X

2
1 , X1X2, ...X

d
n]T which can be

generated upto a degree d. The dimension of this vector is
s(d) :=

(
n+d
d

)
. Let R[X] be the ring of real polynomials in

the variables X. A polynomial p ∈ R[X] is said to be SoS
if it can be written as

p(X) = Σjpj(X)2, where pj(X) ∈ R[X]. (1)

A polynomial p has a SoS decomposition if and only if
there exists a real, symmetric and positive semidefinite
matrix Q ∈ Rs(d)×s(d) such that

p(X) = vd(X)TQvd(X) ∀X ∈ Rn. (2)

The problem of finding an SoS decomposition can be posed
as the feasibility of the following SDP

Find Q ∈ Rs(d)×s(d) (3a)
such that Q = QT , (3b)

Q < 0, (3c)
trace(Qvdv

T
d ) = p. (3d)

2.2 Semialgebraic sets and Putinar’s Positivstellensatz

Let

K := {X ∈ Rn : gj(X) ≥ 0, j = 1, · · · ,m} (4)

be a semialgebraic set, where g1, · · · , gm ∈ R[X]. We
shall now define Putinar’s Positivstellensatz as per Putinar
(1993) and later use it for obtaining polynomial certificates
of positivity on (4). We begin by defining quadratic mod-
ules Q(g1, · · · , gm) associated with gj ⊂ R[X] as follows,

Q(g1, · · · , gm) :=
{
q0 +

m∑
j=1

qjgj : (qj)
m
j=0 ⊂ Σ[X]

}
(5)

where Σ[X] represents the set of SoS polynomials.

Assumption 2.1 There exists u ∈ Q(g) such that the
level set {X ∈ Rn : u(X) ≥ 0} is compact.

Based on Assumption 2.1, we can state Putinar’s Posi-
tivstellensatz as follows.
Theorem 1. Let the Assumption 2.1 hold. If F ∈ R[X] is
strictly positive on K, then F ∈ Q(g) that is,

F = s0 +

m∑
j=1

sjgj (6)

for some SoS polynomials sj ∈ Σ[X] , j = 0, 1, · · · ,m.

2.3 Lyapunov stability theory for non-autonomous system

Consider the following non-autonomous system:

ẋ1 = f1(x1, x2(t)), (7a)
ẋ2 = f2(x2(t)), (7b)

where x1 ∈ Rn, x2 ∈ Rm, f1 : Rn × Rm → Rn and
f2 : Rm → Rm.

Theorem 2. Consider a solution of 7b, x̄2(t) with x̄2(0) =
x2,0 and assume that x̄1(t) ≡ 0 is an equilibrium solution
of (7a) for x2(t) = x̄2(t), i.e., f1(0, x2) = 0∀x2 ∈ {x̄2(t)}.
Let D ⊂ Rn be a domain containing x1 = 0 and suppose
there exists V : D → R+

0 such that

k1 ‖x1‖2 ≤ V (x1) ≤ k2 ‖x1‖2 (8a)
∂V

∂x
f1(x1, x2) ≤ −k3 ‖x1‖2 (8b)

for all x1 ∈ D and x2 ∈ {x̄2(t)}, where k1, k2, k3 are
positive constants. Then, for sufficiently small x1,0, the
solution of (7) for x1(0) = x1,0 and x2(0) = x2,0 satisfies
x1(0)→ 0.
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Proof. Consider the following non-autonomous system
ẋ1 = f1(x, x̄2(t)) =: f(t, x), x ∈ Rn and apply Theorem
7.5, Definition 7.1 and Definition 3.48 from Kloeden and
Rasmussen (2011), while choosing a time invariant Lya-
punov function V (t, x) := V (x).

2.4 SoS program for finding candidate Lyapunov functions

Using Theorems 1 and 2, the following SoS program can
be written for finding candidate Lyapunov functions valid
in D.

Find V (x) (9a)
such that V (0) = 0, (9b)

V (x)−
m∑
j=1

sjgj − k1 ‖x1‖2 ∈ Σ[x], (9c)

− V (x)−
m∑
j=1

sjgj + k2 ‖x1‖2 ∈ Σ[x], (9d)

− ∂V (x)

∂x
f(x)−

m∑
j=1

sjgj − k3 ‖x1‖2 ∈ Σ[x],

(9e)

where Σ[x] represent SoS polynomials, s1, · · · sm generated
upto degree of the candidate Lyapunov function and g
represents the polynomial inequalities which generate K.
The scalars k1, k2 and k3 ensure that the polynomial
remains positive overK (Putinar’s Positivstellensatz alone
ensures only the non-negativity of the polynomial overK).

3. MODELING OF ØRSTED SATELLITE

We begin by stating the general coordinate system (CS)
and notation for the satellite.

Table 1. Coordinate system

Acronym Description
BCS CS built on principal axes
OCS reference CS fixed in orbit
WCS inertial right orthogonal CS

3.1 Kinematics

The attitude of the satellite is given as the orientation of
BCS with respect to OCS. We have used unit quaternions
for representing kinematics as follows

q̇ =
1

2
cΩcoq4 +

1

2
cΩco × q

q̇4 = −1

2
cΩco · q

(10)

The scalar part q4 of attitude quaternion c
oq is not unique

but constrained as follows

q21 + q22 + q23 + q24 = 1. (11)

The angular velocity in OCS is related to the angular
velocity in WCS as follows

cΩco = cΩcw − ω0
cio. (12)

Table 2. Notation

Symbol Description
cv, ov,wv resolved in BCS, OCS, WCS

cΩcw angular velocity of BCS w.r.t. WCS
cΩco angular velocity of BCS w.r.t. OCS
ω0 orbital rate

cwωx, cwωy , cwωz components of Ωcw about x, y and z
axis respectively

I inertia tensor of the satellite
Ix, Iy , Iz moments of inertia about x, y and z axis

respectively
Nctrl control torque
Ngg gravity gradient torque
m magnetic moment used as control signal
B geomagnetic field vector

Bmag states of harmonic oscillator used for
dipole model

v′ true anomaly measured from the as-
cending node

θ′m coelevation of the dipole model
φ′m east longitude of the dipole model
αm right ascension of the dipole model
a equatorial radius of earth
r geocentric distance of the satellite from

center of the earth
g01 , g

1
1 , h

1
1 gaussian coefficients from international

geomagnetic reference field (IGRF)
(2015)

c
oq attitude quaternion representing

rotation of BCS relative to OCS
q, q4 vector part q = [q1, q2, q3] and scalar

part of c
oq

io, jo,ko unit vector along x, y and z-axis of OCS

3.2 Dynamics

The dynamics describe the relation between the satellite’s
angular momentum with the torques acting on the space-
craft.

IcΩ̇cw(t) = −cΩcw(t)× IcΩcw(t) + cNctrl(t) + cNgg(t).
(13)

As all reference commands given to the satellite are in
orbit frame, we are concerned with the dynamics of the
satellite in orbit frame instead of control frame and they
can be stated as follows

IcΩ̇co(t) = −cΩcw(t)× IcΩcw(t) + cNctrl(t)+
cNgg(t)− ω0I

cΩco(t)× cio.
(14)

The magnetic control torque is generated as follows

cNctrl(t) = cm(t)× cB(t). (15)

The geomagnetic field vector B(t) is obtained from the
dipole model given in Wertz (1978). The cosine and sine
components of the dipole model have been approximated
by a harmonic oscillator for preserving the polynomial
structure of the system. This is done specifically for
application of SoS methodology. The harmonic oscillator
is a 2nd order differential equation which is as follows

B̈mag + ω2Bmag = 0, (16)
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where ω is frequency of the oscillations and Bmag are
the oscillating states which shall be used later. It can be
observed that the initial value of (16) changes the dipole
model and consequently the dynamics. The dipole model
in orbital frame can be stated as follows

oBx =
a3H0

2R3
sinθ′m[3cos(2v′ − αm) + cosαm],

oBy =
a3H0

2R3
sinθ′m[3sin(2v′ − αm) + sinαm],

oBz = −a
3H0

2R3
cosθ′m,

(17)

where H0 = [g0
2

1 + g1
2

1 + h1
2

1 ]1/2 and αm ≈ φ′m. Further,
θ′m and φ′m are calculated as follows

θ′m = arc cos
(
g01
H0

)
,

φ′m = arc tan
(
h11
g11

)
.

(18)

The solution of (16) approximates the cosine and sine com-
ponents due to 2v′ − αm. Additional harmonic oscillators
can be added for more accurate approximations at the cost
of adding extra states to the system. The gravity gradient
torque is also considered in the model and it can be stated
as follows

cNgg(t) = 3ω2
0(cko × Icko). (19)

3.3 Proportional-Derivative (PD) controller

The existing PD control law is a conventional PD con-
troller which takes into account that the control torque
cannot be generated parallel to the geomagnetic field. The
geomagnetic field is changing with time and attitude of
the satellite and this controller is proven to be stable in
Wisniewski and Blanke (1996). Let

m(t) = cB(t)×Kd
cΩco − cB(t)×Kpq, (20)

where cB(t) is the geomagnetic field in BCS, Kp is the
proportional gain and Kd is the derivative gain. Due to
the control law (20), the system (i.e. (10) and (14)) has
an equilibrium point at (cΩco,

cko,
cio) = (0, cko,

cio)). The
attitude quaternion corresponding to this point can be
either c

oq = [0, 0, 0,+1] or c
oq = [0, 0, 0,−1]. This is due

to the existence of a mapping A : S3 → SO3(R) which
maps [0, 0, 0,+1] and [0, 0, 0,−1] from S3 to same point
on SO3(R). It should be noted that, we are concerned
only with the stability of the state variables cΩco and q
because value of q4 will be automatically decided due to
(11).

4. COMPUTATION OF CANDIDATE LYAPUNOV
FUNCTION

We now apply the SoS procedure as per (9). It should be
noted that the satellites kinematics (10) and dynamics (14)
are represented by (7a) and the harmonic oscillator (16)
for generating geomagnetic field vector are represented by

(7b) in Theorem 2 defined previously. Firstly, we define
the semialgebraic set using polynomial inequalities and
the corresponding SoS constraints. Thereafter, we shall
present the result obtained after solving the SDP. The
semialgebraic set is constructed as follows

K ={x ∈ R8 : gj(x) ≥ 0, j = 1, · · · , 8}, (21a)

where g1 = ‖coq‖
2 − 1 + ε, (21b)

g2 =1− ‖coq‖
2

+ ε, (21c)
g3 =− (q4 + 1)(q4 − 1 + ε), (21d)
g4 =− coω2

x + 0.0025, (21e)
g5 =− coω2

y + 0.0025, (21f)
g6 =− coω2

z + 0.0025, (21g)
g7 =B2

mag1 +B2
mag2 − 0.9, (21h)

g8 =1.1− (B2
mag1 +B2

mag2). (21i)

In the above eq. (21), Bmag1 , Bmag2 are components of
(16) and ε is a small number (≈ 10−8). The semialgebraic
set defines the region of state space where the candidate
Lyapunov function is valid, i.e. the polynomial obtained af-
ter solving the SDP (9) satisfies the constraints (9b), (9c),
(9d) and (9e). The polynomial inequalities g1, · · · , g6 ≥ 0
define the domain D ⊂ Rn and the solution x̄2(t) (see
Theorem 2) is contained in the set defined by polynomial
inequalities g7 ≥ 0 and g8 ≥ 0.

It is important to note that the quaternion constraint (11)
is an equality constraint which is satisfied via polynomial
inequalities g1 ≥ 0, g2 ≥ 0. This effectively ensures
that q4 is chosen such that the attitude quaternion c

oq
is constrained on the unit sphere (within a tolerance of
ε). Consequently, the polynomial multipliers associated
with g1 and g2 need not be constrained to be SoS. The
polynomial inequality g3 ≥ 0 ensures that q4 can only
attain −1 and cannot attain +1 as both are equilibrium
points. Lastly, the polynomial inequalities g4 ≥ 0, g5 ≥ 0
and g6 ≥ 0 ensure that the x, y and z components of
angular velocity vector cΩco stay within [−0.05, 0.05].
Finally, it should be noted that the equality constraint (9b)
has been implemented by setting the coefficients of x0, in
the vector of monomials vd(x) (specified for the candidate
Lyapunov function) to zero prior to solving the SDP (9).

4.1 Computation result and Verification

Using (9), we have obtained the following candidate Lya-
punov function.

V ∗(q1, q2, q3,
coωx,

coωy,
coωz) = 0.008680q21

+ 0.0084885q22 + 0.0134243q23 + 0.00000106q1q2
− 0.0000756q1q3 + 0.0002412q2q3 − 0.0175008q1

coωx

− 0.0175008q2
coωy − 0.0326737q3

coωz + 0.1283401coω2
x

+ 0.11860602coω2
y + 0.0.03049558coω2

z .
(22)

We have used the solver MOSEK which was interfaced
by the YALMIP toolbox (see Löfberg (2009) and MOSEK
(2016)). For this computation, k1 ≈ 10−10, k2 ≈ 10−5 and
k3 ≈ 10−6.
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The standard method for verifying an SoS polynomial is
by checking the error residuals if the primal problem has
been solved or by checking the positive definiteness of
the Q matrix if the dual problem has been solved. These
methods are described in Löfberg (2009). Both of these
procedures, essentially require us to check whether solution
of SDP (9) satisfies all the SoS constraints specified. The
obtained candidate Lyapunov function (22) satisfies the
aforementioned constraints. However, it is desired to verify
it in practice by simulation and the results are presented
in the following section.

5. SIMULATION RESULTS

The closed loop model of Ørsted satellite has been sim-
ulated for an orbit time of 6000 sec and orbit height of
800 km. The satellite has the following moments of inertia
when the boom is stowed Ix = 3.428, Iy = 2.904, Iz =
1.28. The simulations have been done for 10 orbits which
is equivalent to 60000 sec. The initial angular velocity is
coωx = 0.0001, coωy = 0.0001, coωz = 0.0001 m/sec. The
initial quaternion states are q1 = 0.2517, q2 = 0.2517,
q3 = 0.2517 and q4 = −0.9. We begin by simulating
the dipole model of the geomagnetic field using (16) for
approximating it as discussed previously. We have used
IGRF (2015) coefficients from Thébault et al. (2015) and
the initial phase of Bmag has been considered to be 45◦

1 2 3 4 5 6 7 8 9 10

Number of Orbits

-8000

-6000

-4000

-2000

0

2000

4000

6000

Fig. 1. Geomagnetic field as per IGRF (2015)

The quaternion states can be seen converging to the
equilibrium point as follows

1 2 3 4 5 6 7 8 9 10

Number of Orbits

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Fig. 2. c
oq converging to the equilibrium point

The angular velocity states can be seen converging to the
equilibrium point in fig. 3.

We have also simulated the polynomial inequalities
g1, · · · , g5 ≥ 0. From fig. 5, it can be seen that the
quaternion constraint g1 ≥ 0 is violated slightly with the
maximum violation being of the order of 10−6.

1 2 3 4 5 6 7 8 9 10

Number of Orbits
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0.1

0.0015 0.0025

0
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0.1

Fig. 3. cΩco converging to the equilibrium point
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Fig. 4. Candidate Lyapunov function
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Fig. 5. Simulation of g1 = ‖coq‖
2 − 1
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0.1 0.2 0.3 0.4 0.5
0.05

0.1

0.15

Fig. 6. Simulation of g3 = −(q4 + 1)(q4 − 1 + ε) ≥ 0

From fig. 6, it can be seen that g3 ≥ 0 is satisfied
throughout the simulation and this ensures uniqueness
of q4 as discussed previously. Furthermore, g4 ≥ 0 and
g5 ≥ 0 are always satisfied. This means that the x and
y components of cΩco always stay within [−0.05, 0.05]
m/sec. Lastly, from fig. 3, it can be seen that despite the
state coωz exceeding 0.05 m/sec in the beginning of the
simulation, it still quickly converges to the origin. This is
expected since the gravity gradient torque acts in the z
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direction and therefore, the controller takes comparatively
more time to stabilize in the z direction.

6. CONCLUSION

The aim of this work was to compute a candidate Lya-
punov function for the satellite having only electromag-
netic actuation while maintaining the quaternion con-
straint. This was done successfully and verified by sim-
ulations.

Putinar’s Positivstellensatz is computationally efficient
(compared to other Positivstellensatz) however, the size
of the SDP grows rapidly with the number of states n
and degree d of the candidate Lyapunov function (worst-
case bound being nd). In future, we would like to exploit
the inherent sparsity in the system dynamics, for finding
candidate Lyapunov functions such that the size of SDP
can be reduced.
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