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Abstract: An improved bridge surface crack detection algorithm based on a further developed
You Only Look Once version 3 algorithm (YOLO v3) is proposed to realize the fast and
accurate detection of bridge surface cracks for timely repair application scenarios. The proposed
algorithm is combined with MobileNets and convolutional block attention module (CBAM),
which can detect bridge surface cracks in real time. The standard convolution is replaced by
the depthwise separable convolution of MobileNets so as to reduce the number of network
parameters. Moreover, in order to solve the problem of precision decline caused by depthwise
separable convolution, the inverted residual block of MobileNetV2 is introduced. Furthermore,
the proposed algorithm selectively learn the feature by multiplying the attention map with the
input feature map through CBAM, and focus on channel and spatial attention mechanisms
simultaneously. Finally, the feasibility of the algorithm is verified by experiment.
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1. INTRODUCTION

Concrete bridge is an important node of traffic. It will in-
evitably face with high winds, rain and snow, earthquakes
and freezing. Moreover, bridges also be affected by over-
loading and impacting, which may lead to various damage
of bridge piers (Su et al., 2013). Among the damage of
bridges, crack is difficult to be detected, which endangers
the safety of the bridge (Zhang et al., 2017). Large cracks
may directly destroy the integrity of bridge structure,
which caused the carbonization of concrete, the peeling of
protective layers and the corrosion of steel bars, and even
lead to the bridge collapse accidents (Zhang et al., 2011).
Therefore, effective measures are needed to monitor and
prevent cracks in bridges, which play an important role in
ensuring the safety and normal operation of bridge traffic.
However, manual detection relies heavily on the experience
of inspectors, which may lead to incorrect evaluation.
Among al the crack detection techniques, visual detection
is the most convenient and quick method (Adhikari et al.,
2014). Computer image processing technique can recog-
nize the crack in bridge, by automatically processing and
analyzing a large number of images (Yeum et al., 2015).

In crack detection, the paper (Abdelqader et al., 2003)
compared four crack detection algorithms: the fast Haar
transformation, the fast Fourier transformation, the So-
bel algorithm and the Canny algorithm. Among the four
detection algorithms, the performance of the fast haar
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transformation is obviously better than others. However,
all the above algorithm are difficulties to process the image
data containing noise, and the detection accuracy is lower
than manual detection. In the more advanced methods, the
paper (Zalama et al., 2014) proposed a feature extraction
method by the Gabor algorithm. The method used Ad-
aboost algorithm to select and combine classifiers, which
improve the classification accuracy of individual classifiers.
Genetic Planning algorithm is applied to design image
filters that eliminate the image noise towards improving
crack detection. A machine Learning algorithm is used
to classify image features, but the complex noise of the
image greatly affects the accuracy of the algorithm detec-
tion. Therefore, a detection method which can accurately
identify and locate bridge cracks needs to be improved.

Hinton, et al. presented the AlexNet (Krizhevsky et al.,
2012) and won the 2012 ImageNet large scale visual recog-
nition challenge (ILSVRC). Since then, convolutional neu-
ral network (CNN) has become the major algorithm in
image classification. It has breakthroughs in the fields of
image classification, target detection, image semantic seg-
mentation and image processing. Unlike traditional neural
networks, CNN is able to automatically learn appropriate
feature from datasets. Object detection algorithm based
on CNN can effectively overcome the difficulties of object
detection in complex environment. Therefore, it gradually
dominates the target detection field.

According to the different prediction process, the object
detection algorithm based on deep learning mainly in-
cludes one-stage and two-stage. The two-stage object de-
tection algorithm has two steps on the detection process.
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First, the region proposal algorithm is used to generates re-
gion proposals that may contain object. Then classify these
region proposals and regress their positions through the
convolutional neural network to obtain the final bounding
boxes. The region convolutional neural network (R-CNN)
is a representative of the algorithm (Girshick et al., 2014).
Because R-CNN repeatedly extract features in all region
proposals, resulting in low efficiency. To avoid repeatedly
extract features from image and improve detection efficien-
cy, Fast R-CNN directly generates region proposals on the
feature map (Girshick, 2015). As the improved algorithm
of Fast R-CNN, Faster R-CNN (Ren et al., 2015) uses the
region proposal network (RPN) directly to generate region
proposals, which has higher recall, higher average accuracy
and faster processing speed. However, Faster R-CNN is
still difficult to achieve real-time detection on devices with
GPUs.

YOLO (Redmon et al., 2016) is a representative of the one-
stage object detection algorithm. Unlike R-CNN, region
proposal have been removed in the algorithm. The algo-
rithm integrates the object positioning and classification
into a CNN. Therefore, it only needs one forward operation
to detect various objects. On the basis of YOLO, YOLO
v2 (Redmon et al., 2017a) uses some optimized methods
to improve average accuracy and detection rate. YOLO
v3 (Redmon et al., 2017b) is the third version of YOLO,
which extracts more representative features by combining
shallow and deep features. The algorithm not only main-
tains the fast detection speed of YOLO v2, but also greatly
improves the accuracy, especially in the detection of small
objects.

YOLO v3 is one of the best object detection algorithms at
present, and many scholars applied it to detect different
objects and optimize accordingly. Although YOLO v3 has
achieved good detection results in conventional dataset
such as common objects in context (COCO) and visual
object classes(VOC), it still has difficulties in detecting
cracks on bridge surface. The structure of YOLO v3 is
highly complex, which is more suitable for multi-category
detection tasks. However, in this paper only needs to
detect the bridge cracks, so leads to the mismatch between
the magnitude of the training dataset and the complexity
of the model. It’s easy to appear overfitting phenomenon
during the training process, resulting in accuracy decrease.
Moreover, too many network parameters will make harder
training and more time consumed, and the image detection
time will also be longer.

Therefore, on the base of YOLO v3, this paper integrates
the structure of MobileNets (Howard et al., 2017) and the
CBAM (Woo et al., 2018). YOLO v3 feature extraction
network was replaced by the fusion network, which became
a streamlined and fast bridge crack detection network.
Considering the complex structure of YOLO v3, this paper
redesigns the feature extraction network and reduce the
number of bounding box prediction. Standard convolution
is replaced by the depthwise separable convolution of Mo-
bileNets to reduce the amount of network parameters. In
order to eliminate a slight decrease in detection accuracy
caused by depthwise separable convolution, this paper
introduces the inverted residuals structure of MobileNetV2
(Sandler et al., 2018). Finally, CBAM is embedded into the
convolutional layers, the algorithm can select information

that is more critical to the object, while suppressing other
useless information. Therefore, the algorithm has fewer
parameter and faster detection speed. The improved algo-
rithm can predict the location and size of the cracked area
in real-time which is important to improve the efficiency
of bridge detection.

The rest of paper is organized as follows: in section 2,
the basic theory concept and network structure of YOLO
v3 object detection algorithm is introduced; section 3
proposes a scheme to improve the YOLO v3 for bridge
crack detection. The experiment and result analysis are
shown in section 4; and the last section concludes this
paper.

2. YOLO V3 OBJECT DETECTION ALGORITHM

The structure of residual neural network (ResNet) (He
et al., 2016) is used in the feature extraction network
of YOLO v3. YOLO v3 introduces multiple residual unit
and uses multi-scale prediction to overcome the defects of
YOLO v2 in the recognition of small object. Because of
the high accuracy and detection speed, the algorithm is
one of the best algorithm in the field of object detection.
The algorithm uses a number of excellent 3 × 3 and 1 × 1
convolution kernel, and some residual structures are used
in the later multi-scale predictions. Because the feature
extraction network of YOLO v3 has 53 convolution layers,
it is also known as DarkNet-53.

The structure of YOLO v3 is shown in Figure 1. The
network after the 79th layer through a convolution layer
to obtain the first scale of the detection box. Compared
with the input image, the downsapling multiple of feature
map for detection is 32. For example, if the input image
is 416 × 416, the output feature map is 13 × 13. Because
of the downsapling multiple is large, the receptive field
of the feature map is relatively large, so it is suitable
to detect the larger objects in the image. In order to
detect small object, after upsampling the feature map
of the 79th layer, which concatenate with the 61st layer
feature map. In this way, the fine-grained feature maps
can be obtained through the 91st layer. Compared with
the input image, the downsapling multiple of feature map
for detection is 16. The feature map has medium-scale
receptive field which is suitable for detecting medium-scale
objects. Finally, the output obtained by the 91th layer
feature map upsampling, which concatenate with the 36th
layer feature map. Compared with the input image, the
downsapling multiple of feature map for detection is 8. The
feature map has small receptive field which is suitable for
detecting small objects.

With the change of the number and scale of the output
feature map, the scale of the bounding box are adjusted ac-
cordingly. K-means clustering algorithm is used in YOLO
v3 to get 9 scale of the bounding box, setting 3 bounding
boxes for each downsapling scale. The 13 × 13 feature
map has the largest receptive field, and the correspond-
ing largest bounding box is suitable for detecting larger-
sized objects. The 26 × 26 feature map has the medium
receptive field, and the corresponding medium bounding
box is suitable for detecting medium-sized objects. The
52 × 52 feature map has the smallest receptive field, and
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Fig. 1. YOLO v3 network structure.

Fig. 2. Structural unit of Darknet53.

the corresponding smallest bounding box is suitable for
detecting smallest-sized objects.

Darknet53 consists of five residual blocks, introducing the
concept of ResNet. Each residual block consists of multiple
residual units, which contain two DBL units, as shown
in Figure 2(a). The DBL unit contains convolution layer
(Con2d Layer), batch normalization layer (BN Layer) and
leaky rectified linear layer (LeakyReLU Layer), as shown
in Figure 2(b). By introducing residual units, the number
of layers in the network can be significantly increased,
while avoiding the gradient disappearing.

3. BRIDGE CRACK DETECTION OBJECT
DETECTION ALGORITHM BASED ON IMPROVED

YOLO V3

In order to solve the problem that YOLO v3 is difficult
to apply to the bridge surface crack detection, this paper
proposes a real-time object detection algorithm based on
improved YOLO v3, and the structure of algorithm is
shown in Figure 3. This paper makes three improvements
to the structure of YOLO v3. The improved YOLO v3
network framework is shown in Figure 3, where the Con-
v is standard convolution operation, the Bottleneck is
deepthwise separable convolution with inverted residual
structure. The first 13 × 13 feature map is obtained after
5 downsapling, predicting three detection boxes. The 26 ×
26 feature map is obtained by the feature map upsampling
and concatenate with the 26 × 26 feature map, predicting
three detection boxes.

Fig. 3. Algorithm framework on the proposed improved
YOLO v3

Fig. 4. Standard convolution filters and depthwise separa-
ble convolution

3.1 Depthwise separable convolution

In the design of the feature extraction network, this paper
reduces the number of convolution layers to 16 layers,
and reduces the output of network prediction box from 9
to 6. The depthwise separable convolution of MobileNets
turns standard convolution operation into two steps. As
shown in Figure 4, a standard convolution 4(a) is broken
down into a depth convolution 4(b) and a 1 × 1 pointwise
convolution 4(c). Depth convolution individually filters
each input channel of input feature. Pointwise convolution
uses 1 × 1 convolution kernel to combine the output of
depth convolution. However, standard convolution is a
step that combines the input feature map to produce the
output. However, the standard convolution once filter the
input feature map to get the output.

Suppose an input feature map F is DF ∗ DF ∗M , get a
feature map G of DG ∗ DG ∗ N after convolution. DF is
the width and height of the input feature map, M is the
number of input channels, DG is the width and height of
the output feature map, and N is the number of the output
channels. The computation of the standard convolution is
DK ∗DK ∗M ∗N ∗DF ∗DF . The computation of depthwise
separable convolution is DK ∗DK ∗M ∗DF ∗DF + M ∗
N ∗DF ∗DF . The ratio of the two computation is:

1

N
+

1

D2
K

(1)

If the size of the convolution kernel is 3 × 3, the depthwise
separable convolution is 8 to 9 times less computational
than the standard convolution, but the accuracy is only
slightly reduced. Therefore, Depthwise separable convolu-
tion can reduce the amount of computation and simplify
model.

3.2 Linear bottleneck layer and inverted residual block

An input image is embedded into a n-dimensional space
using random matrix T followed by ReLU, and then pro-
jected back to the image using T−1. When n is very
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Fig. 5. Separable with linear bottleneck and bottleneck
with expansion layer

small, the ReLU nonlinear transformation will loss a lot
of information. If the dimension is higher, the output has
more similarities with the image of input. A picture that is
restored from a feature map with a high dimension, which
is more similar to the input picture. Because dimension
of depthwise separable convolution is smaller than the
standard convolution kernel, using nonlinear layer destroys
some of the information. In order to ensure the presenta-
tion ability of the model, the linear activation layer behind
the small dimension output layer is removed and the linear
bottleneck layer used.

Figure 5(a) is depthwise separable convolution with a
linear bottleneck layer, and the input feature map obtains
the feature map of the same dimension in the middle by
means of a 3 × 3 depth convolution and a linear activation
function. Then, the feature map passes through the 1 ×
1 convolution layer and linear activation layer, getting
the feature map after descending dimension. Finally, the
dimensions of feature map increase by 1 × 1 convolution.
Figure 5(b) is a relatively low-dimensional feature, by 1 ×
1 pointwise convolution, and then 3 × 3 depth convolution,
in which linear activation function to maintain the number
of features. Then, the output is through the 1 × 1
depth convolution and linear activation function. Finally,
the features of next layer after descending dimension is
obtained.

Because the input of the bottleneck layer contains all the
necessary information. To prevent the information loss, re-
move activation layer from the back of some layers. Enough
channels can keep the information of image, so the feature
map needs to be ascend dimension within the bottleneck
layer. After ascending dimension, dimension information is
more abundant. At the same time, descending the dimen-
sion after the activation layer, theoretically can keep all
the necessary information not lost. Inverted residual blocks
are improved on the basis of traditional residual blocks,
as shown in Figure 6. First, use pointwise convolution to
ascend dimension, and then use the 3 × 3 convolution
and activation functions to filter the features. To obtain
the output of the layer feature, the feature was descended
the dimension using the 1 × 1 convolution and activation
function. Finally, the feature map of output adds up to the
low-dimensional features of the input.

3.3 Convolution block attention module

In order to select the information that is more critical to
the current task objective from the many feature infor-
mation and improve the efficiency and accuracy of image
information processing, this paper introduces the attention
mechanism in deep learning. The attention mechanism in
deep learning is essentially similar to the selective visu-

Fig. 6. Inverted residual block

al attention mechanism of humans. It can quickly scan
images to get the object areas. Then use more attention
resources to this area, and quickly get high-value infor-
mation from a large amount of information, suppressing
other useless information. CBAM is a simple and effective
attention module for convolutional neural networks. For
the feature map generated by the convolutional neural
network, The attention map of feature map is calculated
by CBAM from channel and spatial. Then multiplies the
attention map with the input feature map for adaptive
learning of the feature. CBAM is more effective than the
attention mechanism of SeNet (Hu et al., 2017) which only
focus on channel. As a lightweight module, CBAM can be
integrated into the convolution layer of object detection
network for training.

For an input feature map: F ∈ RC∗H∗W , where C, H
and W are the channels, height, and width of the feature
maps, respectively., CBAM gets a 1-dimensional channel
attention feature map MC ∈ RC∗H∗W and 2-dimensional
spatial attention feature map MS ∈ R1∗H∗W . The overall
attention process can be summarized as:

F
′

= MC(F )⊗ F (2)

F
′′

= MS(F
′
)⊗ F

′
(3)

where ⊗ is element-by-element multiplication. F
′

is cal-
culated by multiply the channel attention with the input
feature map. F

′′
is obtained by multiply spatial attention

map of F
′

with the channel attention map. The calculation
process of the channel attention module and the spatial
attention module is as follows:

Channel attention module focuses on meaningful features
in input images. As shown in Figure 7, in order to
efficiently calculate channel attention, CBAM compresses
feature maps on spatial dimensions using max-pooling
(MaxPool) and average-pooling (AvgPool), generating two
different spatial context descriptors: F c

max and F c
avg. Using

a shared network of multi-layer perceptron (MLP) to
calculate two descriptors to get channel attention features:
MC ∈ RC∗1∗1. The calculation is as follows:

MC(F ) = σ(MLP (AvgPool(F )) + (4)

MLP (MaxPool(F )))

MC(F ) = σ(W1(W0(F c
avg)) +W1(W0(F c

max))) (5)

where W0 ∈ RC/r∗C , W1 ∈ RC∗C/r, and Relu was used as
an activation function after W0.

The spatial attention module focuses on location informa-
tion. As shown in Figure 8, two different spatial context de-
scriptors are firstly used on the dimensions of the channel
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Fig. 7. Channel Attention Module

Fig. 8. Spatial Attention Module

Fig. 9. Partial sample image of bridge crack data set

using max-pooling and average-pooling F s
max ∈ R1∗H∗W ,

F s
avg ∈ R1∗H∗W . Then the two feature descriptors are used

to merge and convolution is used to generate spatial atten-
tion feature map MS(F ) ∈ RH∗W . The channel attention
is computed as:

MS(F ) = σ(f7∗7([AvgPool(F );MaxPool(F )])) (6)

MS(F ) = σ(f7∗7([FS
avg;FS

max])) (7)

where σ denotes the sigmoid function, r is the reduction
ratio and f7×7 represents a convolution operation with the
filter size of 7 × 7.

4. EXPERIMENT AND RESULT ANALYSIS

This paper collected 1500 pictures of bridge surface cracks
and the resolution is 1024 × 1024. Used the LabelImg to
label the location of all crack in the image and generate
xml file corresponding to the file name of image. The file
records the location of all crack in the image. In order
to enhance the reliability of the data, resize all images at
a resolution of 416 × 416. The dataset is divided into 3
groups, 960 for training data, 240 for valuing data and 300
for testing data. To increase data diversity, the random
flips, translation, blurs, and changes brightness, contrast,
and exposure are used to the training data. Some images
of the dataset are shown in Figure 9.

The experimental environment for this paper is: Windows
10 operating system, CPU for Intel Core i5-8500, Python
3.6, deep learning framework for Keras, and cuda10.0 for
the accelerated computing, Intel Core i5-8500 processor,
NVIDIA GeForce GTX 2070 with 8GB memory, 16GB
DDR4 RAM.

4.1 Network training

The k-means algorithm is used to cluster the dataset to
get the bounding box priors and uses the intersection over
union (IOU) instead of Euclidean distance as the standard
for clustering:

d(box, center) = 1− IOU(box, center) (8)

The bounding box priors are (145, 437), (155, 434), (168,
444), (213, 212), (218, 223), (228, 231), (230, 219), (240,
238), (458, 150). In this paper, two prediction box scales of
the network are designed, each of which is assigned three
bounding box priors for training.

Training in the improved YOLO v3 and YOLO v3, the
initial learning rate of the weight is set to 0.001. The
loss of the model is monitored by TheuseLROnPlateau, a
callback function of TensorFlow. If the valuing data does
not decline for 10 epoch, the model automatically reduces
the learning rate to one-tenth. Because the structure of
deep learning network is complex, it is easy over-fitting
when the accuracy of the training data is improved and the
accuracy of the valuing data is reduced during training.
In order to obtain the best generalization ability, the
early stop method is introduced during training. When
the accuracy of the model on the valuing data begins to
drop, stop training to avoid over-fitting.

4.2 Testing and analysis

300 bridge crack images were used to test the performance
of the algorithm in this paper. Do the same test on YOLO
v3 and improved YOLO v3. The results are shown in Table
1. The IOU threshold is the limit of IOU in prediction
box, that 0.1 is no more than 10%. The network weight is
the size of the parameters after the network is trained.
Precision is the number of correctly predicted divided
by all object detected. Recall is the number of correctly
predicted divided by the objects number of testing data.
Detection speed is the number of detected images in one
second.

Table 1 shows that under the same test conditions, the
Precision of the improved YOLO v3 was 89.16%, 3.55%
lower than YOLO v3. The Recall is 91.16%, 2.25% higher
than YOLO v3. The detection speed is 20.56 fps, 6.04 fps
higher than YOLO v3. However, compared with the 235M
weight of YOLO v3, the improved network weight is only
11.1M. It can reduce the convergence time of the network.
Four experiment results of the proposed algorithm are
shown in Figure 10. The part of the red box in the figure
represents the area of crack. According to the figure, all
the cracks in the picture can be detected accurately by the
proposed algorithm.

5. CONCLUSION

In this paper, the improved YOLO v3 algorithm is pro-
posed for the bridge surface crack detection. The number
of convolution layers of feature extraction network is 16
layers, and the number of output prediction box is 6 on
two scales. Such design can reduces network complexity
for crack detection. Using depthwise separable convolution
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Table 1. Comparison of detection efficiency of the standard YOLO v3 and improved YOLO v3

Network IOU threshold Weights of network Precision Recall Detection speed

Standard YOLO v3 0.1 235M 92.17% 88.91% 14.52 FPS
Improved YOLO v3 0.1 11.1M 89.16% 91.16% 20.56 FPS

Fig. 10. Four experiment results of the proposed algorithm

instead of standard convolution can reduce the network
parameters and obtain the lightweight network. Moreover,
the inverted residual block was used to improve the predic-
tion accuracy of the network. Finally, the CBAM attention
mechanism is introduced to improve the efficiency and
accuracy of crack detection. Experiment results show that
the improved YOLO v3 has achieved excellent detection
results in the bridge surface crack, and accuracy and de-
tection speed are better than YOLO v3.

In the future work, we’ll execute the network on unmanned
aerial vehicle (UAV). Cracks in bridges can be detected
through bridge images acquired by UAV. The main diffi-
culty is how to run a deep neural network by the embedded
device without GPU. Thus, the network structure needs
to be further improved.
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