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Abstract: In this paper, we implement a switched decentralized controller, along with a
proposed communication protocol, to control a nested multi-agent system without the need
for a centralized processing node. More specifically, we apply a recently developed method for
switched systems synthesis, which gives exact conditions for existence of a block-lower triangular
path-dependent controller with `2-induced norm performance. The synthesis conditions are given
in the form of a semidefinite program (SDP), which is computed offline for a predefined switching
sequence. Each robot is equipped with a ultra-wideband (UWB) unit, which allows it to both
estimate its position and communicate with other robots.
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1. INTRODUCTION

Our main focus of this paper is the application of decen-
tralized control to robotic nested systems with switching
dynamics. Many current multi-vehicle systems require a
centralized computer for communication and/or coordi-
nation between robots, with formation paths being pre-
generated offline or computed on a central node that has
access to the global system state. In this paper we present
a ultra-wideband (UWB) based system that enables us
to both localize robots in 3D space and send messages be-
tween vehicles. Along with this, we implement the recently
developed robust decentralized switching control synthesis
methods (Jansch-Porto and Dullerud, 2017, 2018) to han-
dle the stabilization and coordination of the vehicles.

In recent year, UWB has been gaining traction as mostly
a indoor positioning system, with applications both in
research (Preiss et al., 2017; Ledergerber et al., 2015)
and in industry (Pozyx, 2019; Decawave, 2019). ultra-
wideband chips have also been included in the latest
iteration of iPhones (Lloyd, 2019), bringing the technology
to a much wider audience. However, most of the above
applications are only for obtaining some estimate of the
position of a robot in the environment, and not for sharing
information between robots. In Broecker et al. (2018),
the authors use UWB to obtain the relative distance
between robots, but it still requires external information
and has no guarantees in the controller performance.
Hence, the controller presented, along with the UWB
hardware, allows us to have multiple unmanned aerial
vehicles (UAVs) moving in coordination, without the need
for any central computer. Additionally, since the UWB
unit can act as both a receiver or transmitter, we can use
it as a platform agnostic messaging system.
? The authors were partially supported by NSF Grant 1629949.

Fig. 1. Example of a leader-follower setup. The bottom-left
quadcopter follows a reference signal r1, while each
other robot maintains a distance ri away from robot
i−1. The position yi and reference ri of each robot are
broadcast downstream to other vehicles using UWB.

The synthesis method used in this paper assumes the plant
has a nested structure. Nested systems are characterized
by interconnected subsystems with unidirectional flow of
information, as depicted in Fig. 1, or systems where the
actions of one agent affect the dynamics of other agents
downstream. Examples of nested systems can include
multi-agent setups, such as platooning vehicles (Hedrick
et al., 1994), or the interaction between wind turbines in
a wind farm (Buccafusca et al., 2019).

The controller generated also allows the plant to vary its
parameters based on some switching sequence. Switched
systems are widely studied in control theory due to
their appearance in many different contexts. In robotics,
switched systems are normally used to represent changes in
the dynamical model; this includes linearization of nonlin-
ear dynamics around different operating points (Arifianto
and Farhood, 2015), network communication modeling
(Seiler and Sengupta, 2005), or switching between different
behaviors (Egerstedt, 2000). Switched systems can also be
used to represent changes in the performance objectives,
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which is in a manner similar to discrete parameter gain
scheduling (Apkarian et al., 1995).

For the controller synthesis, we will consider the H∞-
type cost criteria, also known as disturbance attenuation
or root-mean square gain. The controller presented is re-
stricted to have the same block-lower triangular structure
as the plant dynamics. Further, the controller has memory
of finitely many past modes and access to a finite preview
of the switching sequence. To demonstrate what it means
to have a finite preview horizon we present the following
example. Consider a vehicle moving on a highway with a
Light Detection and Ranging (LIDAR) unit. We switch
between two operating modes: unobstructed, when there
are no other cars close by, and obstructed, for when there
other cars in close proximity. If no other vehicles are
detected by the LIDAR, we set our future modes to be
unobstructed. However, if the LIDAR detects other objects,
we then set the future modes to be obstructed. As such,
we can think of our preview horizon as how far ahead our
sensors can accurately predict what our behavior will be.

Prior work on distributed systems using state-space tech-
niques include D’Andrea and Dullerud (2003); Farhood
et al. (2015), which provide sufficient conditions for con-
troller existence and then explicit construction condition-
ally. However, explicit state-space solutions to H∞ optimal
control of nested systems have is a recent development. In
Scherer (2013), the author considers the decentralized con-
trol of continuous-time time-invariant systems with nested
interconnection structure, presenting exact conditions for
controller synthesis. The discrete-time time-varying ver-
sion of the decentralized H∞ optimal control problem
was considered in Mishra et al. (2014). In Matni (2014),
the author presents a solution for strongly connected and
partially nested communication constrains under the H∞
norm. Other authors have discussed the decentralized con-
trol of nested systems (Voulgaris, 2000; Lessard and Lall,
2012; Voulgaris et al., 2000; Fardad et al., 2009), however
considering different performance criteria.

2. SWITCHING SYSTEMS

For tutorial purposes, we recall the conditions for con-
troller synthesis, along with relevant notation.

2.1 Notation

For any matrix W , W⊥ denotes full column rank matrices
satisfying Im(W⊥) = ker(W ), W ∗⊥W⊥ = I. We let `n

be the space of infinite indexed sequence of elements
x = (x(0), x(1), x(2), . . .) with x(t) ∈ Rn for t ∈ N0. A
subspace of `n is the Hilbert space `n2 (or simply `2), with
norm ‖x‖2 =

∑∞
t=0 |x(t)|2 <∞.

We suppress repeated sub-blocks of symmetric matrices,[
X1 X2

X∗2 X3

]
, as

[
X1 X2

· X3

]
. Similarly, we write inequalities

of the form W ∗GW � 0 as [•]∗GW � 0. We de-
note the number of subsystems in a nested setup by
M , and use the notation J = {1, . . . ,M} and J̄ =
{0, . . . ,M}. The space of block-lower triangular matrices,
S
(
(m1, . . . ,mM ), (k1, . . . , kM )

)
, takes the form


H11 0 . . . 0
H21 H22 0

...
. . .

...
HM1 HM2 . . . HMM


where Hij ∈ Rmi×kj and Hij = 0 for i < j.

2.2 Preliminaries

A switched system is a multi-model system that allows
transitions among operation models, where each mode
corresponds to a distinct state-space model (Liberzon,
2012). The dynamics are given by the following mode-
dependent plant:

x(t+ 1) = Aθ(t)x(t) +Bwθ(t)w(t) +Buθ(t)u(t)

z(t) = Czθ(t)x(t) +Dzw
θ(t)w(t) +Dzu

θ(t)u(t) (1)

y(t) = Cyθ(t)x(t) +Dyw
θ(t)w(t)

Here w(t) ∈ Rnw

is the disturbance input, u(t) ∈ Rnu

is
the control input, z(t) ∈ Rnz

is the performance output,
and y(t) ∈ Rny

is the measurement output. The system
matrices depend on a switching signal θ(t). We assume
that θ(t) ∈ N = {1, . . . , ns} for all t, and that the
switching signal is governed by a finite-state automaton.
The set of admissible sequences of length r ∈ N0 generated
by such an automaton is denoted as Ar.
In the decentralized problem, we have the partitions

x(t) =

 x1(t)
...

xM (t)

, u(t) =

 u1(t)
...

uM (t)

, y(t) =

 y1(t)
...

yM (t)


where xi(t) ∈ Rni , ui(t) ∈ Rnu

i , and yi(t) ∈ Rn
y
i . The

dimensions satisfy n =
∑M
i=1 ni, n

u =
∑M
i=1 n

u
i , and

ny =
∑M
i=1 n

y
i . We introduce the tuple n̄ = (n1, . . . , nM ),

and similarly define n̄u and n̄y.

Since we are interested in nested systems with unidirec-
tional flow of information, as in Fig. 1, we can make the
following assumption about our system matrices:

Assumption 1. We assume that Aφ ∈ S(n̄, n̄), Buφ ∈
S(n̄, n̄u), and Cyφ ∈ S(n̄y, n̄) for all φ ∈ N .

Now consider a controller given by

xK(t+ 1) = AKΩ(t)x
K(t) +BKΩ(t)y(t)

u(t) = CKΩ(t)x
K(t) +DK

Ω(t)y(t)
(2)

whose system matrices at time t depend on a switching
path Ω(t) = (θ(t − L), . . . , θ(t), . . . , θ(t + H)) ∈ AL+H+1.
We refer to these types of systems as finite-path dependent
systems with memory length L and look-ahead horizon
length H. We can modify such systems to be mode-
dependent by introducing an induced automaton to reflect
the path dependence such that Ñ = AL+H .

The controller state xK(t) ∈ RnK

is partitioned as[
(xK1 (t))∗ . . . (xKM (t))∗

]∗
with xKi (t) ∈ RnK

i , thus satisfying

nK = nK1 +. . .+nKM . Since our goal is to design a controller
with block-lower triangular sparsity structure, we have

AKΨ ∈ S(n̄K , n̄K), BKΨ ∈ S(n̄K , n̄y),

CKΨ ∈ S(n̄u, n̄K), DK
Ψ ∈ S(n̄u, n̄y),

(3)
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for every Ψ ∈ AL+H+1.

The closed-loop generated by (1) and (2) has the form

x(t+ 1) = AΩ(t)x(t) +BΩ(t)w(t)

z(t) = CΩ(t)x(t) +DΩ(t)w(t)
(4)

In view of the synthesis theorem, we define

Φ̄ := (θ(t− L+ 1), . . . , θ(t+H)) ∈ AL+H ,

¯
Φ := (θ(t− L), . . . , θ(t+H − 1)) ∈ AL+H ,

Φ† := (θ(t− L), . . . , θ(t+H)) ∈ AL+H+1, Φ0 := θ(t) ∈ N .

2.3 Conditions for Controller Synthesis

For the controller synthesis, we say that the system
achieves attenuation level γ if and only if the system
{(Ai, γ−1/2Bi, γ

−1/2Ci, γ
−1Di)}i∈N is contractive.

Definition 1. Let Γ = {γφ : φ ∈ AL+H+1} be an indexed
collection of positive parameters γφ. Then the system (4)
achieves path-by-path disturbance attenuation levels Γ if,
for every admissible switching sequence, it satisfies

∞∑
t=0

|z(t)|2 ≤
∞∑
t=0

γ2
φ|w(t)|2 (5)

Then, considering the `2 performance criteria, we have the
following conditions for stability and performance.

Lemma 1. (Essick et al. (2014)). The finite-path depen-
dent system (4) with memory L ∈ N0 and look-ahead
horizon H ∈ N0 is exponentially stable and satisfies
‖w 7→ z‖ < γφ if and only if there exists an r ∈ N0 and a
set of positive-definite matrices {XΨ}Ψ∈Ar+L+H

satisfying[
X

¯
Φ 0

0 γΦ†I

]
−
[
AΦ† BΦ†
CΦ† DΦ†

]∗ [
XΦ̄ 0
0 γΦ†I

] [
AΦ† BΦ†
CΦ† DΦ†

]
� 0

for all φ ∈ Ar+L+H+1.

The following set of Linear Matrix Inequalities (LMIs) give
exact conditions for the existence of the controller.

Theorem 2. (Jansch-Porto and Dullerud (2018)). Con-
sider the mode-dependent systems (1) along with Assump-
tion 1. There exists a synthesis of a finite-path dependent
controller (2) which

(i) is structured as (3)
(ii) has dimensions {nKi }Mi=1
(iii) achieves closed loop performance ‖w 7→ z‖ < γφ for

all φ ∈ AL+H+1

if and only if there exists L,H ∈ N0 and matrices
{Zai,Ψ, Zbi,Ψ, Zci,Ψ}i∈J̄ ,Ψ∈AL+H

satisfying the following

Zai,Ψ � 0, Zci,Ψ � 0 for all i ∈ J̄ , Ψ ∈ AL+H (6a)

[•]∗


(Zu

i,Φ̄
)∗Zl

i,Φ̄
0 (Zu

i,Φ̄
)∗AΦ0Z

l
i,

¯
Φ (Zu

i,Φ̄
)∗BwΦ0

0 γΦ†I CzΦ0
Zli,

¯
Φ Dzw

Φ0

· · (Zui,
¯
Φ)∗Zli,

¯
Φ 0

· · 0 γΦ†I

Ni,Φ0 � 0

for all i ∈ J̄ , Φ ∈ AL+H+1 (6b)[
(Zui,Ψ)∗Zli,Ψ (Zli,Ψ)∗Zui−1,Ψ

(Zui−1,Ψ)∗Zli,Ψ (Zui−1,Ψ)∗Zli−1,Ψ

]
� 0 (6c)

rank

[
(Zui,Ψ)∗Zli,Ψ (Zli,Ψ)∗Zui−1,Ψ

(Zui−1,Ψ)∗Zli,Ψ (Zui−1,Ψ)∗Zli−1,Ψ

]
≤ n+ nKi (6d)

for all i ∈ J̄ , Ψ ∈ AL+H ,

3. DECENTRALIZED TESTBED

Now we describe the experimental testbed and hardware
used to implement the decentralized controller.

3.1 Crazyflie

The Crazyflie 2.0 is a nano quadcopter developed by
Bitcraze AB. Due to its open source design and code,
coupled with the ability to add extra hardware modules,
it is vastly used as a research and development platform
(Bitcraze, 2019). Despite its small size, the Crazyflie has an
on-board 9-axis Inertial Measurement Unit, a barometer,
a radio unit, and an ARM Cortex-M4 processor.

A UWB unit was added to the nanocopter. While the
position estimate provided by the UWB sensor is not
as accurate as motion capture solutions, it is able to
fully run on the embedded microcontroller present in the
quadcopter. We will discuss more on the UWB in the next
subsection. Each drone also has a unique set of reflective
markers so we can track their ground truth position with
a motion capture system.

The position data from ultra-wideband is fused with the
data from on-board sensors with an Extended Kalman
Filter (EKF). The filter is based on the papers Mueller
et al. (2015) and Mueller et al. (2016), and was mostly im-
plemented by the designers of the Crazyflie. The estimator
code was modified to improve performance and to report
all the system states to the controller

Fig. 2. Left : Crazyflie 2.0. The spherical reflective markers
used by the Motion Capture system (attached to the
frame) and the UWB chip (with the marking “1”) can
be seen. Right : Frame Coordinate System.

3.2 Dynamical Model

The quadcopter dynamics has been widely studied before.
For our controller synthesis we will consider the Newton-
Euler equations such as the ones presented in Luukkonen
(2011). Let p[m] denote the position of the Crazyflie in
a Global Cartesian coordinate system, and η[rad] be its
Euler angles. We have,

p = [x y z]
T
, η = [φ θ ψ]

T
.

To simplify the control problem, we assume that the frame
is aligned with the global coordinates, and that we directly
control the thrust and moments of the quadcopter. Hence,

x(t) =
[
pT ṗT ηT η̇T

]T
, u(t) = [T Mx My Mz]

T

where T is the total thrust, and Mx, My, Mz are the
moments about the x, y, z−axis, respectively.

For our problem, we consider the linearized quadcopter
dynamics about the stable hovering point pe = ṗe = ηe =
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η̇e = [0 0 0]
T

, which results on the following continuous-
time system matrices:

A =

03×3 I3×3 03×3 03×3

03×3 03×3 T 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3

, Bu = Bw =

05×1 05×3
1
m 01×3

03×1 03×3

03×1 I


where T =

[
0 g 0
−g 0 0
0 0 0

]
, I =

(Ixx)−1 0 0
0 (Iyy)−1 0
0 0 (Izz)

−1


Here, m is the mass of the robot, g is the acceleration due
to gravity, and Ixx, Iyy, Izz are the moments of inertia
about the x, y, and z axis, respectively. For controller
synthesis, we discretized the dynamical model with a
sampling time of Ts = 0.004 seconds. We also used the full
state information from the EKF, so we set Cy = I12×12.

3.3 Indoor Positioning System

In our testbed, aside from the existing Vicon motion
capture system, we have developed a localization system
using ultra-wideband technology. The UWB units are
capable of measuring time-of-flight between other UWB
units, enabling us to estimate the position of robots
relative to fixed transmitters distributed inside the tested.
We have 8 fixed UWB transmitters (also referred to as
Anchors) transmit messages at a fixed time interval using
a Time-division multiple access (TDMA) scheme (see
Fig. 4). A receiver in each robot (called Tag) calculates
the time-difference of arrival (TDOA) between consecutive
messages, and estimates its current position using an EKF.
Since TDOA algorithms only reliably work inside the
convex hull generated by the transmitters, we placed the
Anchors in the corners of a 10× 10× 4m room.
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Fig. 3. Top: UWB positioning system errors in the x and y
axis. Middle: Ground truth z-position and Estimate.
Bottom: Absolute error in the z axis.

We can see a comparison of the performance of UWB
as compared to the ground-truth Vicon data in Fig. 3.
Since the motion capture system and the UWB setup
have slightly different origins, we used the average position
before takeoff (at t = 10s) to find the offset between both
systems. Here we observe that the errors on the x and y
axis are, on average, below 5 cm with a few spikes below

Slot iSlot 1 Slot N

Guard
Time

Robot i
TX

Guard
Time

Anchor i
TX

... ...Slot N Slot 1

frame kframe k-1 frame k+1

Fig. 4. TDMA frame structure showing the communication
protocol.

18 cm. The errors in the z axis are slightly larger, but on
average below 15 cm. This is most likely because before
takeoff the quadcopter is sitting slightly below the lowest
Anchors, and so the initial z estimate is not as reliable as
x or y. However we note that, during flight, the z estimate
is more stable and has a constant offset to the ground
truth data, indicating that if the quadcopter were to start
inside the convex hull, the absolute errors would have been
smaller. Another possible reason for the higher errors in
the z-axis is that, due to the position of our Anchors,
consecutive messages usually come from two Anchors in
the height. If we had more variation in z positions, we
might have better z estimation.

3.4 Communication Protocol

Since each Anchor is transmitting a message at a known
interval, we can use the guard time between two consecu-
tive Anchor messages to transmit data between robots. In
our implementation, robot i broadcasts its current state
estimate after it receives a message from Anchor i. The
resulting messaging scheduling is illustrated in Fig. 4. The
protocol could potentially be modified so two robot mes-
sages are sent between Anchor transmissions. However,
that depends on the processor load, Anchor message rates,
robot message length, among other design choices.

We measured a packet loss rate of 1% when two vehicles
are within 2m of each other. However, the reception rate
quickly decreases as distance increases as the antenna
placement and angle on the Crazyflie 2.0 is not optimal.
Packet loss is also affected by other variables, such as
proximity to dense solid bodies (such as concrete ground
and walls), and transmitter and receiver antennas.

4. EXPERIMENT AND RESULTS

To verify our claims, we implemented the controller and
proposed communication protocol on a group of quad-
copters. The controller design and results are presented
below. The code used to synthesize the controller matri-
ces along with the quadcopter firmware is available on
GitHub 1 . The experiments were carried out in part in
the Intelligent Robotics Laboratory, University of Illinois.

4.1 Controller Design

Our goal is to have the quadcopters follow each other in
a platoon of vehicles. Each vehicle will try to keep a set
distance from the one in front of it, with the first vehicle
following a user defined path. This setup is shown in Fig. 1.

Let εi ∈ Rni be the measured state vector of the i-th
robot that is available to its followers. Then, if we desire
1 https://github.com/HoTDeC/Robust-Decentralized-Controller
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that each quadcopter maintain a given distance ri ∈ Rni

away from robot i− 1, we choose the performance output
ei = ri + εi−1 − yi, where that of the first vehicle is

e1 = r1 − y1. Let r =
[
rT1 rT2 · · · rTM

]T
, and similarly

define n, d, u, e, y, ze, and zu.

Wr K P

Wn

Wd

Wu

We

r

n
−

e u

d

y

ze

zu

Fig. 5. Block diagram showing interconnection between
controller and system, as well as placement of the
controller weights.

Figure 5 shows the placement of the weight matrices
used to synthesize the feedback controller. Since we are
interested in controlling the position of each quadcopter,
we set the weighting of the reference input to be W i

r =
diag{1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0}, i ∈ N. We set Wn to be
the noise variance of each state on the main diagonal.
To deal with potential blade differences and mass varia-
tions between quadcopters, we added a small static dis-
turbance to the model, with W i

d = diag{10−2, 0, 0, 10−4},
i ∈ N. We also set the controller output weights as
W 1
u = diag{2, 40, 40, 10} for the first vehicle, and W i

u =
diag{2, 40, 40, 5} for robots i ≥ 2.

For our experiment, the error weighting matrix We

switches between two different modes so we can have
changes in the performance objective. Our plant can
switch between the following two modes: in mode 1, we
have a small penalty on the x and y coordinates, but
larger penalty on the z axis; and in mode 2, all x, y,
and z coordinates have similar penalties. In this setup,
mode 1 corresponds to takeoff and landing procedures, and
mode 2 corresponds to normal flight. Since our Crazyflies
are not equipped with external sensors, such as LIDAR
or cameras, we implemented a controller with memory
L = 1, but no look ahead horizon. Therefore, the possible
controller switching paths are Ψ = [11 12 21 22]. CVX
(Grant and Boyd, 2014), was used to solve the controller
synthesis LMIs (6).

4.2 Results

The reference input provided to the platoon leader is
represented by a dashed line in Fig. 6, while we indicate
the jump between modes by the vertical dotted lines. First,
for takeoff we set the z velocity to 0.3m/s, stopping at
z = 1m. Then, we tell the first quadcopter to follow an
circular trajectory. Here, the x and y signals are sinusoids
with amplitude 0.5m and frequency 0.5Hz. For the landing
procedure, we set the z velocity to −0.2m/s.

From the plots in Fig. 6, we can see that the robots suc-
cessfully follow the leader’s reference input. As expected,
we see larger tracking errors when the system is in mode 1
because we have smaller x and y penalties during takeoff
and landing. However, the robots quickly reduce their
tracking errors once we switch to mode 2. While we observe
some oscillation, it does not seem to amplify down the
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Fig. 6. Top: Ground truth x position. Bottom: Ground
truth y position. The position of quadcopters was
shifted by −ri, i = 2, . . . , 4 to simplify visualization.

chain or cause large instabilities. Better performance and
reference tracking could potentially be achieved by having
a preview horizon or path-dependent bounds.

5. CONCLUSION

In this paper we have implemented a recently developed
controller synthesis method, that along with a ultra-
wideband unit, allows us to control and coordinate multi-
agent systems without a centralized node. The finite-path
dependent controller has block lower-triangular structure,
provided that the controlled system is also block lower-
triangular. Each quadcopter is able to estimate its current
position using a UWB unit, which we also use to commu-
nicate its state information to other vehicles. Due to the
structure of the controller, we are able to control multiple
quadcopters with limited communication bandwidth. The
proposed system was deployed in a group of quadcopters.
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Appendix A. NOTATION USED IN THE MAIN
THEOREM

We denote the space of n-dimensional positive-definite
matrices by Sn+. Due to the desired structured properties

of the controller, we define matrices E•i and Ē•i for i ∈ J̄

E•i =

[
In•1+...+n•

i

0

]
, Ē•i =

[
0

In•
i+1

+...+n•
M

]
with • denoting one of K, u, or y; the row dimension
of above matrices being n•. We have the following kernel
space matrices for i ∈ J̄ , φ ∈ N ,

Ny
i,φ =

[
Ny,x
i,φ

Ny,w
i,φ

]
=
[
(Eyi )∗Cyφ (Eyi )∗Dyw

φ

]
⊥ ,

Nu
i,φ =

[
Nu,x
i,φ

Nu,z
i,φ

]
=
[
(Ēui )∗(Buφ)∗ (Ēui )∗(Dzu

φ )∗
]
⊥ .

Additionally, we define Ni,φ :=

[
Nu
i,φ 0
0 Ny

i,φ

]
. The closed

loop scaling matrices are denoted by XC
Ψ ∈ Sn+nK

+ , defined
for each Ψ ∈ AL. These matrices are partitioned into plant
and controller sections as

XC
Ψ =

[
XΨ XGK

Ψ

(XGK
Ψ )∗ XK

Ψ

]
, (XC

Ψ )−1=

[
YΨ Y GKΨ

(Y GKΨ )∗ Y KΨ

]
with XΨ, YΨ ∈ Sn+, XGK

Ψ , Y GKΨ ∈ Rn×nK

, and XK
Ψ , Y

K
Ψ ∈

SnK

+ . We further define the following for i ∈ J̄ ,

Zi,Ψ:=
{
XΨ−XGK

Ψ ĒKi
(
(ĒKi )∗XK

Ψ Ē
K
i

)−1
(XGK

i ĒKi )∗
}−1

= YΨ − Y GKΨ EKi
(
(EKi )∗Y KΨ EKi

)−1
(Y GKψ EKi )∗,

and the following associated matrices

Zai,Ψ:=(E∗i Zi,ψEi)
−1, Zbi,Ψ:=− Zai,ψ(E∗i Zi,ψĒi),

Zci,Ψ:=Ē∗i Zi,ψĒi−(EiZi,ψĒi)
∗(E∗i Zi,ψEi)

−1E∗i Zi,ψĒi.

The matrices above give us the factorization
Zi,ψ = Zli,ψ(Zui,ψ)−1 = (Zui,ψ)−∗(Zli,ψ)∗, where

Zli,ψ =

[
I 0

−(Zbi,ψ)∗ Zci,ψ

]
, and Zui,ψ =

[
Zai,ψ Zbi,ψ

0 I

]
.
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