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Abstract: Lower limb exoskeletons have improved mobility and safety during gait rehabilitation.
Joint actuators can be programmed to produce sufficient joint torque to promote human
movement. However, the mechanical impedance of the human joints changes constantly to
maintain a stable interaction with the environment during walking. These continuous changes
introduce nonlinearities and uncertainties that alter abruptly the dynamics of the human-
robot interaction, which can destabilize the control system. In this paper, an impedance
control approach under explicit Markovian torque control architecture is developed, considering
the variable human impedance parameters as parametric uncertainties. As the time-varying
human dynamics during walking depends on the quasi-cyclic gait phase transitions, we defined
five Markovian operation modes to describe the human-robot interaction during walking.
Additionally, impedance parameters of the human knee joint were estimated using an ensemble-
based method. Experimental results of the proposed control scheme on a knee-exoskeleton driven
by a series elastic actuator show that our proposal guarantees stability and high performance
despite the stochastic uncertain human impedance behavior throughout the gait cycle.

Keywords: Markovian control, Robust control, Impedance control, Human-robot interaction.

1. INTRODUCTION

Human safety is one key challenge when addressing
Human-Robot Interaction (HRI) due to the severe impli-
cations of human and robot sharing the same work-space,
leading even to physical damage (Lasota et al., 2017). In
robotic rehabilitation, for example, human and robotic
devices constantly exchange energy. From the point of
view of the hardware, the use of Series Elastic actuators
(SEA) has enhanced the compliance of the robotic devices
(Calanca et al., 2016). Those devices normally are driven
by impedance controllers that guarantee harmonious in-
teraction (Hogan, 1985; Anam and Al-Jumaily, 2012; Yu
et al., 2015). However, due to variability and uncertainty
of the human dynamics, stable and secure interaction
is not guaranteed. From a control system point-of-view,
combined human-robot dynamics constitutes a closed-loop
feedback system, where excessive energy exchange may
cause degradation of the performance or even instability.

Adaptive Impedance Control (AIC) is an increasingly used
solution for the SEA’s control problem. Some literature
approaches to address this issue consider parameter vari-
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ation of the human dynamics within its control schematic
(Calanca and Fiorini, 2017), and other methods propose
to study robot’s parameter estimation (Li et al., 2017).
In the former, human dynamics have been represented
by approximate mass-only models (Kong et al., 2009), or
second-order models (with stiffness, damping, and inertia)
(Oh and Kong, 2016). Other approaches propose the use of
disturbance observers to attenuate non-modeled dynamics
effects (Paine et al., 2015), and to improve the transmission
of desired impedance (Mehling et al., 2015). However,
abrupt changes of the human dynamics during gait can
compromise the controller performance. Hence, a better
representation of the human dynamics is desirable.

As part of our on-going efforts in the design of robotic
devices for assistance and rehabilitation, we developed
an impedance-controlled knee orthosis based on a Series
Elastic Actuator (dos Santos et al., 2017; dos Santos and
Siqueira, 2019). Impedance control of SEAs requires an
explicit internal force/torque control loop (Calanca et al.,
2016). Previously, we demonstrate that there exists a
direct dependence of the performance of these impedance
and torque controllers on the variations of the human
dynamics (Jutinico et al., 2017), and that a fixed-gain
control strategy will suffer degradation of its performance
when those variations are not taken into account (Pérez-
Ibarra et al., 2017). In this study, we aim to enhance
the performance of both impedance and torque controllers
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during walking by considering the abrupt changes in the
human dynamics among the different gait phases.

Using a Robust Markovian Linear Regulator approach
(Cerri and Terra, 2017), we address the non-linearities and
uncertainties proper of the HRI problem from a stochas-
tic point of view. We consider a time-varying dynamics
model dependent on quasi-cyclic gait phase transitions
during walking. We adapt the methodology proposed in
Lee and Hogan (2015) to estimate the human impedance
parameters around the knee joint (Inertia, Damping, and
Stiffness). It allows us to define five Markovian opera-
tion modes to describe the dynamic interaction process
between robot and human knee joint during walking. We
present experimental results for a healthy subject wear-
ing a force/impedance controlled knee-exoskeleton. Our
Markovian robust approach showed robust stability, high
performance, and HRI safety during zero-impedance and
robot-assisted walking experiments.

2. SYSTEM DESCRIPTION AND MODELING

In the Laboratory of Robotic Rehabilitation of the Univer-
sity of São Paulo at São Carlos (SP, Brazil), two robotic
devices for lower limb rehabilitation were developed: an ac-
tive knee orthosis (dos Santos et al., 2017), and a modular
bilateral lower limb exoskeleton (dos Santos and Siqueira,
2019). The working principle of the orthosis is a rotary
SEA consisting of a DC motor (RE 40, graphite brushes,
150 W from Maxon Motor AG, Sachseln, Switzerland)
fixed to a worn gear set with 150:1 reduction. When the
motor is on, the gear rotates a support piece compressing a
customized torsion spring with constant Ks = 95 Nm/rad.
A magneto-resistant incremental encoder Maxon measures
the motor rotation allowing estimation of the worn wheel
position. The angular position of the load is measured
using an optoelectronic incremental encoder. The output
force, given by the spring torque, is measured via Hooke’s
law from the spring deformation, corresponding to the
difference between the angular positions of the worn wheel
and the load. On the other hand, the modular exoskeleton
consists of lightweight, tubular structures and free joints
that allow the movement of the user. The exoskeleton
structure allows adjusting the size of the links to align
the joints of the human and the exoskeleton. Its modular
design enables the use and actuation of one or more joints.

In this study, we used one "leg" of the modular exoskeleton
and coupled its knee joint with the rotary actuator of the
knee orthosis, as shown in Figure 1. Therefore, the new
configuration is composed of three joints: hip, knee, and
ankle; with actuation only in the knee joint. Also, two
encoders measured the angles of the hip and knee joints. To
measure the gait phases during walking, we instrumented
the exoskeleton’s shoe with three Force Sensitive Resistors
(FSRs) placed at heel, toe, and second metatarsus.

2.1 Nominal model of the human-robot dynamics

Consider the human leg interacting with the robotic knee-
exoskeleton described in the previous section. Human-
robot dynamics in the flexion/extension degree of freedom
of the knee is modeled by:

Jl φ̈k +Bl φ̇k +G(φk) = τh − τr, (1)

where φk is the sagittal angular position of the knee
joint; Jl, Bl, and G(φk) are, respectively, the equivalent
inertia, velocity-dependent and gravitational matrices for
the human-load system; τh and τr are torques applied by
human and robot, respectively.

The human actuation can be modeled by:
τh = Kh(t)(φeq − φk)−Bh(t)φ̇k, (2)

where Kh and Bh are respectively the variable stiffness
and damping of the inner motor control.

From (1) and (2),
Jl(t)φ̈k+BH(t)φ̇k+Kh(t)φk = −τr−G(φk)+Khφeq, (3)

where BH(t) = Bl + Bh(t). Consider that Jl is a time-
varying parameter which value is affected by the contact
of the leg with the ground.

The robot torque is given by the Hooke’s Law:
τr = Ks(φw − φk), (4)

where Ks is the elastic constant of the spring and φw
is the position of the worn set. Dynamics of the motor-
transmission system is governed by,

Jr φ̈w +Br φ̇w = τact + τr, (5)
where Jr andBr are, respectively, the equivalent rotational
inertia and damping of the motor-transmission system as
defined in dos Santos et al. (2017); and, τact = Nrτm, is the
output torque of the actuator, where Nr is the reduction
ratio and τm represents the torque generated by the motor.

By using the built-in PI velocity-controller of the motor,
we can model its actuation as a pure-velocity source by:

τm ≈ Cmωm, (6)
where Cm is the damping coefficient of the motor and
ωm = d

dtφm is the motor velocity. Since φw = N−1
r φm,

the motion of the motor-transmission system is given by:
Jr φ̈w = BR ωm + τr, (7)

where BR = NrCm −N−1
r Br.

From (3), (4) and (7), the complete dynamics of the
human-robot system is given by (8)-(9). The state vector

Figure 1. Robotic device configuration. One "leg" of a
modular exoskeleton was coupled with a rSEA actu-
ator in order to actuate on the knee joint.
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 τ̈rτ̇r
φ̇k


︸ ︷︷ ︸
Ẋ(t)

=

−
(
B
l(t)

J
l(t)

)
−
(
Ks(Jl(t)−Jr)+JrKl(t)

JrJl(t)

)
0

1 0 0
− 1
Ks

0 0


︸ ︷︷ ︸

F(t)

[
τ̇r
τr
φk

]
︸ ︷︷ ︸
X(t)

+

Ks

(
NrBRJl(t)+JrBl(t)

NrJrJl(t)

)
0
1
Nr


︸ ︷︷ ︸

B(t)

ωm︸︷︷︸
U(t)

+

 Ks
J
l(t)

Ks
J
l(t)

0 0
0 0


︸ ︷︷ ︸

G(t)

[
G(φk)

τint

]
︸ ︷︷ ︸
V(t)

,

(8)[
τr
ωk
φk

]
︸ ︷︷ ︸
Y(t)

=

[
0 1 0

−1/Ks 0 0
0 0 1

]
︸ ︷︷ ︸

C2

[
τ̇r
τr
φk

]
︸ ︷︷ ︸
X(t)

+

[
0

1/Nr
0

]
︸ ︷︷ ︸
D2

ωm︸︷︷︸
U(t)

(9)

X is composed of the robot torque, τr, its first derivative,
and the knee angle, φk. The system is controlled through
the motor velocity, ωm. Disturbances are given by the
interaction torque, τint = Kh (φw −φeq) and gravitational
effects, G(φk). Output signals are the robot torque, τr,
and the knee angular velocity, ωk, and position, φk. Note
that matrices F(t), B(t) and G(t) are time-varying since
they depend on the values of Jl, Bl and Kl, that are not
constant during human walking.

The sampling frequency of the system is set to 200 Hz.
Therefore, the system in (8) is discretized by,

Xk+1 = Fk Xk + Bk Uk + Gk Vk,
yk = C2 Xk +D2 Uk, (10)

where Fk = I + ηTsF(t), Bk = ηTsB(t), Gk = ηTsG(t),

η =
∑9
kn=0

[
(Ts·F(t))

kn

(kn+1)!

]
, and Ts = 5 ms.

2.2 Gait phases and modelling gait as a Markov Chain

Gait is a quasi-cyclic pattern divided into discernible
phases. In this study, we divided each foot’s strides into the
following five: Loading Response (LR), Mid-Stance (MSt),
Terminal Stance (TSt), Initial Swing (ISw), and Terminal
Swing (TSw). Transitions between phases correspond to
the following gait events: Heel Strike (HS), when the first
contact between foot and ground occurs; Toe Strike (TS),
when there is a complete foot-ground contact; Heel Off
(HO) and Toe Off (TO), when the heel and toe lose that
contact, respectively; and, Mid Swing (MSw), when the
balancing and support legs are adjacent to each other.

We represent the phase sequence by a finite state machine
(FSM), where each state corresponds to a given phase.
Phase transitions are modeled by a discrete-time Markov
chain {θk}N−1

k=0 where θ ∈ {1, 2, 3, 4, 5}, being 1: LR, 2:
MSt, 3: TSt, 4: ISw, and 5: TSw. The system state (gait
phase), θk, is estimated based on the values of the FSRs
placed on the exoskeleton’s shoe and the following rule-
based algorithm,

θk =



1 if θk−1 = 5 and FSR1 is ON

2 if θk−1 = 1 and
{
FSR1 is ON
FSR2 or 3 is ON

3 if θk−1 = 2 and
{
FSR1 is OFF
FSR2 or 3 is ON

4 if θk−1 = 3 and all FSR are OFF

5 if θk−1 = 4 and
{
all FSR are OFF
φh ≤ 0o or φa ≤ 0o

(11)

where FSR1, FSR2, and FSR3, correspond respectively to
the sensors placed at heel, second metatarsus and toe; and,
φh and φa are respectively the hip and ankle joint angles.

Transitions among phases are determined by the transition
matrix P ∈ R5×5 with elements:

Pab = Pr (θk+1 = b | θk = a) , (12)
where Pab is the probability of going from state a to state b
satisfying the constraints:

∑5
b=1 Pab = 1, and 0 ≤ Pab ≤ 1.

In order to estimate the Pab values, we asked the subject
to walk for five minutes wearing the exoskeleton. Each
element Pab is equal to the ratio between the estimated
number of transitions from state a to state b and the
estimated number na of time samples labeled as state a.
Thus, we obtained the following values for Pab,

P =


0.9903 0.0097 0 0 0

0 0.9947 0.0053 0 0
0 0 0.9956 0.0044 0
0 0 0 0.9895 0.0105

0.0053 0 0 0 0.9947

 . (13)

Markov chains suitably model the stochastic transitions
between gait phases. However, they do not take advantage
of the regularities in the timing of the gait cycle. In
that regard, Ma and Liao (2017) propose the use of a
continuous-time semi-Markov process where time intervals
for each gait phase have a given probability distribution.

2.3 Modeling the human-exoskeleton system as a DMJLS

Since abrupt changes in knee dynamics occur during gait
phase transitions, the system presented in (10) is then
expressed as the discrete-time Markovian Jump Linear
System given by,

Xk+1 = Fθk,k Xk + Bθk,k Uk + Gθk,k Vk,
Yk = C2 Xk + D2 Uk, (14)

where the notation Fθk,k indicates that the matrix Fk is
governed by the Markov chain θk, whose transitions are
defined by (11) and the probability of transitions among
phases are determined by (13).

3. ESTIMATION OF THE TIME-VARYING
DYNAMICS OF THE KNEE DURING WALKING

Based on the approach used in Lee and Hogan (2015), this
section explains the ensemble-based method employed to
estimate the time-varying knee-exoskeleton dynamics dur-
ing walking. Assuming that every gait cycle has the same
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time-varying dynamics, this method uses an ensemble set
composed by the gait signals segmented in strides based
on the HS events, normalizing the length of all strides to
the mean stride duration.

3.1 IRF of the human-exoskeleton system during walking

From (14), the time-varying dynamics of the knee-
exoskeleton system during walking can be rewritten in the
following vector auto-regressive form,

Yi = Ts

L∑
j=1

hi,j Ui−j , (15)

for all i = 1, ..., Ns, where Ns is the mean stride duration;
hi,j = −D2 +

[
C2 (Fθi,i−j)j−1 (Bθi,i−j + Gθi,i−j)

]
is the

time-varying Impulse Response Function (IRF) of the
system within a finite lag length L, and θi ∈ {1, 2, 3, 4, 5}.
Since the system has several inputs and disturbances, Yi
is composed by the effects of both inputs,

Yi = Ts

L∑
j=1

hηi,j Ui−j︸ ︷︷ ︸
yη
i

+Ts

L∑
j=1

h0
i,j Vi−j︸ ︷︷ ︸

y0
i

(16)

where Y0
i is the nominal trajectory due to inputs G and

τint; and, Yηi is the effect of the robot perturbations.

3.2 Ensemble-based IRF estimation

Given a set of R realizations of the gait cycle and assuming
that are subject to the same time-varying dynamics, the
nominal component Y0

i corresponds to the average value of
the observations across the R realizations. The estimated
output Ŷηi , resultant of the robot perturbations, can be
obtained by,

Ŷηi = Yi − Y0
i = Ts

L∑
j=1

hηi,j Ui−j . (17)

Estimates of the IRF ĥηi can be computed by:

ĥηi =
1

Ts
[Φuu(i)]

−1
Φyu(i), (18)

where Φyu(i) ∈ RL×1 represents the input-output cross-
correlation estimate with elements,

φ̂yu(i,−j) =
1

R

R∑
r=1

Yηi Ui−j , for 1 ≤ j ≤ L, (19)

Φuu(i) ∈ RL×L represents the input auto-correlation
function estimate with elements,

φ̂uu(i− j, j −m) =
1

R

R∑
r=1

Ui−m Ui−j . (20)

3.3 Experimental Characterization

We instructed a healthy subject (male, 28 years old, 177
cm, 82 kg) to wear the robotic device and to walk on
a treadmill on his self-selected walking speed. After one
minute of walking under zero-impedance actuation, the
robot applied a mechanical perturbation to the knee joint
for the next eight minutes. This perturbation comprises
a low-pass filtered Gaussian white noise added in the

motor velocity signal. Peak-to-peak values of the torque
perturbations were ±250 rad/s.

For each output signal in Y (τr, ωk, and φk), we estimated
its corresponding IRF (ĥτr , ĥωl , and ĥφl) at every 5 ms
and then smoothed the estimates using a moving average
with a window of 0.1 sec (Nw = 40), by

¯̂
hi =

1

Nw

i+Nw/2∑
j=i−Nw/2

ĥj . (21)

Representative IRF estimates for each phase were com-
puted by averaging the IRFs obtained during that phase,

ĥθi =
1

nθ

∑
θi=θ

¯̂
hi. (22)

Figure 2 presents graphical results of the IRF estimation
for the outputs φk and τr.

Figure 2. Representative IRF estimates along normalized
gait for φk (left) and τr (right). (top) Smoothed
IRF estimates for a time step of 80 ms. (bottom)
Representative IRF for each gait phase. Each phase is
represented by different colored lines (LR: blue, MSt:
red, TSt: magenta, ISW: yellow, and TSW: green).

From (8), we can determine the transfer function between
signals φk and τr as the 2nd-order system,

Z(s) =
φk(s)

τr(s)
=

Ks

(
BR

Jl
Jr

+ Bl
Nr

)
Jl s2 +Bl s+Kl +Ks

(
1 + Jl

Jr

) (23)

with time-varying parameters J
l(i), Bl(i), and Kl(i).

Note that the signal ĥφl(i) is the output of the system
Z(s) when the signal ĥτr (i) is the input of the system. We
estimate the values for Jl, Bl, and Kl that better approx-
imates Z(s) for each input-output pair

(
ĥτr (i), ĥφk(i)

)
.

Figure 3 presents results for the estimation of the knee
stiffness. Table 1 presents the values obtained for the three
parameters (Jl, Bl and Kh) for each phase.

These values should be considered as nominal values
subject to uncertainties within each phase, expressed by,

Jδ
l,θk,k

= Jr + Jδ
h,θk,k

,

Bδ
l,θk,k

= Br +Bδ
h,θk,k

, (24)

Kδ
l,θk,k

= Kδ
h,θk,k
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Figure 3. Estimated knee stiffness during gait cycle. Rep-
resentative values for each phase are shown using the
same color code as in the previous figure.

Table 1. Estimated human parameters

Phase Markov mode Jl Bl Kh
LR θk = 1 0.001 1.5 275
MSt θk = 2 0.001 0.8 229
TSt θk = 3 0.005 1.0 145
ISW θk = 4 >0.10 >3.0 465
TSW θk = 5 0.001 2.0 129

where Jδ
h,θk,k

, Bδ
h,θk,k

, and Kδ
h,θk,k

are uncertain human
impedance parameters subjects to Markovian jumps ac-
cording to Table 1. Hence, the DJMLS in (14) is subject
to the following uncertain state matrices,

F̄δθk,k = Fθk,k + δFθk,k,
B̄δθk,k = Bθk,k + δBθk,k (25)

4. CONTROL DESIGN

In this section, we present the Robust Regulator Discrete-
time Markovian Jump Linear System (RR-DMJLS). To
eliminate the steady-state torque error during tracking a
reference torque τdk , we augmented the model in (14) by
including an integral action xik,[

x̄k+1

xik+1

]
︸ ︷︷ ︸
xk+1

=

[
F̄δθk,k 0
CaTs 1

]
︸ ︷︷ ︸

F δ
θk,k

[
x̄k
xik

]
︸ ︷︷ ︸
xk

+

[
B̄δθk,k

0

]
︸ ︷︷ ︸
Bδ
θk,k

uk

+

[
Ḡθk,k

0

]
︸ ︷︷ ︸
Gθk,k

vk +

[
0
Ts

]
︸︷︷︸
Bd
θk,k

τdk , (26)

where Ca = [0 − 1 0]. Therefore, the discrete-time system
in (26) can be rewritten as:

xk+1 = (Fθk,k + δFθk,k)xk + (Bθk,k + δBθk,k)uk

+Gθk,kwk +Bdθk,kτ
d
k , (27)

yk = C2xk +D2uk,

for all k = 0, ..., N − 1, where C2 = [C2 0].

Uncertain matrices δFθk,k and δBθk,k are defined as,

[δFθk,k δBθk,k] = Hθk,k∆θk,k

[
EFθk,k EBθk,k

]
(28)

where Hθk,k ∈ R4×1, EFθk,k ∈ R1×4, EBθk,k ∈ R1×1, are
known matrices, and ∆θk,k ∈ R1×1 which is a contraction
such that ‖ ∆θk,k ‖≤ 1.

4.1 RR-DMJLS for Knee-exoskeleton

Consider the robust control problem of regulating the
DJMLS in (26) subject to the parametric uncertainties
in (28). To achieve the solution to this problem is used the
min-max optimization problem:

min
xk+1,uk

max
δFθk,k,δBθk,k

{J µk }, (29)

where J µk is a quadratic functional given by,

J µk =

[
xk+1

uk

]T [
Ψθk,k+1 0

0 Rθk,k

] [
xk+1

uk

]
+

{[
0 0
I −Bδθk,k

] [
xk+1

uk

]
−
[
−I
F δθk,k

]
xk

}T [
Qθk,k 0

0 µI

]
{•}

(30)
where Ψθk(k + 1) =

∑5
θk=1 Pθk,k+1

· pθk,k+1
; Pθk,k � 0

is a positive definite matrix; Qθk,k � 0, and Rθ(k),k �
0 are semi-definite weighting matrices. Table 2 shows
the algorithm that guarantees the optimal state-control
sequence {x∗µ,k+1, u

∗
µ,k}

N−1
k=0 for an instant k and state θ.

Table 2. Robust Regulator for DMJLS

Initial Conditions:
Set x0, θ0,P, Pθk (N) � 0, ∀θk ∈ {1, ..., s}.
Step 1: (Backward). Calculate, for all k = N − 1, . . . , 0,

[
Lθk,k Kθk,k Pθk,k

]T
=

[
0 0 0 0 I 0
0 0 0 0 0 I

0 0 −I F̂θk,k 0 0

]

·


Ψ

−1

θk,k+1
0 0 0 I 0

0 R
−1

θk,k
0 0 0 I

0 0 Q
−1

θk,k
0 0 0

0 0 0 Wθk,k
Î −B̂θk,k

I 0 0 ÎT 0 0

0 I 0 −B̂Tθk,k 0 0


−1 

0
0
−I
F̂θk,k

0
0


with the following auxiliary matrices:

Ψθk,k+1
=

s∑
j=1

Pj,k+1pij , λ̂θk,k >
∥∥µHT

θk,k
Hθk,k

∥∥ ,
F̂θk,k =

[
Fθk,k
EFθk,k

]
, B̂θk,k =

[
Bθk,k
EBθk,k

]
, Î =

[
I
0

]
,

Wθk,k =

[
µ−1I − λ̂−1

θk,k
Hθk,kH

T
θk,k

0

0 λ̂
−1

θk,k
I

]
,

Step 2: (Forward). Obtain, for each k = 0, . . . N − 1,[
x∗k+1
u∗k

]
=
[
Lθk,k
Kθk,k

]
x∗k.

In this formulation, µ is a penalty parameter responsible
for guaranteeing the robustness of RR-DMJLS. Therefore,
if all states of the system are available and µ → +∞,
Wi,k → 0. The DMJLS closed-loop response is given by:{

Lθk,k = Fθk,k +Bθk,kKθk,k

EFθk,k + EBθk,kKθk,k = 0. (31)

Let µ = 1 · 1012 and λθk,k = 1 · 1012 in order to satisfy
(31). In addition, we set Pθk,k(N) = I4×4, Rθk,k = 1 and
Qθk,k = I4×4 for θk ∈ {1, 2, 3, 4, 5}; P as defined in (13),
and the following uncertainty parameter matrices:

Hθk,k = [10 10 10 10]
T

EBθk,k = −5

}
for θk ∈ {1, 2, 3, 4, 5}.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10280



EF1,k
= [−120 −2100 425 13950] ,

EF2,k
= [−60 −1725 445 24960] ,

EF3,k
= [−40 −1500 380 26138] ,

EF4,k
= [−30 −1100 360 15000] ,

EF5,k
= [−40 −2600 470 25000] . (32)

Consequently, by using the RR-DMJLS presented in Table
2, we obtain the following control law:

uk = Kθk,kxk, (33)
where Kθk,k are control gain obtained for each Markovian
state θk, as presented in Table 3.

Table 3. Control Gains

Markov modes Kθk,1 Kθk,2 Kθk,3 Kθk,4 Gains
θk = 1 -24 -420 85 2790 K1,k

θk = 2 -12 -345 90 4992 K2,k

θk = 3 -8 -300 75 5200 K3,k

θk = 4 -6 -220 72 3000 K4,k

θk = 5 -8 -520 95 5000 K5,k

5. EXPERIMENTAL RESULTS

In this section, we present results for two applications of
the proposed approach in the control of the exoskeleton:
use of the RR-DMJLS for torque control; and, impedance
control using the torque control as an internal loop.

5.1 Torque Control

We performed two experiments to evaluate the response of
the torque controller in two extreme operation modes: high
human impedance (as in Initial-Swing (ISw) when θk = 4),
and low human impedance (as in Terminal-Swing (TSw)
when θk = 5). We present results for two different torque
references, a sine wave, and a square wave. With respective
periods of 3 s and 4 s, both reference signals have 2.5 N·m
of amplitude. In both experiments, the subject wore the
exoskeleton on his right side and stood on the left foot on
a block providing clearance between the right foot and the
ground. For the low impedance case, we asked the user to
relax the leg and allow the robot to lead the movement. For
the high impedance case, we asked the user to oppose the
movement intending to maintain the knee joint in a neutral
position. For both impedance configuration, we evaluated
two sets of control gains: K4,k and K5,k.

Figure 4 shows the torque control response for the two
Markovian operation modes when tracking sinusoidal and
square references. Despite the performance for torque
tracking is similar in both modes, the control strategy ob-
tained better performance when the selected gain matches
its operation mode.

Quantitative evaluation of the controller performance is
computed by using the root mean square (RMS) error
between desired and measured torque, defined as:

RMS{eτ} =
1

c

c∑
k=1

|τ
d
k − τr

max τdk
| · 100%, (34)

where c is the number of samples in each test. Thus, the
RMS error obtained for high and low human impedance is
presented in Table 4.

Figure 4. Force control response for high (left) and low
(right) impedance. Mode 4 in blue, Mode 5 in red,
reference signal in black.

Table 4. RMS Force Error

Reference Step Sine
Markov modes K4,k K5,k K4,k K5,k

High human-impedance 12.1% 14.1% 14.1% 15%

Low human-impedance 15.2% 10.1% 12.6% 9.1%

5.2 Impedance Control

For an adequate human-robot interaction, we defined the
robot torque by the following impedance control law:

τdr = Kv (φdk − φk)−Bv ωk, (35)

where τdr is the desired torque, φdk is the desired trajectory
for the knee angular position. Kv and Bv are the virtual
stiffness and damping, respectively.

We performed an experiment using the RR-DMJLS as
inner-loop torque control during impedance controlled
movements. To generate the desired trajectory φdk of the
impedance control, the subject walked on the treadmill
for 1 minute at a comfortable speed of 2 m/s with zero-
impedance configuration (Kv = 0 Nm/rad and Bv = 0
Nms/rad). φdk corresponds to the average of the stride-
segmented, time-normalized angular position of the knee
(similar to Y0

i is Section 3.2). Once φdk was defined, we
asked the subject to walk on the treadmill for 60 s at 2
m/s, with Kv = 30 Nm/rad and Bv = 0.5 Nms/rad.

Figure 5 shows representative temporal responses for the
force and impedance control during a walking experiment.
Notice that the torque tracking performance is similar for
all Markov modes despite the abrupt transitions between
them. Also, notice how the variations in the control signal
due to the phase transitions do not compromise the robust
stability and performance of the control system.

Finally, in order to quantify the performance of the pro-
posed controller, we compute the real stiffness, Kvr, and
damping, Bvr, generated by the controller, as given by:

Kvr =
RMS{τKv}
RMS{eφ}

and Bvr =
RMS{τBv}
RMS{eω}

(36)
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Figure 5. Impedance control response. Graphs show (top)
desired, φdk, and measured, φk, knee angular position;
(top-middle) desired, τdr , and measured, τr, robot
torque; (bottom-middle) control signal ωm; and, (bot-
tom) Markov chain, θk, of the modeled process.

where τKv = τr−Bweω, is the torque generated by the vir-
tual stiffness Kv, with eω = −ωk; and, τBv = τr−Kv eφ is
the torque generated by the virtual damping Bv, with eφ =
φdk−φk. The error between virtual and real impedance pa-
rameters is calculated by eKv = |(Kv −Kvr)(Kv)| · 100%,
and eBv = |(Bv −Bvr)/(Bv)| · 100%.

Impedance control using RR-DMJLS presents high stiff-
ness and damping accuracy by considering the variability
of the human impedance parameters during walking, with
eKv = 2.82% , and eBv = 0.73%.

6. CONCLUSION

In this paper, we presented the design and implementation
of an impedance control based on a robust Markovian
torque controller. We modeled human-robot interaction
dynamics during walking using a discrete-time Markov
jump linear system (DMJLS) and designed a robust reg-
ulator for DMJLS to control the robot torque. We as-
sumed parametric uncertainties introduced by the change
of behavior human dynamic during walking. Experimen-
tal results on a knee-exoskeleton are also presented and
showed that our proposal guarantees robust stability and
performance in the human-robot interaction control.
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