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Abstract: The paper addresses the problem of calculating energy optimal trajectory for a novel
class of hybrid UAV equipped with hydrogen fuel cell and solar photovoltaic energy production
technologies. The objective of the design is to minimize the energy used for propulsion by
optimally utilizing the finite energy stored in the onboard hydrogen fuel cell and routing
the aircraft through the time-varying energy fields of solar irradiance and wind. The optimal
guidance task is formulated as a two-point boundary value problem with an objective of finding
the minimum energy route and the associated controls. The task is solved by applying Pontryagin
minimum principle to the resulting 2D kinematics of a UAV along with its aerodynamics, energy
management, and propulsion models. The paper derives the necessary conditions and synthesizes
the optimal control laws of the bank angle and the airspeed which depend on the time and
position derivatives of the wind, and the total angle of incidence toward the sun. The developed
method is used to solve a task of path planning of a long endurance flight of a hybrid UAV over
multiple 1000 nmi.

Keywords: Optimal guidance, Pontryagin minimum principle, solar and wind energy, hybrid
vehicle.

1. INTRODUCTION

The paper addresses the problem of calculating energy
optimal trajectory for an ultra-long endurance unmanned
aircraft equipped with hydrogen fuel cell and solar photo-
voltaic technologies, see Fig. 1. The hybrid aircraft is cur-
rently in development at the US Naval Research Labora-
tory (NRL); it is designed to demonstrate long endurance
(multiple days) and long range (more than 1000 nmi) in a
small (7.3 m wingspan, 25 kg take-off weight) and mission-
relevant vehicle, see Stroman et al. (2018). The project
advances the aerial autonomy by integrating onboard a
number of hardware and software solutions which enable
the ultra-long endurance flight of a duration that cannot
be achieved by each of the individual technologies. The
anticipated range and endurance are achievable due to
the tight integration of a unique hybrid power train that
incorporates high specific energy (1200 Wh/kg) Proton-
Exchange Membrane (PEM) fuel cell system, high effi-
ciency (23%) solar arrays, and advanced power manage-
ment, onboard trajectory planning and control algorithms.

Despite the long history of optimal control and specifically
the optimal trajectory generation, the general class of
tasks of finding the optimal trajectory for long-endurance
flight is still an active area of research, see Ben-Asher
(2010). The key reason for this ongoing development is
twofold. First, the rapid evolution of aircraft design in-
tegrates new advances from various areas of aerospace
engineering which have potential to extend the operational
flight envelope. Achieving these potentials is solved by the
optimal control methods that integrate all the advances
along with the new flight critical dynamics and constraints.

The second is the evolution of optimal control theory that
provides new approaches, methods, and computational
frameworks that facilitate the solution of the new or the
previously intractable tasks. The use of optimal control
methods for the aircraft trajectory generation has been
comprehensively presented by the aerospace control liter-
ature, see Gardi et al. (2016); Ben-Asher (2010); Longuski
et al. (2014). The complexity of the trajectory optimiza-
tion task for the general class of aircraft, flight conditions,
and the optimization cost has always challenged the for-
mulation and the solution of the optimal control task. The
first example of an optimal routing problem, also known
as Zermelo’s navigation problem, was proposed in 1931 by
the German mathematician Ernst Zermelo, see Zermelo
(1931). The problem is known in its aerospace version:

Fig. 1. A conceptual view of the long endurance energy
harvesting system.
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find a set of controls (heading and airspeed) under which
the aircraft can optimally fly from one point to the other
in minimum time in the presence of wind.

The optimal path planning for ultra long-endurance air-
craft including the solar-powered and hybrid propulsion
systems has been presented only by either qualitative dis-
cussions at the aircraft design stage, Burton and Hoburg
(2017), or by the classical analysis that focused on steady-
state flight performance characteristics, see Oettershagen
et al. (2015, 2016). Nevertheless, high-fidelity models of a
long endurance aircraft were built including the detailed
representation of coupled aerodynamics and propulsion ef-
ficiency along with the solar and electric batteries models.
By the time of this development, a sequence of works
have addressed the solar energy impact on the trajectory
shape. Seminal contributions to this problem have been
made by Klesh and Kabamba (2007, 2009); Hosseini and
Mesbahi (2016), which combine different flight modes of
a solar-powered aircraft and enabled a solution of the
trajectory optimization task, however without accounting
for the wind transport energy.

A number of works attempted to combine the wind trans-
port (primarily in 2D) and the solar energy of the aircraft
but either for the individual narrow-sense costs (shortest
time, distance traveled, fuel burned, weather as a hazard
to the aircraft), see Rodionova et al. (2014), or their
empirically weighted sum, Wirth et al. (2015). In all of
these examples, the complexity of the task resulted in
employing a direct formulation of the optimal control
problem that relied on a form of computationally heavy
nonlinear programming solvers. In most cases, the task
was implemented in a general-purpose CPU by the Math-
ematica/MatLab programming languages that required
10-20 min of computational time with the power consump-
tion starting at 60 W - prohibitive for microcontrollers.

However, the combined effect of the wind transportation
energy and the solar irradiance has not been explicitly
addressed. The key challenge is in the complexity of
the optimization cost as well as the state and control
constraints that together lead to the necessary conditions
that rarely have analytical solutions. Direct and indirect
methods are the key approaches capable of tackling this
complexity without oversimplifying the problem. However,
both approaches have one common problem of an initial
guess; both frameworks require good initialization of the
states and controls and in the indirect case also the
associated costates, see a concise survey in Betts (1998). In
essence, to solve the problem one needs to find an estimate
of the “unspecified conditions at one end that produces
a solution reasonably close to the specified conditions
at the other end” Bryson and Ho (1975). A number of
techniques, Watson (1990), have been developed to deal
with this general sensitivity; among them are the scaling,
continuation, and homotopy methods.

The present paper develops an integrated model of the air-
craft kinematics along with the associated energy models
that have the following original features. First, the energy
collected and consumed is represented by coupled ”bank
angle & airspeed” nonlinear dynamics that account for
all energy components including their efficiency as explicit
functions of state during the flight. Second, the solar input
is considered not only as a function of aircraft state and

universal time, but also allows for the solar irradiance to be
zero. Thus, the maneuvers in all light conditions are con-
sidered and day-night transitions are accounted for. Time-
varying dynamics of wind, solar, and humidity (correlates
to regional cloud cover) are given by COAMPS meteoro-
logical data model, see COAMPS (1997). Next, based on
the integrated aircraft performance model, the problem of
global path planning (GPP) of the solar-powered hybrid
UAV is formulated as an optimal guidance problem, with
the coupled bank angle and airspeed serving as the control
inputs.

The paper studies this optimization problem and provides
the following original contributions:

• the necessary conditions of optimality of the mini-
mum energy are formulated;

• the optimal controls of the bank angle and the air-
speed are synthesized analytically;

• the problem of initial guess is solved based on the con-
tinuation approach that scales the wind magnitude;

• an efficient algorithm is designed which is able to solve
the GPP task onboard a miniature CPU consuming
less than 5 W of energy within 10th of seconds;

• a practical task of an ultra long-endurance flight
planning is solved for a prototype hybrid aircraft.

The paper is organized as follows. Chapter 2 formulates
the mathematical models of the aircraft kinematics and
the key energy components. Chapter 3 formulates the
trajectory optimization task as the classical boundary
value problem (BVP) and then synthesizes the optimal
control laws of the bank angle and the airspeed. Chapter 4
presents the comparative analysis of the obtained energy
optimal control laws and the classical Zermelo navigation
task obtained with an exemplary wind profile. Finally,
chapter 4 presents a solution that utilizes a realistic 4D
weather forecast. Analysis of the result demonstrates the
benefits of the energy optimal trajectory.

2. MATHEMATICAL MODELLING

Models of the aircraft and the environment. The aircraft
control is based on the coordinated turn approach (bank to
turn) for the aircraft flying at constant altitude within the
planetary boundary layer (PBL). The difference in the hor-
izontal turn kinematics with and without wind, see Beard
and McLain (2012), is managed by an appropriately tuned
autopilot that bounds the departure of the Euler yaw angle
from the ground heading. Therefore, the airspeed V and
the bank angle ϕ are considered as two controls.

Assumption A1 : The aircraft is equipped with a stabilizing
autopilot that makes the system in (1) a valid aircraft
model.

Assumption A2 : The long-endurance flight seeking for
energy optimal strategy does not excessively use bank
angle control, therefore it is also assumed that the bank
angle is small and therefore tan(ϕ) ≈ sin(ϕ).

The aircraft model is:

ẋ = V cosψ +Wx(x, y, t),

ẏ = V sinψ +Wy(x, y, t),

ψ̇ = g tanϕ/Vg,

Vg =
√
ẋ2 + ẏ2,

(1)
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where x and y are the Cartesian coordinates, ψ is the
ground heading angle, ϕ is the bank angle, V is the
airspeed, Vg is the ground speed, and g is the gravity. The
Wx and Wy functions of position and time represent the
mathematical model of the time-varying wind.

Power required for steady flight. Flight efficiency of the
aircraft is based on the power required for steady-state
flight at a constant altitude. On one hand, the constant
altitude flight requires the weight of the aircraft to be
compensated by the lift force: L · cos(ϕ) = m · g, where
m is the mass and L is the total lift generated by the
aircraft body. On the other hand, the total trust T of the
propulsion system of a given efficiency ηp compensates for
the drag force D acting on the aircraft at the given altitude
h and airspeed V . Adopting the quadratic representation
of the drag polar results in the following expression of the
power required for steady flight:

CL =
2mg

ρV 2S · cosϕ
, CD = CD0

+K · C2
L,

D =
ρV 2

2
SCD, T = D,

(2)

where CL, CD, CD0
are the aerodynamic coefficients of

total lift, drag, and the drag at zero angle of attack
respectively. K is the drag polar coefficient, and S is
the reference area of the aircraft wing. Substituting these
components into the propulsion power Pprop required for
steady flight and accounting for the propulsion efficiency
ηp results in the desired form of the energy loss model:

Pprop =
T · V
ηprop

= ρV 3S · CD0
+K · C2

L

2ηprop
,

=
ρ · SCD0

2ηprop
· V 3 + 2KS

(mg/S)2

ρ · ηprop
· 1

V · cos2 ϕ
,

= Kp1 · V 3 +Kp2 ·
1

V · cos2 ϕ
,

Kp1 =
ρSCD0

2ηprop
, Kp2 =

2KS(mg/S)2

ρηprop
,

(3)

where Kp1 and Kp2 are the propulsion system charac-
teristic constants. As an example, the prototype aircraft
features Kp1 ≈ 0.05 and Kp2 ≈ 1000.

Power gain due to solar. The solar power captured by
the solar cells of known area A and efficiency ηsolar is a
function of the geographic location of aircraft (λ - latitude,
φ - longitude, h - altitude), the orientation of the sun (a -
azimuth and e - elevation), and the day of the year. The
angle toward the sun is characterized by the incidence
angle θi measured from the normal n̄e to the solar cell,
see Fig. 2. Thus, the solar power collected is

Psolar = ηsolarPsdA · cos θi = Ks · cos θi, (4)

where Ks = ηsolarPsdA and Psd is the spectral density of
the sun within the PBL altitude that is given by the solar
flux layer of the COAMPS data; see COAMPS (1997) for
more details on the quality and the content of the forecast.
The cos θi in (4) represents the magnitude of “solar power
losses” due to the imperfect orientation of photovoltaic
array toward the sun. As a reference, the prototype aircraft
is characterized by Ks ≈ 400.

The angle of incidence θi of the solar panel installed on
an upper surface of the wing and oriented by the ϕ-roll,
θ-pitch, and ψ-yaw angles of the aircraft body can be

Fig. 2. The concept of solar incidence angle θi.

calculated by rotating the vector normal to the solar array
to the Earth frame. The incidence θi is given by the vector
dot product cos θi = s̄e · n̄e of the direction toward the sun
(s̄e) and the normal to the solar array (n̄e), see Edwards
et al. (2016); Klesh and Kabamba (2007).

cos θi = sin e cosϕ− cos e sinϕ sin(a− ψ). (5)

The cos θi of incidence angle modulates the solar power
gained when the upper surface of the wing is illuminated
by the sun. It can be observed that when the roll angle ϕ
is small the value of cos θi is primarily defined by the first
term, therefore it can be approximated by cos θi = sin e ·
cosϕ. Moreover, when the sun is below the wing surface,
cos θi < 0, the solar panels do not produce any power. The
resulting function Psolar is written as:

Psolar =

{
Ks cos θi , if cos θi > 0
0 , if cos θi ≤ 0

(6)

The orientation toward the sun is based on the traditional
celestial mechanics equations, see Siegel and Moser (1995).
The resulting azimuth and elevation angles (a, e) are the
analytical functions of the sidereal rate of the Earth
rotation (Ω = 15.041o/hour), solar time tsol, and the
latitude λ of the aircraft. The final form of these equations
is adopted from Edwards et al. (2016) and presented here
for completeness:

e = arcsin(cosλ cos δ cosω + sinλ sin δ),

a = sign(ω) · arccos(sin e sinλ− sin δ)/(cos e cosλ),
(7)

where ω = (tsol − 12)Ω is the hour angle corresponding to
the solar time tsol, and δ is the angular position of the sun
at solar noon that is calculated empirically with respect
to the day of the year, see Edwards et al. (2016).

Energy gain due to fuel cell. The power management
concept of the hybrid aircraft does not focus on storing
solar energy, rather it uses photovoltaic to offset the power
production of the fuel cell to reduce the fuel consumption;
Psolar never exceeds the Pprop of the prototype aircraft.
Therefore, at any geographical location the power Pnet
required from the fuel cell for level flight is a function of
the commanded airspeed V , bank angle ϕ of the solar wing,
and the time of the day t:

Pnet(V, ϕ, t) = Pprop − Psolar
= V 3Kp1 +Kp2/(V cos2 ϕ)−Ks cos θi.

(8)

The key objective function of the trajectory optimization
task is the cumulative energy Ef spent during the flight:

Ef =

∫ tf

t0

(Pprop − Psolar)dt =

∫ tf

t0

Pnetdt. (9)

3. PROBLEM FORMULATION

The optimization task considers the constant altitude
flight from an initial (x0, y0) position and time t0 to the
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final destination (xf , yf ). The final time tf is unknown
and becomes a parameter of the BVP problem. The
objective is to minimize the total energy expenditures
in (9) by calculating the optimal commanded airspeed
and bank angle. There are no tight constraints imposed
on the control functions as the optimization of the flight
performance naturally limits the control of the bank angle
and the airspeed, see assumption A2. The formulation and
solution of the optimal guidance is based on the Pontryagin
minimum principle, see Pontryagin et al. (1962).

3.1 Minimum energy optimum control task.

minEng Problem: Find the optimal airspeed V ? and bank
angle ϕ? control functions that minimize

J∗ =

∫ tf

t0

Pnetdt (10)

that is subject to the following state dynamics

ẋ = V cosψ +Wx(x, y, t),

ẏ = V sinψ +Wy(x, y, t),

ψ̇ = g tanϕ/Vg, Vg =
√
ẋ2 + ẏ2,

τ̇ = 1/tf .

(11)

The last ”add-on”state in (11) introduces a “dimensionless
time” τ that solves the ambiguity of unknown tf and the
normalized time becomes well-defined as τ ∈ [0, 1].

3.2 Synthesis of the minimum energy optimal control laws.

Let the scalar Hamiltonian of the optimization task be:

H = V 3Kp1 +Kp2/(V cos2 ϕ)−Ks cos θi

+ λxẋ+ λy ẏ + λψψ̇,
(12)

where the λx, λy, λψ are the costates associated with the
dynamics of states in (11). The costates dynamics are now
defined as:

λ̇x = −∂H
∂x

= −λx
∂Wx

∂x
− λy

∂Wy

∂x
− λψ

∂ψ̇

∂x
,

λ̇y = −∂H
∂y

= −λx
∂Wx

∂y
− λy

∂Wy

∂y
− λψ

∂ψ̇

∂y
,

λ̇ψ = −∂H
∂ψ

= λxV sinψ − λyV cosψ

+Ks sinϕ cos e cos(a− ψ)− λψ
∂ψ̇

∂ψ
,

(13)

and the associated boundary conditions are:

x(t0) = x0, x(tf ) =xf ,

y(t0) = y0, y(tf ) =yf ,

ψ(t0) = ψ0, ψ(tf ) =ψf .

(14)

Since the Hamiltonian in (12) is an explicit function of
time, the resulting non-autonomous task has the following
transversality condition at the right end

Htf (x, y, ψ, τ λx, λy, λψ) = 0. (15)

The canonical Hamiltonian system is now built of (11,13)
and the boundary conditions in (14,15).

Finally, all the partial derivatives of wind Wx,Wy , are
available for calculation based on the COAMPS weather
forecast, see COAMPS (1997); the derivatives of ψ̇ with re-
spect to (x, y, ψ, t), although bulky, are easy to implement
as they are known functions of wind, V , and ϕ. Robustness

of the optimal trajectory planner to the variation and
uncertainty of weather forecast is achieved by the ability of
the algorithm to quickly (1-2 min) recompute the optimal
trajectory should the need arise.

With the states (x, y, ψ, t), control inputs (V, ϕ), and the
Hamiltonian in (12), the first-order necessary conditions
of optimality of the problem in (11-14) are:

∂H

∂ϕ
=

2Kp2

V
· tanϕ(tan2 ϕ+ 1) +

λψ
Vg

g

cos2 ϕ

+Ks sinϕ(sin e+
cos e sin(a− ψ)

tanϕ
) = 0,

(16)

∂H

∂V
= 3V 2Kp1 −

Kp2

V 2
(tan2 ϕ+ 1)

+ λx cosψ + λy sinψ = 0.
(17)

Utilizing the trigonometric identity cos−2(ϕ) = tan2(ϕ)+1
and the assumption A2 simplifies the (16):

∂H

∂ϕ
=

2Kp2

V
· tanϕ(tan2 ϕ+ 1)

+Ks tanϕ(sin e+
cos e sin(a− ψ)

tanϕ
)

+ λψ
g

Vg
(tan2 ϕ+ 1) = 0.

(18)

Equation (18) can be considered as a polynomial of tanϕ
with the root closely approximated by (19) that represents
the synthesized optimal control of the bank angle ϕ∗.

tanϕ∗ = − V
Vg

λψg + Vg ·Ks cos e sin(a− ψ)

2Kp2 + V ·Ks sin e
. (19)

The solution of the first-order necessary condition in (19)
captures the key dynamics of the aircraft with respect to
the wind energy and sun orientation (a, e) via the costate
λψ. Analysis of (19) shows that the ground speed of the
aircraft should be non-zero at all times. This implies that
the controls should always “cross-sail” the aircraft through
the wind field and avoid direct headwind “collision”. The
remaining terms in (19) are treated as the aircraft state
and performance characteristics.

Next, considering (17) and the assumptions A1-2 suggests
that tan2(ϕ)� 1. This simplifies (17):

∂H

∂V
= 3V 4Kp1 +V 2(λx cosψ+λy sinψ)−Kp2 = 0. (20)

On one hand, (20) suggests that within the scope of
assumptions the airspeed (longitudinal channel) can be
decoupled from the bank angle (lateral channel) control.
On the other hand, the coupled time-varying energy con-
tributions of solar and wind in (11-13) do not appear
in the optimal airspeed control. Analysis of the costates
dynamics in (12) shows that wind primarily contributes
to the dynamics of λx, λy while the solar input affects λψ.
The scale of the resulting costates is defined by the relative
magnitude of the wind transport energy and the solar
irradiance. Finally, the expression of the optimal airspeed
can be easily calculated by substituting theKp1,Kp2 terms
from (3), thus leading to the following:

V ∗2 =

√
4K

3ρ2CD0

(
mg

S
)2 +

η2propΛ
2

9ρ2S2C2
D0

− ηprop
3ρSCD0

Λ, (21)

where Λ = λx · cos(ψ)+λy ·sin(ψ). It is worth noting that
in the absence of solar and wind inputs the (21) reduces to
the well-known expression of the optimal speed to fly for
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the minimum required power VminP in horizontal flight,
see ch.5 in Anderson (1999).

V 2
minP =

2mg

ρS

√
K

3CD0

(22)

How close the optimal control law of bank angle ϕ in (19)
approximates the exact solution of ∂H

∂ϕ = 0 for different

combinations of the velocities and the orientation of the
sun is illustrated in Fig. 3.

Fig. 3. The sensitivity of optimal bank control to the
variation of velocities and the sun orientation.

It is clear that the optimal banking solution in (19) is
both sensitive to the orientation of the sun and the ratio
of the ground to airspeed, and represents very closely the
exact solution; the latter one is obtained numerically via
a computationally heavy numerical algorithm that would
not be suitable for integration by the onboard BVP solver.

Equations (19,21) complete the formulation and synthe-
sis of the minEng optimal control problem. The task
of verifying the second order necessary conditions is ad-
dressed at the numerical implementation step, see details
in Dobrokhodov et al. (2020). There, we develop a more
intuitive means of analyzing the energy optimal solution by
comparing it with the well-known minimum time (minT )
and the shortest distance flights.

4. NUMERICAL SOLUTION OF THE GPP TASK

4.1 A. Challenges of numerical implementation.

One of the fundamental problems in solving the BVP task
is to find the initial guess of the trajectory and the costates
which is sufficiently close to the final solution. We solve this
problem by designing a new continuation algorithm that
is based on scaling the wind magnitude; this scale defines
that physically meaningful parameter Wscale ∈ [0, 1]. The
logic of the algorithm is illustrated in Fig. 4.

Fig. 4. The concept of continuation.
When Wscale = 0, meaning that there is no wind, the
resulting trajectory is necessarily a straight line (an arc of
a great circle) between the boundaries. The trivial initial
guess of the adjoint variables (“0” guess) is a set of zeros.
Then, a numerically stable forward integration of states
and backward integration of costates solves the problem of
initial guess of the very first trivial task. Thus, not only the
states are defined, but also the costates of the BVP become
available. As a result, continuously increasing Wscale from
0 to 1 and solving multiple BVP tasks shrinks the entire
computational time to 10th of seconds vs multiple hours
when using the full-scale wind as the initial step. The ini-
tial step of the BVP solver takes microseconds to compute
on a single-board miniature ODROID-XU4 computer, see
Hardkernel (2015). Over multiple iterations the CPU takes
10th of seconds depending on the variability of the wind
that is being scaled up by the continuation procedure,
while consuming merely 4.5 W that is ≈ 10 times less
than Intel-i7, see Qureshi and Koubâa (2019).

The numerical solution relies on the 4th order collocation
algorithm with the control of residuals, see Kierzenka and
Shampine (2001), and is implemented by the MatLab,
Mathworks (2019), and the SciPy software, see SciPy
(2019). The onboard algorithm has been implemented by
the authors in Python programming language to enable in-
flight implementation of the GPP solver in Odroid CPU;
MatLab core is not supported on ARM-based CPUs.

4.2 Comparative analysis of the minimum time and energy
solutions with analytical wind representation.

The comparison was first performed for a wind profile
defined analytically as it provides an easy assessment of the
routes, controls, and the resulting energy metrics without
any noise associated with real world weather data. An
exemplary wind has been adopted from Bryson and Ho
(1975); synthesized control of this task assumes constant
wind. The wind is represented with one component being
zero and the other being proportional to the lateral coor-
dinate, thus switching its direction to the opposite when
crossing the “zero line”:

Wx(x, y, t) = −hy · y, Wy(x, y, t) = 0, (23)
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where hy is a constant parameter representing the only

non-zero partial derivative ∂Wx

∂y = −hy, see Fig. 5. This

comparison is valid when performed with no sun contribu-
tion and the wind modeled as the time-invariant function.

Fig. 5. Analytical wind, hy = 0.055s−1 .

The focus of this comparison is to gain insight into
the efficiency of harvesting the wind transport energy
by both approaches. The plots in Fig. 6 compare the
energy optimal solution (minEng) in (19,21) with the
classical minimum time solution (minT ) in terms of the
trajectories, the bank angle, and the velocity controls in
a simulated flight at night. The minT task is solved with
the airspeed of 11.85 m/s that matches the average speed
of the minEng solution. The scale of the trajectory plots
in Fig. 6a is chosen to better demonstrate the negligible
difference of both trajectories; the maximum difference is
≈ 50 m. The variation of optimal commanded airspeed
in Fig. 6c due to the term Λ in (21) is minimal that is
specific for the chosen wind model; the dynamic of Λ is
driven by the costates λx, λy which depend on the partial
derivatives of wind that in this example features only one
nonzero component ∂Wx

∂y . In general case, Λ is the term

that blends the solar and the wind energies.

Analysis of Fig. 6 shows that the airspeed and the
lateral controls are nearly identical for both solutions
which are ”flying” through the same wind at night.
The bank angle dynamics are kept within 10o limit. As
expected, the resulting flight time (TminEng/TminT =
213/209 sec), the control efforts, and the energy expen-
ditures (EminEng/EminT = 9.4/11.5 Wh) are nearly the
same. The slight difference in the shape of trajectories and
controls is primarily defined by the boundary conditions of
the aircraft attitude; the minEng case has ψ boundary at
the ends while the minT does not. Further analysis shows,
that with the same wind conditions during the night
flight, the minEng trajectory asymptotically approaches
the minT solution that becomes especially pronounced
with increasing distance between the boundary points.
Therefore it is fair to generalize that at night time the
minEng solution closely approximates the minT strategy.

To gain better insight into the combined contribution of
wind and solar to the efficiency of flight, Fig. 7 illustrates
the resulting solutions when the sun elevation angle varies
between 0o at night and 90o at zenith. The cumulative
variation of both controls results in less than 100 m
difference in the trajectories for the two extremal cases
of the sun elevation and is illustrated in Fig. 7a. The
general trend is to increase the path length while also
flying with higher airspeed that is afforded by the added

(a) trajectories

(b) bank control

(c) the V and Vg velocities

Fig. 6. Comparison of minEng and minT optimal solu-
tions at night flight.

contribution of solar, see Fig. 7b. The lateral control is
trivial with the bank angle staying within 5o in all cases,
thus it is skipped here. The combined contribution of the
wind and solar energies is illustrated by 10% increase of
the ground speed, see Fig. 7c. Analysis of the paths and
the velocities variation with the increased sun elevation
(0o-90o) demonstrates decrease of the resulting flight time
by 10%.

It is clear that the energy minimization strategy of the
optimal control law relies on the maximum available solar
energy, see Fig. 8. At night time it takes 9.4Wh solely from
the onboard fuel cell, while at 90o elevation the onboard
source utilization is reduced by 54%(4.3 Wh). Figure.8
also includes the total mass of fuel spent on the route that
is computed by integrating the fuel consumption along
the path. Analysis of this result in conjunction with the
optimal flight speed in (22) explains the key performance
gain of the energy optimal controls: additional solar energy
allows for higher commanded airspeed that contributes to
the higher ground speed and therefore the shorter flight
time. The integral of the lower power consumption calcu-
lated over shorter flight time results in lower cumulative
energy utilization.

4.3 Comparative analysis of the minimum time and energy
solutions with wind represented by COAMPS model.

This section briefly presents a solution of a practical task
of global path planning of a long endurance flight of
the hybrid aircraft over more than 3000 nmi distance.
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(a) trajectories

(b) commanded airspeed V

(c) resulting ground speed Vg

Fig. 7. Evolution of the trajectories and airspeed controls
at various sun elevations

Fig. 8. Energy and flight time as functions of the sun
elevation

It is expected that the flight time amounts to multiple
days thus leading to the non-autonomous nature of the
BVP task. Indeed, wind dynamics cannot be assumed
to be independent on time. As a result, the classical
Zermelo solution, which is autonomous, cannot be used
in the comparative analysis. To facilitate fair analysis, the
discussion uses the trajectory along the shortest path that
is the arc of a great circle passing through the boundary
points; it is conveniently calculated by the very first step
of the continuation algorithm. The commanded airspeed

along the arc will be fixed at the best speed to fly for
minimum power, see (22). This great arc trajectory is a
convenient reference for comparison. More details on the
experiment and the developed interpretation of the results
can be seen in Dobrokhodov et al. (2020).

Accounting for the time-varying nature of wind and solar
energy fields along the route we introduce a special color-
coding technique that helps with the intuitive representa-
tion of both energy sources (wind and solar). In the wind
energy case, the algorithm calculates a projection of wind
vector with respect to the direction of flight, see Fig. 9.
The objective is to illustrate the strength of the wind
magnitude and direction with respect to the commanded
airspeed and the direction of flight, in other words - the
quality of wind as the headwind or the tailwind.

Fig. 9. The concept of wind color-coding.
In turn, the contribution of the solar irradiance is encap-
sulated by “attaching” a circle to each waypoint with the
radius qualitatively proportional to the intensity of the
solar contribution; no circles correspond to the night flight.

Figure. 10 illustrates the resulting optimal route (red dots)
in comparison with the route along the great circle (blue
dots) between the initial and final position of the aircraft
for one of the COAMPS wind profiles at 2850 m altitude.

Fig. 10. Comparison of the optimal and great circle routes.

The result illustrates that the optimal route heavily lever-
ages the wind and solar energy sources that provide sig-
nificant time and energy saving: 1.19 kg of fuel along
the optimal route vs 1.45 kg along the great circle, and
73.47 hours along optimal route vs 111.48 hours along
the great circle. The trajectory plot illustrates that the
resulting route optimally trades the degree of departure
from the shortest flight that increases the flying distance
and the intensity of harnessing the tailwind. The route
finds, captures, and follows an imaginary stream of wind
in the desired direction of flight.
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5. CONCLUSION

The key results achieved by the proposed design include
the analytical solution of the minEng task when all three
energy sources are considered simultaneously. The night
time dynamics of minEng solution is proven to asymp-
totically approach the non time-varying wind solution
(Zermelo’s minT guidance). The analytical form of the
synthesized optimal controls of the bank angle and the
commanded airspeed is another key enablers of efficient
numerical implementation. Together with the new continu-
ation algorithm, that scales the BVP system with the wind
magnitude, the optimal solution became feasible onboard
a miniature CPU suitable for aircraft integration.
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