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Abstract: There is an increasing recognition of the critical importance of charging for the safety
and life of lithium-ion batteries. This paper proposes a computationally efficient optimal control
approach for the problem of real-time charging control. By incorporating specific constraints
that must be satisfied during charging, a health-aware operation is promoted. To determine
the optimal charging current in the given setup, a recently proposed iterative framework for
solving constrained optimal control problems is leveraged. It is found that the resulting optimal
charging currents can be expressed in terms of a piecewise-affine time-invariant state feedback
law, which results in a high computational efficiency for the optimal control solution.
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1. INTRODUCTION

Lithium-ion batteries represent one of the most impor-
tant energy storage technologies, with a dominant role
in consumer electronics and ever-increasing adoption in
the sectors of electrified transportation, smart grid, and
energy-efficient buildings. While their popularity is due to
their high energy/power density, long cycle life and low
self-discharge rate, they are also known to be vulnerable
to overcharge, overdischarge and abusive use. This necessi-
tates battery management systems (BMSs) that monitor
and control the operation of battery systems to ensure
safety and performance. A central function of BMSs is
charging control, which regulates the charging process to
reduce side reactions and improve battery longevity.

Current popular industrial practices, e.g., constant-current
/ constant-voltage (CC/CV) charging, usually rely on em-
pirical knowledge or coarse-grained understanding about
a battery, and are thus inadequate in reducing damaging
effects. Hence, the past years have witnessed an exponen-
tially growing interest in model-based charging control,
which focuses on exploiting a physics-based characteriza-
tion of a battery and its health conditions to determine
the best way to do charging. Nonlinear optimal control
has provided a significant means to achieve this end. This
approach has found a great use in optimizing current
profiles for minimum-time charging, while satisfying some
constraints on a battery’s internal states (Klein et al.,
2011), bounding the mechanical stresses inside the battery
within a limit (Suthar et al., 2014), or minimizing charging
loss (Hu et al., 2013). Recent studies have further revealed
its promise in addressing more factors involved in charging,
e.g., electro-thermal-aging effects (Perez et al., 2017; Liu
et al., 2018), user needs (Fang et al., 2017; Ouyang et al.,
2018), and cell equalization (Ouyang et al., 2018).
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Model predictive control (MPC) is another methodology,
which allows predictive optimization of charging over a
future time horizon in a closed control loop. The study
in (Klein et al., 2011) proposes to use nonlinear MPC
(NMPC) to approximate the optimal charging solution
over the full horizon. However, NMPC requires heavy
online computation, which can be unaffordable for BMSs.
This has motivated a search for computationally efficient
NMPC-based charging control methods. One way toward
this aim is to use intrinsic properties of a battery model,
e.g., the differential flatness of the lithium-ion diffusion
as in (Liu et al., 2016, 2017), to reduce the computa-
tional cost. One can also introduce model simplification
to streamline optimization by using linear or successively
linearized models (Xavier and Trimboli, 2015; Zou et al.,
2018), or simple data-driven models (Torchio et al., 2015).

In this paper, we propose a novel approach to health-aware
charging control via iterative nonlinear optimal control
syntheses, cf. (Zeng, 2019a,b) and (Vu and Zeng, 2020).
We consider a recently developed equivalent circuit model
(ECM) to characterize a battery’s dynamics, namely, the
nonlinear double capacitor (NDC) model. The NDC model
differs from other popular ECMs, e.g., the Thevenin’s
model, with its capability of simulating the charge dif-
fusion inside an electrode. It thus allows us to perform
charging control with an awareness of reducing diffusion-
related health degradation. Using the NDC model, we
formulate an optimal charging control problem subject to
health-related constraints. The computationally efficient
iterative scheme proposed by the authors in (Vu and Zeng,
2020) is then adapted to the present setup to synthesize the
control input for the optimal charging control problem that
is optimal with respect to the actual full time horizon. Due
to the computational efficiency of the iterative scheme, we
can not only readily compute a solution for one particular
initial condition but also easily apply the same procedure
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to a dense grid of several different initial conditions. In
doing so, it is found that the optimal solution for different
initial states can all be summarized in terms of one un-
derlying rather simple piecewise-affine time-invariant state
feedback law, which is particularly convenient for practical
implementations.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the control theoretic formulation of the
optimal charging control problem. Section 3 illustrates the
adoption of the aforementioned iterative optimal control
synthesis to the considered problem. A detailed case study
for the establishment of the global piecewise-affine time-
invariant state feedback law is demonstrated in Section 4.
Finally, Section 5 gathers concluding remarks.

2. THE HEALTH-CONSCIOUS BATTERY
CHARGING CONTROL PROBLEM

The battery charging control problem consists of raising
the battery’s state of charge (SoC) to a desirable level,
r̄, while satisfying some health-related constraints. The
following subsections will describe the setup in more detail.

2.1 Model Description

We consider the NDC model for batteries, which was
recently proposed in (Tian et al., 2020) and is shown
in Fig. 1. This model includes two parallel RC circuits
for charge storage, Rb-Cb and Rs-Cs with Rb > Rs and
Cb � Cs, which are analogous to an electrode’s bulk
inner part and surface region, respectively. In addition,
the model characterizes the terminal voltage as dependent
on the voltage source U = h(Vs), where Vs is the voltage
across Cs, as well as the internal resistance R0. With this
structure, the NDC model can not only simulate the charge
diffusion inside an electrode but also capture the nonlinear
voltage behavior. This makes it more accurate than other
ECMs while still maintaining a simple structure.

The NDC model’s dynamics is governed by the following
state-space equations:V̇b(t)

V̇s(t)

 = Ã

Vb(t)
Vs(t)

+ B̃I(t), (1a)

V (t) = h(Vs(t)) +R0(Vs(t))I(t), (1b)

where Vb(t) is the voltage across Cb at time t, and I(t) is
the applied current at time t with I(t) > 0 for charging

and I(t) < 0 for discharging, and Ã and B̃ are given by

𝑅0

𝑅𝑠𝑅𝑏

𝐶𝑠𝐶𝑏

𝐼

𝑈 = ℎ 𝑉𝑠

𝐼

𝑉𝑠
𝑉

Fig. 1. The nonlinear double-capacitor model (NDC).

Ã =

 −1
Cb(Rb+Rs)

1
Cb(Rb+Rs)

1
Cs(Rb+Rs)

−1
Cs(Rb+Rs)

 , B̃ =

 Rs

Cb(Rb+Rs)

Rb

Cs(Rb+Rs)

 .
Without loss of generality, we usually limit Vb(t) and
Vs(t) between 0 and 1 V. That is, the battery is fully
depleted when Vb(t) = Vs(t) = 0, and fully charged when
Vb(t) = Vs(t) = 1.

In addition, h(Vs(t)) can be parameterized as a fifth-order
polynomial to offer sufficient accuracy:

h(Vs(t)) =

5∑
i=0

αiV
i
s (t),

where αi for i = 0, 1, . . . , 5 are coefficients whose values
are empirically selected and listed in Table 1. Finally, R0

is also assumed to monotonically increase with respect to
Vs. Such a dependence is described as

R0(Vs(t)) = β1 + β2e
−β3(1−Vs(t)),

where βi ≥ 0 for i = 1, 2, 3.

2.2 Constraints

To ensure the health-conscious and safe charging, some
constraints must be enforced to avoid any abusive charg-
ing. A summary of them is as follows.

First, the SoC must be constrained to prevent any poten-
tial overcharging:

SoCmin ≤ SoC(t) ≤ SoCmax,

where

SoC(t) =
CbVb(t) + CsVs(t)

Cb + Cs
× 100%.

During charging operations, Vb(t), Vs(t), and the charging
current I(t) should each be kept within an allowable range.
Hence,

Vb,min ≤ Vb(t) ≤ Vb,max,

Vs,min ≤ Vs(t) ≤ Vs,max,

Imin ≤ I(t) ≤ Imax.

Besides, we introduce an additional constraint associated
with the relationship between Vs(t), Vb(t) and SoC(t), i.e.,

Vs(t)− Vb(t) ≤ γ1SoC(t) + γ2,

where γ1 ≤ 0 and γ2 ≤ 0 are two coefficients. Here,
Vs(t) − Vb(t) represents an analogy to the lithium-ion
concentration gradient (Tian et al., 2020), which, if too
large, can cause many undesirable side effects and thus
needs to be restricted.

Finally, the terminal voltage must also be subject to
limitations at all time to circumvent safety issues, which
imposes the following constraints

Vmin ≤ V (t) ≤ Vmax.

The above descriptions outline the optimal charging con-
trol problem which seeks to increase the SoC to a target
under a set of explicit constraints ensuring battery health.
In the next section, we will adopt a computational iterative
optimal control method into this context.
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Table 1. Battery model parameters.

Variable Cb Cs Rb Rs α0 α1 α2 α3 α4 α5 β1 β2 β3

Value 9913 887 0.025 0 3.2 3.041 - 11.475 24.457 -23.536 8.513 0.09 0.35 10

3. ITERATIVE OPTIMAL CONTROL SYNTHESIS
FOR BATTERY CHARGING

In this section, we consider the problem of synthesizing
optimal control inputs for the practical solution of the
health-aware battery charging problem. With the defini-
tion of states and inputs

x(t) :=
[
Vb(t) Vs(t)

]>
and u(t) := I(t),

along with the zero-order hold assumption that

u(t) ≡ uk, t ∈ [k∆T, (k + 1)∆T ],

for some uk ∈ R some sampling period ∆T > 0, we obtain
the exact discretization of the NDC model (1a) as

xk+1 = Axk +Buk, (2)

where the matrices are given by the well-known equations

A = eÃ∆T and B =

∫ ∆T

0

eÃ(∆T−τ)B̃dτ.

For the later numerical simulations, the integral for B is
evaluated numerically using the trapezoidal rule.

Given an initial state x0 ∈ Rn and a nominal control input
u0, u1, . . . , uN−1, by iterating (2), we have
x1

...

xN


︸ ︷︷ ︸
=: XU

=


Ax0

...

ANx0

+


B 0 · · · 0

AB B
...

...
... 0

ANB AN−1B · · · B


︸ ︷︷ ︸

=: H


u0

...

uN−1


︸ ︷︷ ︸

=: U

.

Then, for any perturbation of the nominal control input

∆U :=


δu0

...

δuN−1

 ,
the resulting state trajectory of (2) due to the control
input U + ∆U can be conveniently described as

XU+∆U = XU +H∆U.

Moreover, the amount of changes of the system trajectory
at each time step due to the control perturbation ∆U can
also be directly quantified as follows

∆X :=


δx1

...

δxN

 :=


H1∆U

...

HN∆U

 = H∆U,

where Hk is the k-th horizontal block of the H matrix, i.e.,

Hk =
[
AkB · · · B 0 · · · 0

]
.

To begin the establishment for all the constraints of the
problem formulation, we first rewrite the constraint on
SoC as

SoCmin ≤
[

Cb
Cb + Cs

Cs
Cb + Cs

]
︸ ︷︷ ︸

=: MSoC

[
Vb(k∆T )

Vs(k∆T )

]
︸ ︷︷ ︸

=xk

≤ SoCmax.

The upper bound and lower bound of Vb(k∆T ), Vs(k∆T ),
and the charging current can be presented as follows

−1 0

0 −1

1 0

0 1


︸ ︷︷ ︸
=: Mstates

[
Vb(k∆T )

Vs(k∆T )

]
︸ ︷︷ ︸

xk

≤


−Vb,min

−Vs,min

Vb,max

Vs,max


︸ ︷︷ ︸
=: vbound

,

Imin ≤ uk ≤ Imax.

The relationship between Vs(k∆T ), Vb(k∆T ) and the
SoC(k∆T ) is then characterized as follows([

−1 1
]
− γ1MSoC

)
︸ ︷︷ ︸

Mdiffer

[
Vb(k∆T )

Vs(k∆T )

]
︸ ︷︷ ︸

xk

≤ γ2.

Finally, we consider the nonlinear constraints on the
terminal voltage defined in (1b) at each time step, i.e.,

Vmin ≤ V (xk, uk) ≤ Vmax.

In this paper, we introduce a simple yet effective technique
to handle this rather general nonlinear constraint of the
form g(x, u) ≤ 0 by rolling out the overall solution of
the nonlinearly constrained optimal control problem as a
sequence of linearly constrained quadratic programs.

More specifically, the idea of this quite general principle
of iterative optimal control synthesis is to iteratively
compute the solution of the optimal control problem as
follows. We start with a predetermined input U , which
results in a state-evolution given x0, x1, x2, . . . , xN . This
nominal input is then incrementally altered so as to
yield an improvement in the solution of the nonlinearly
constrained optimal control problem at the next stage.
The incremental nature of these iterations allows us to
effectively relax the nonlinear constraint into a linear
constraint by the consideration of the linear approximation
of V (xk, uk) at (xk, uk), i.e.,

V (xk + δxk, uk + δuk) ≈ V (xk, uk) +
[
∂V
∂x

∂V
∂u

] [δxk
δuk

]
.

As a result, Vmin ≤ VU+∆U (xk, uk) ≤ Vmax becomes

Vmin ≤ V (xk, uk) +
[
∂V
∂x

∂V
∂u

]
(xk,uk)︸ ︷︷ ︸

=: JV(xk, uk)

[
δxk

δuk

]
≤ Vmax.
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The achieve the aforementioned incremental improvement,
at each stage of the iterative process, we solve the following
linearly constrained quadratic optimization problem

minimize
∆U

q‖diag(MSoC)(X +H∆U)− r̄‖2

+ r‖U + ∆U‖2 + γ‖∆U‖2,

subject to SoCmin ≤MSoC(xk +Hk∆U) ≤ SoCmax,

Mstates(xk +Hk∆U) ≤ vbound, (4)

Mdiffer(xk +Hk∆U) ≤ γ2,

Imin ≤ uk + δuk ≤ Imax,

Vmin ≤ V (xk, uk) + JV(xk, uk)

[
δxk

δuk

]
≤ Vmax,

where diag(MSoC) is a 2N × 2N block diagonal matrix
whose diagonal elements are MSoC. The two parameters
q and r represent the (tunable) balance ratio between the
charging time and the current’s magnitude, and γ is a
regularization parameter that enforces a penalty on the
magnitude of ∆U in order to ensure that the aforemen-
tioned incremental change of the system trajectory at each
trajectory iteration is valid.

Notably, the formulation (4) is a linearly constrained
quadratic program, which can be solved very effectively.
Also, to achieve the most efficiency and effectiveness of
the iterative optimal control synthesis, one should only
apply a small initial control input U and let the system
naturally follow its own dynamics to achieve the desired
cost functional.

In summary, the trajectory-based iterative procedure for
synthesizing the optimal control input for the health-
conscious battery control problem is as follows.

Algorithm 1 Charging under health-related constraints

Require: Desired terminal SoC, and an initial input U .
1: Apply the input U to the system and store the resulting
state trajectory x0, x1, . . . , xN .
2: Compute H.
3: Solve for ∆U∗ of the optimization problem (4).
4: Update the control input via U = U + ∆U∗.
5: Repeat until improvement in cost is too incremental.

4. A DETAILED CASE STUDY

In this section, we present an elaborate case study to
validate the proposed optimal control method as well as to
investigate in more detail the resulting trade-off between
the energy consumption quantified by ‖U‖ and the charg-
ing time (in minutes), as a consequence of different balance
ratios of the weights q and r.

Let us consider a 3 Ah lithium-ion battery cell governed
by the NDC model with the parameters shown in Table 1.
The charging objective is to raise the SoC from 20% to
90% under the following constraints:

0 ≤ SoC ≤ 1, 0 ≤ Vb ≤ 0.95, 0 ≤ Vs ≤ 0.95,

Vs − Vb ≤ −0.04SoC + 0.08,

0 ≤ I ≤ 3, 0 ≤ V ≤ 4.2.
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Fig. 2. Simulation results for the case study.

To this end, with the sampling period of ∆T = 60 s for
the model discretization, we can directly apply the overall
iterative scheme to synthesize the optimal control input for
the lithium-ion battery charging problem whose solution
is presented in Fig. 2.

Fig. 2a demonstrates the resultant SoC profile which
increases smoothly from 20% to 90% as desired. Its rate
of increase gradually declines to prevent any overshooting,
which is reflected by the decreasing charging current as
shown in Fig. 2b.
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Note that the current profile particularly includes four
distinct stages. The first stage is brief and shows constant-
current charging. Following it are the second to fourth
stages. For each of them, the current reduces almost
linearly. A quick drop is observed in the fourth stage when
the SoC is about to reach 90%.

Both Figs. 2a-2b indicate a slowing pace of charging due to
the imposed constraints, which provides a stronger health
protection for a lithium-ion battery as the SoC grows.
However, because of the accuracy and efficiency of the
proposed method, the entire charging process only takes
place in less than one hour. This beneficial situation is
due to the control law achieving the optimal charging
efficiency and constraint satisfaction simultaneously by
construction.

Finally, Fig. 2c displays the terminal voltage whose value
drops at the end due to the RC transients after the
charging has finished.

4.1 Analyzing the choice of weights q and r

Our method to quickly synthesize the optimal solution also
allows us to efficiently investigate the trade-off between the
energy consumption and the charging time. To this end,
we fix q = 0.5 while slowly varying the value of r from
10−6 to 10−2. As a result, a small gain in energy saving
comes with a great cost of a dramatic increase in battery
charging duration, as illustrated in Fig. 3. Therefore, the
tuning of the balance ratio between q and r does not yield
a favorable result, so it is reasonable to only focus on
tracking the desired SoC (i.e. q = 0.5 and r = 0 whose
results are demonstrated in Fig. 2).

Due to the result of the above analysis, we choose to only
consider the desired SoC tracking problem (i.e. to raise the
SoC to 90% with q = 0.5 and r = 0), which leads us to an
ultimately elegant time-invariant state feedback solution
to the lithium-ion battery charging control problem, as
presented in the next subsection.

10-6 10-5 10-4 10-3 10-2
0
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4

6
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10
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14

16

0

20

40

60
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100

120

140

160

||U|| charging time

Coe�cient r

Fig. 3. Trade-off between energy of the optimal control
input and charging duration in minutes for varying
values of r (with q = 0.5 held fixed).

4.2 Uncovering an underlying time-invariant feedback law

Because the computational effort to synthesize the optimal
control signal for one initial condition is quite minimal
(around 10 seconds on a 2.2 GHz Intel Core i7 computer),
it becomes feasible to compute the optimal solution to the
battery control problem for a rather dense grid of different
initial conditions in the comparatively small state-space of
(Vb, Vs). The idea is to compute these solutions offline and
investigate the possibility of uncovering a time-invariant
state feedback law, which, when applied to the battery
system in closed-loop, results in the exact same input
as generated by the algorithm. In this way, would not
have to solve the optimal control problem online for some
given initial state, but its solution is implicitly encoded
in the time-invariant state feedback law which has been
computed offline. The ability to do so would be significant
in view of practical real-time solutions.

To further investigate this, we first apply a mesh (grid)
refinement to the relatively small state space of the system,
then, for each grid point, we compute the optimal control
signal to track the 90% SoC, yet only store the very
first control input which will later be used to compute
the general feedback law. These first control inputs can
then be plotted as a function of the states, as illustrated
in Fig. 4. The result reveals the presence of an underly-
ing time-invariant state feedback law k(Vb, Vs), for which
u(t) = k(Vb(t), Vs(t)) completely coincides with the input
computed by the algorithm.

I

Vb

Vs

Fig. 4. Given grid points (V
(i)
b , V

(i)
s ), we computed the

solution U (i) of the overall nonlinear optimal control

problem and plotted (V
(i)
b , V

(i)
s , U

(i)
1 ), where U

(i)
1 is

the first entry of U (i). It can be seen that these blue
points lie on a surface that can be described using
a piecewise affine function (with 7 distinct regions)
very well. Moreover, to reinforce the connection of this
feedback law u = k(Vb, Vs) to the overall problem, we
computed the solution U of the optimal battery con-
trol problem for a typical initial state (Vb(0), Vs(0))
and then plotted the trajectory (Vb(k), Vs(k), Uk) in
red. We observe that this trajectory is fully trapped
in the piecewise affine surface, which highlights the
validity of the time-invariant feedback law.
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Furthermore, the time-invariant state feedback law is ev-
idently a piecewise affine one with fairly few regions of
different affine functions. Besides the conceptual relevance
of this result, the approach also provides a promising op-
portunity to derive real-time optimal and highly practical
solutions to the lithium-ion battery control problem.

5. CONCLUSIONS

Lying in the center of the clean energy revolution, lithium-
ion batteries are rising as an indispensable means of energy
storage in many sectors. The charging process is known to
play a critical role in their health, longevity, and safety,
but how to carry it out remains an open challenge to
date. In this study, we considered a nonlinear double
capacitor model and formulated a nonlinearly constrained
optimal control problem that promotes health conscious-
ness charging. The resulting optimal control problems were
solved using a recently developed iterative optimal control
methodology. Moreover, we uncovered a piecewise-affine
time-invariant state feedback law that ties together the
solutions to the optimal charging control problem obtained
from different initial states. Its tremendous computational
efficiency makes it very desirable for real-time execution on
battery management systems. Simulation results showed
the effectiveness of our approach in ensuring the health-
aware fast charging. Our future work will include an ex-
perimental validation of this result.
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