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Abstract: Atmospheric pressure plasma jets (APPJs) are increasingly used for biomedical
applications. Reproducible and effective operation of APPJs hinges on controlling the nonlinear
effects of plasma on a target substrate in the face of intrinsic variabilities of the plasma as
well as exogenous disturbances. This paper presents a low-memory fast approximate nonlinear
model predictive control (NMPC) strategy for an APPJ with prototypical applications in
plasma medicine. The NMPC objective is to regulate the delivery of the cumulative thermal
effects of plasma to a substrate, while adhering to constraints pertaining to a patient’s safety
and comfort. Deep neural networks are used to approximate the implicit NMPC law with a
cheap-to-evaluate explicit control law that has low memory requirements. Robust constraint
satisfaction is guaranteed by projecting the output of the neural network onto a set that
ensures the state stays within an appropriately defined invariant set. Closed-loop simulations
and real-time control experiments indicate that the proposed approximate NMPC strategy
is effective in handling nonlinear control costs at fast sampling times, while guaranteeing
satisfaction of safety-critical system constraints. This work takes a crucial step toward fast
NMPC of safety-critical plasma applications using resource-limited embedded control hardware.

Keywords: Nonlinear model predictive control; Robust constraint satisfaction; Deep neural
networks; Cold atmospheric plasma

1. INTRODUCTION

Atmospheric pressure plasma jets (APPJs) are a class
of cold atmospheric plasma devices, which are increas-
ingly used in biomedical applications. APPJs are shown
to be effective in combating antibiotic-resistant bacteria,
shrinking cancerous tumors, and accelerating the healing
rate in chronic wounds (Fridman et al., 2008). These
therapeutic effects are postulated to arise due to ther-
mal, chemical, and electrical effects acting synergistically.
However, APPJs are challenging to control. In particular,
they exhibit distributed dynamics across multiple length
and time scales. Furthermore, they are multivariable and
highly nonlinear systems, which exhibit run-to-run vari-
ability even when the operating conditions are close to
identical (Shin and Raja, 2007). APPJs are also sensitive
to exogenous disturbances due to sharp spatial gradients
in temperature and concentration of reactive species.

The importance of predictive control for safe, reproducible,
and effective operation of APPJs has recently been shown
in Gidon et al. (2017) and Gidon et al. (2018). The
primary control objective in biomedical applications of
APPJs is to regulate the delivery of nonlinear plasma
effects (i.e., “plasma dose”) to a complex substrate, while
honoring safety-critical constraints during treatment to
avoid inflicting damage to patients (Gidon et al., 2019).

? This work was supported by the National Science Foundation
under Grant 1839527.

Nonetheless, an important computational challenge in
nonlinear model predictive control (NMPC) of APPJs
arises from fast system dynamics and, thus, the need for
fast sampling times for feedback control. Furthermore,
point-of-care applications of APPJs would require control
implementation on resource-limited (i.e., low power and
memory) embedded systems.

We aim to develop a fast and safe NMPC strategy for
APPJs to enable plasma dose delivery at sufficiently
fast sampling times, while guaranteeing satisfaction of
safety-critical constraints of the plasma in the presence
of uncertainty. Significant work has been done on the
development of fast MPC strategies, which can be broadly
categorized into the development of: (i) tailored solvers
and efficient optimization methods (Richter et al., 2009;
Wang and Boyd, 2009); and (ii) explicit MPC (Alessio and
Bemporad, 2009). Explicit MPC leverages the fact that the
solution to a MPC problem reduces to a multiparametric
problem that can be pre-computed offline, provided that
the control cost function is linear or quadratic, the model
is linear, and the constraints are affine (Bemporad et al.,
2002). However, explicit MPC based on nonlinear models
or cost functions remains a largely open area of research.
Furthermore, the number of polytopic regions in which the
optimal inputs lie grows exponentially with the number of
constraints, which can significantly increase the evaluation
time and memory requirements of explicit MPC in control
problems with long prediction horizons and/or high state
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dimensions. Considerable work has been done to address
these challenges by simplifying the partitioning of the state
space (Summers et al., 2011; Jones and Morari, 2010).

Alternatively, there has been increasing interest in so-
called approximate MPC strategies, which seek to learn
a cheap-to-evaluate explicit expression for the controller
using data generated from offline solution of an MPC
problem. A variety of function approximators have been
proposed to derive such control laws, including polyno-
mials (Chakrabarty et al., 2016), radial basis functions
(Csekő et al., 2015), and artificial neural networks (Parisini
and Zoppoli, 1995; Karg and Lucia, 2018; Chen et al.,
2018). Even though approximate MPC strategies have
been shown to provide good closed-loop performance in
simulations, they do not guarantee important theoretical
properties by design, such as stability, constraint satisfac-
tion, and/or recursive feasibility.

This paper presents a low-memory, approximate NMPC
strategy for an APPJ with prototypical applications in
plasma medicine. The control objective is to regulate the
delivery of thermal nonlinear effects of plasma to a target
substrate, while ensuring safety-critical constraints are
satisfied in the presence of system uncertainty (i.e., plant-
model mismatch and exogenous disturbances). Deep neu-
ral networks (DNNs) are used to approximate the NMPC
law, since DNNs are particularly effective in capturing
the piecewise nature of MPC laws with a limited memory
footprint (Karg and Lucia, 2018). To ensure input and
state constraints are satisfied during closed-loop operation,
the control inputs computed by the DNN are projected
onto a robust admissible input (RAI) set (Paulson and
Mesbah, 2020). The RAI set not only guarantees that in-
put constraints are satisfied, but also that the system state
remains within a robust invariant subset of the output
constraints. Moreover, we propose to obtain a fully offline
solution to the projection problem using multiparametric
programming, so that online optimization is completely
avoided in our approach. The efficacy of the projected neu-
ral network-based approximate NMPC strategy is demon-
strated in both closed-loop simulations and real-time con-
trol experiments. To the best of our knowledge, this work
represents the first real-time experimental demonstration
of a safe neural network-based NMPC strategy.

2. THERMAL DOSE DELIVERY USING APPJS

2.1 Atmospheric Pressure Plasma Jet

We investigate predictive control of a kHz-excited at-
mospheric pressure plasma jet (APPJ) in Helium under
safety-critical constraints. An illustration of the experi-
mental setup is shown in Fig. 1. The manipulated variables
are the Helium flowrate (q) and the power applied to the
jet (P ), while the measured outputs are the substrate
temperature (T ) and the total optical emission intensity
(I) of the plasma. The substrate temperature is measured
using an infrared camera (FIR Lepton) and the emission
intensity is measured with a spectrometer (OceanOptics
USB2000+, 0.375 nm resolution). Data acquisition and
communication between the APPJ, custom-built software,
and an Arduino UNO microcontroller is coordinated in
Python. A detailed description of the testbed in Fig. 1 is
given in Gidon et al. (2018).

Fig. 1. Schematic of the APPJ testbed. The red dashed
lines indicate measured outputs, whereas the green
dashed lines indicate manipulated inputs.

First-principles models of plasmas are generally not
amenable to real-time control due to the distributed nature
of the plasma and plasma-substrate interaction dynamics
that span multiple length and times scales. Here, we adopt
the subspace identification method to construct a data-
driven model of the APPJ operation within a desired
operating window (Gidon et al., 2018). The resulting state-
space model takes the form

xk+1 = Axk +Buk + wk, (1a)

yk = Cxk +Duk, (1b)

with states xk ∈ Rnx (nx = 2), inputs uk = [q P ]> ∈ R2,
outputs yk = [T I]> ∈ R2, and additive disturbance
wk ∈ W ⊆ Rnx . The disturbance w is meant to describe
the plant-model mismatch and exogenous disturbances
acting on the APPJ. The set W := {wk | |wk|∞ ≤ wb},
where wb is a fixed uncertainty bound, is estimated by
considering the maximum difference between the nominal
model predictions (with wk = 0) and the respective
outputs in an “unseen” dataset, i.e., a dataset that has
not been used in model identification.

2.2 Control Problem Formulation

Safe, reproducible, and therapeutically effective opera-
tion of APPJs in biomedical applications is particularly
challenging due to the intrinsically variable and nonlin-
ear dynamics of the plasma interactions with a target
substrate (Gidon et al., 2017). Furthermore, APPJs are
very sensitive to exogenous disturbances such as ambient
temperature and tip-to-surface separation distance. In ad-
dition, there are safety-critical constraints that must be
adhered to at all times during a plasma treatment; such as
constraints on the maximum substrate temperature that,
if exceeded, may cause various undesired effects, ranging
from patient discomfort to irreversible cell damage.

Here, the control objective is to deliver a specified thermal
dose to a target substrate at the end of a treatment time.
In plasma medicine, shorter treatment times are highly
desired. We use the thermal dose metric of Cumulative
Equivalent Minutes (CEM) at a reference temperature
of 43◦C to quantify the nonlinear thermal effects of the
plasma on a substrate, which is informed by hyperthermia
applications (Sapareto and Dewey, 1984). The nonlinear
CEMt0:tf dose metric is defined as
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CEMt0:tf =

∫ tf

t0

K(43−T (t))dt, (2)

where K is a temperature-dependent constant that de-
scribes the response of the substrate to thermal stress,
and t0 and tf are the initial and final treatment times,
respectively. In practice, both the reference temperature
and K can be chosen based on the substrate properties.
In this work, we define K as

K = 0.5, if T ≥ 35◦C, K = 0, otherwise.

At the same time, the constraints on the plasma outputs
have to be robustly satisfied in the presence of system
uncertainties and intrinsic variabilities, which is essential
to ensuring the safety and comfort of a patient. The input
and output constraints are defined as

U = {[q P ]> | 0.8 slm ≤ q ≤ 10 slm, 0.5 W ≤ P ≤ 5 W}, (3)

Y = {[T I]> | 33◦C ≤ T ≤ 41◦C, 0 a.u. ≤ I ≤ 250 a.u.}.

At each sampling time k, we use the nominal model of (1)
to formulate the following optimal control problem (OCP)

min
uk

VN (uk;xk, pk) (4a)

s.t. x0|k = xk, (4b)

xj+1|k = Axj|k +Buj|k, j ∈ {0, · · · , N − 1}, (4c)

yj|k = Cxj|k +Duj|k, j ∈ {0, · · · , N}, (4d)

yj|k ∈ Y, j ∈ {1, · · · , N}, (4e)

uj|k ∈ U, j ∈ {0, · · · , N − 1}, (4f)

where uk := [u>0|k . . . u
>
N−1|k]> is the vector of decision

variables, and VN (uk;xk, pk) is a nonlinear thermal dose
delivery cost given at each time k given by

VN (uk;xk, pk) = (pk + CEMk:k+N − CEMsp)
2
, (5)

where CEMsp is the CEM setpoint at the end of the
treatment time, pk = CEM0:k is the estimated CEM
delivered up until the current time that acts as a parameter
in our formulation, and the discretized CEM is defined by

CEMk:k+N =

N∑
j=1

K(43−Tj|k)∆t.

The optimal solution to the OCP (4) is denoted by
u?k(xk, pk), implemented in a receding-horizon fashion as

κmpc(xk, pk) = u?0|k(xk, pk), (6)

where κmpc denotes the NMPC control law.

The control law (6) is implicitly defined, meaning that the
OCP (4) must be solved in real-time given the currently
observed xk and pk. The fast dynamics of APPJs necessi-
tate solving the OCP (4) on fast timescales (on the order
of milliseconds). On the other hand, due to the nonlinear
control cost (5), we cannot derive an offline solution to (4)
using multiparametric programming as in explicit MPC.
Thus, we use deep neural networks (DNNs) to learn an ex-
plicit control law offline with limited online evaluation cost
and low-memory footprint for implementation on resource-
limited embedded systems. Given the safety-critical nature
of this application, we propose to project the output of the
learned explicit controller onto a “safe” input set. This en-
sures that the explicit controller is recursively feasible and
robustly satisfies constraints during closed-loop operation.
Note that the proposed approach is independent of the
structure of system model (1) or the MPC approach chosen

to formulate (4), as shown in Paulson and Mesbah (2020).
The projected neural network-based NMPC strategy is
presented in the next section.

3. APPROXIMATE NMPC WITH GUARANTEED
CONSTRAINT SATISFACTION

We first present the deep learning approximation to the
NMPC problem (4), which yields an explicit representa-
tion of the implicit feedback control law (6). We then
discuss how recursive feasibility and robust constraint
satisfaction of the resulting explicit control law can be
ensured via projection of its outputs onto an appropriately
designed invariant set.

3.1 Deep Learning-based Approximate NMPC

Several works have studied the functional approximation
of MPC laws (Chakrabarty et al., 2016; Karg and Lucia,
2018; Chen et al., 2018). The idea dates back to the work
of Parisini and Zoppoli (1995), in which they proposed to
use shallow neural networks (with only one hidden layer)
to approximate a NMPC law. This approximation relied on
the universal function approximation theory that indicates
that a neural network with only one layer can approximate
any function to any desired accuracy level under mild
conditions (Barron, 1993).

We select DNNs as function approximators in this work
for two main reasons. First, recent theoretical results sug-
gest that neural networks with several hidden layers have
superior representation power when compared to classi-
cal shallow neural networks. Second, promising results
for approximating MPC laws with DNNs have recently
been demonstrated in, e.g., Karg and Lucia (2018); Chen
et al. (2018) among others. The NMPC problem (4) is
a parametric optimization problem that depends on the
current state and current CEM estimate. To construct
a DNN approximation, a finite number of Ns samples
of the state x(i) and current CEM p(i) are selected and
then Ns optimization problems are solved to obtain the
corresponding control inputs κmpc(x

(i), p(i)) as in (6).

A DNN with fully connected layers is defined as a function
of the form

N (x, p;λ) = αL+1 ◦ βL ◦ αL ◦ · · · ◦ β1 ◦ α1(s), (7)

where s = [x> p>]> ∈ Rnx+1 is the input to the network,
λ are the unknown network parameters, and L is the
number of hidden layers. Each hidden layer connects a
preceding affine function of the form αl(ξl−1) = Wlξl−1 +
bl, where ξl−1 ∈ RH is the output of the previous layer
with a nonlinear activation function βl, and H denotes
the number of nodes per hidden layer. Common choices for
the activation function are rectified linear units (ReLUs)
and the hyperbolic tangent function.The parameters of all
layers are grouped into λ = {λ1, . . . , λL+1} with λl =
{Wl, bl}, where Wl and bl are the weights and biases of the
affine functions αl(·), respectively. The best data-driven
approximation of (6) for fixed network dimensions L and
H can then be defined as the one that minimizes a given
loss function, such as the mean squared error (MSE), of a
given training dataset
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λ? = argmin
λ

1

Ns

Ns∑
i=1

(κmpc(x
(i), p(i))−N (x(i), p(i);λ))2.

The resulting approximate NMPC law is denoted by

κdnn(x, p) = N (x, p;λ?).

Remark 1. We define relevant operating ranges for the
state and parameter values in order to generate training
data. Whenever these ranges are not known from prior
knowledge, they can be estimated from closed-loop sim-
ulations, i.e., xk+1 = Axk + Bκmpc(xk, pk) + wk given a
collection of random disturbance values wk ∈W.

3.2 Projection-based Robust Constraint Satisfaction

The approximate NMPC law κdnn(x, p) in general differs
from the exact control law, i.e.,

‖κmpc(x, p)− κdnn(x, p)‖ ≤ εapprox, (8)

where εapprox is the error due to approximating (6) by a
DNN of fixed size that was trained on a finite dataset. If
we could identify tight upper bounds on εapprox, then we
could appropriately tighten constraints in (4) in a similar
fashion to tube MPC. Methods for deriving such “backoff”
parameters have been discussed in Paulson and Mesbah
(2018). To deal with the safety-critical nature of the
plasma application, we instead present a projection-based
method for guaranteed robust constraint satisfaction.

To this end, we leverage robust control invariant (RCI)
sets, which play a fundamental role in control. A set C ⊆ X
is a RCI set if and only if it satisfies the condition

∀x ∈ C ⇒ ∃u ∈ U : Ax+Bu+ w ∈ C, ∀w ∈W,

where X = {x ∈ Rnx | ∃u ∈ U : Cx+Du ∈ Y} is the set of
states that satisfy output constraints. Given an RCI set,
we can define the corresponding robust admissible input
(RAI) set for any state x ∈ C as

Cu(x) = {u ∈ U | Ax+Bu+ w ∈ C, ∀w ∈W}.
The set Cu(x) represents a “safe” input set in the sense
that any input u ∈ Cu(x) ensures the states will evolve
within C ⊆ X. That is, there always exists at least one
input that keeps the states within C, which by design
lies inside the state/output constraints. Therefore, we can
ensure constraints are robustly satisfied in closed-loop by
projecting κdnn(x, p) onto the RAI set

κpnn(x, p) = argmin
u∈Cu(x)

‖u− κdnn(x, p)‖2. (9)

We refer to the structure of the function κpnn(x, p) as a
projected neural network (PNN).

Theorem 1. For any x0 ∈ C, the uncertain closed-loop
system (1) with uk = κpnn(xk, pk) must satisfy constraints
yk ∈ Y and κpnn(xk, pk) ∈ U for all possible disturbances
wk ∈W, pk ∈ R, and future time steps k ∈ N0.

Proof. See Paulson and Mesbah (2020).

Note that a similar projection strategy has recently been
proposed in Karg and Lucia (2018) and Chen et al. (2018)
for deterministic linear systems, as well as in Bonzanini
et al. (2020) for the case of linear systems with state-
dependent uncertainty.

Remark 2. The maximal RCI set C∞ ⊆ X is the RCI set
that contains all other RCI sets in X and represents the
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Fig. 2. The proposed fast approximate NMPC strategy
with guaranteed closed-loop constraint satisfaction.

largest region of the state space for which an admissible
control law exists for all future time steps. Although any
RCI set can be used to define (9), it is advantageous
to select C∞ when computable in order to enable safe
operation in the largest possible state space region.

Remark 3. The PNN-based NMPC strategy has been ex-
tended to guarantee closed-loop input-to-state stability
through the use of polyhedral Lyapunov functions (Paul-
son and Mesbah, 2020).

3.3 Explicit Projected Neural Network Control Laws

For linear systems with polytopic constraints, the maximal
RCI set is a polytope, i.e., C∞ = {x ∈ Rn | Ccx ≤ dc}
that can be computed using standard toolboxes, such as
MPT3 (Herceg et al., 2013). Since in this work U and the
Pontryagin difference C∞	W are polytopes, the projection
problem (9) can be written as a standard quadratic pro-
gram (QP). Instead of solving this optimization problem
online, we leverage well-known multiparametric quadratic
programming (mpQP) methods to find an explicit solution
to the projection (9) fully offline. We note that both
x and κdnn(x, p) can be thought of as parameters that
are fed to the projection problem, denoted by θ(x, p) =
[x> κdnn(x, p)>]> for simplicity. As shown in Paulson and
Mesbah (2020), the solution to this mpQP is of the form

κpnn(x, p) = Kiθ(x, p) + hi, if Eiθ(x, p) ≤ ei,
where the polyhedral sets {θ | Eiθ ≤ ei}Ri=1 are a partition
of Θ = C∞ × Rnu composed of R critical regions. An
illustrative overview of the proposed PNN-based NMPC
strategy is shown in Fig. 2.

Remark 4. Even for linear systems, algorithms for RCI set
construction based on backward reachability are known to
be computationally demanding in high dimensions. When
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Fig. 3. (a) Mean squared error (MSE) and (b) memory
footprint of the DNN approximation of the NMPC
law as a function of number of nodes and layers.

this is the case, alternative methods can be employed. For
example, Mirko and Mazen (2017) constructed invariant
inner approximations to C∞ for systems with more than
10 states and inputs.

4. RESULTS AND DISCUSSION

This section first discusses the effect of the DNN hyper-
parameters on the approximation accuracy of the explicit
control law of the approximate NMPC strategy. This is
followed by demonstrating the performance of the pro-
posed control strategy using closed-loop simulations and
real-time control experiments on the APPJ in Fig. 1.

4.1 DNN Approximation of NMPC Law

To ensure adequate approximation of the NMPC law (6),
the impact of the two main hyperparameters of the DNN,
namely, the number of layers and number of nodes per
layer, was explored for a fixed number of training samples
Ns = 5000. Fig. 3(a) shows the average mean squared error
(MSE) as a function of the number of nodes for different
number of layers. Due to the stochasticity of the training
process, Fig. 3 is generated by repeating the training
5 times for each combination of hyperparameters and
averaging the results. Clearly, there is an initial decrease
in the MSE as the number of nodes is increased, which
eventually plateaus after 6 to 8 nodes. A similar trend is
observed when increasing the number of layers. The initial
increase from 1 to 3 layers results in a substantial reduction
in MSE, while increasing the number of layers further has
a negligible impact.

The choice of hyperparameters does not only affect the
accuracy of the approximation, but also the corresponding
memory footprint. Fig. 3(b) illustrates how the memory
footprint of the DNNs increases both with the number of
nodes and the number of layers. For example, if one wishes
to implement the approximate NMPC law using embedded
systems, then the memory footprint must be kept as low
as possible, which comes at the expense of higher MSE.
Here, we chose to construct the DNN approximation of
the NMPC law (6) by setting L = 5 and H = 6.
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Fig. 4. Closed-loop simulation profiles of (a) CEM dose
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4.2 Closed-Loop Simulations

We compare the performance of three controllers: NMPC
whereby the OCP (4) is solved online; DNN-based NMPC
whereby the OCP (4) is substituted with the DNN but
does not include the projection step; and PNN-based
NMPC whereby the projection step is included to guaran-
tee robust constraint satisfaction. The OCP (4) is solved
in MATLAB using the CasADi library (Andersson et al.,
2019) and the IPOPT algorithm (Wächter and Biegler,
2006). Closed-loop simulations are carried out by intro-
ducing a plant-model mismatch through the uncertainty
wk in (1). The value of wk is fixed to its upper (worst-
case) bound, which is chosen to be 1.25◦C based on the
data used for system identification. The prediction horizon
is fixed to N = 10, such that the NMPC can be deployed
online to achieve a fair comparison with the DNN-based
and PNN-based NMPC controllers.

The closed-loop simulation results for the three controllers
are shown in Fig. 4. Note that the plasma is shut off as
soon as the CEM setpoint is reached to avoid exceeding
the target thermal dose delivery and thus potentially
inflicting damage to the substrate. Since the CEM is a
cumulative thermal dose metric, it is not possible to reduce
it. Fig. 4 suggests that the NMPC and DNN-based NMPC
exhibit very similar control performance, indicating that
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the trained DNN-based control law provides an acceptable
approximation of the implicit NMPC law. However, the
temperature constraint is violated (see Fig. 4(b)). Such
a constraint violation can be unacceptable, particularly
in medical applications where cells can be sensitive to
temperature differences of just a few degrees. In contrast,
the PNN-based NMPC ensures constraint satisfaction by
modifying the inputs resulting from the DNN such that
they lie in a “safe” input set. As a result, the substrate
temperature is guaranteed to stay within its constraints,
as long as the uncertainty respects the assumed bounds. As
expected, guaranteed constraint satisfaction is achieved at
the expense of worse control performance in that the CEM
reaches its setpoint slower, prolonging the treatment time
by approximately 35%.

Fig. 5 shows the average online computation time of the
three controllers. The computation time of NMPC scales
with the prediction horizon, whereas it is almost inde-
pendent of the prediction horizon for the both approxi-
mate NMPC controllers. The DNN-based approximation
of the implicit NMPC law drastically reduces its online
computation time to approximately 0.5 ms, without even
optimizing our numerical implementations. The projection
step slightly increases the computation time of the PNN-
based NMPC to about 2 ms. The significant reduction in
computation times of the DNN- and PNN-based NMPC
relative to the NMPC will become even more pronounced
as these approximate NMPC controllers are implemented
on embedded systems in our future work.

4.3 Real-Time Control Experiments

Fig. 6 shows the results of the real-time control of the
APPJ using the DNN- and PNN-based NMPC. Experi-
ments were repeated three times to ensure reproducibility
and minimize the effects of intrinsic process noise; the
average closed-loop profiles are shown in Fig. 6. The PNN-
based NMPC exhibits loss of performance in thermal dose
delivery (i.e., in terms of prolonged treatment time) due to
the incorporation of the projection step (Fig. 6(a)). This is
expected since the substrate temperature is not allowed to
increase as quickly or to the same extent as in the DNN-
based NMPC case. Since the thermal dose CEM has an ex-
ponential dependence on temperature (see (2)), even slight
variations in temperature can cause drastic changes to the
CEM. This is further corroborated by Fig. 6(b), where
the blue temperature profile is consistently higher than
the red one, causing the CEM to increase more rapidly
and consequently reaching the setpoint faster. Neverthe-
less, the DNN-based NMPC suffers from the problem of
temperature constraint violation, which may compromise
the safety and comfort of a patient undergoing plasma
treatment. As a result, when dealing with safety-critical
biomedical applications, it is prudent to sacrifice some
performance in order to guarantee safe system operation.

Since the plasma dynamics are intrinsically stochastic,
even repeating the control experiments three times still
results in small variations in the initial temperature be-
tween the experiments with the DNN- and PNN-based
NMPC, as can be seen in Fig. 6(b). While starting from
a slightly higher temperature puts the DNN-based NMPC
temperature profile closer to the upper temperature con-
straint, it is evident that this difference is not what causes
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Fig. 6. Real-time control experiments. Experiments were
repeated three times to ensure reproducibility of re-
sults in the face of the intrinsic stochasticity of plasma
dynamics. Average profiles are shown here.

the constraint to be violated. A closer look at the CEM
profiles (Fig. 6(a)) reveals that in the first few seconds
the DNN-based NMPC drives the CEM closer to the
setpoint than the PNN-based NMPC, while still respecting
the temperature constraint. However, because the DNN-
based NMPC is blind to the model uncertainty, it ends up
violating the temperature constraint. Fig. 6(c) illustrates
the input profiles to ensure that the observed closed-loop
output and CEM profiles are not due to input saturation.
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Interestingly, although the DNN-based NMPC exhibits
smaller changes in control actions than the PNN-based
NMPC, the corresponding CEM profile increases at a
much faster rate. This is because the thermal dose CEM
is exponential with respect to temperature, so regardless
of the control actions, a higher temperature at each time
instant will cause the CEM to grow more rapidly.

5. CONCLUSIONS

This paper presents a projected deep neural network-based
approximate NMPC strategy for fast and safe predictive
control of a plasma jet with prototypical safety-critical
applications in plasma medicine. The fast approximate
NMPC strategy can handle nonlinear cost functions while
guaranteeing robust feasibility despite system uncertain-
ties and the neural network approximation error. Real-
time control experiments demonstrate that the proposed
low-complexity controller guarantees robust satisfaction of
the safety-critical system constraints at the expense of
some loss in control performance. The approximate control
law can be stored using only 2.5 kb of memory, and can
be evaluated in under 2 ms in a non-optimized numerical
setting. Future work will focus on implementation of the
proposed low-memory and fast approximate NMPC strat-
egy on a resource-limited embedded system using field-
programmable gate arrays.
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Csekő, L.H., Kvasnica, M., and Lantos, B. (2015). Ex-
plicit MPC-based RBF neural network controller design
with discrete-time actual Kalman filter for semiactive

suspension. IEEE Transactions on Control Systems
Technology, 23(5), 1736–1753.

Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B.,
Vasilets, V.N., and Fridman, A. (2008). Applied plasma
medicine. Plasma Processes and Polymers, 5, 503–533.

Gidon, D., Curtis, B., Paulson, J.A., Graves, D.B., and
Mesbah, A. (2018). Model-based feedback control of
a kHz-excited atmospheric pressure plasma jet. IEEE
Transactions on Radiation and Plasma Medical Sci-
ences, 2(2), 129–137.

Gidon, D., Graves, D.B., and Mesbah, A. (2017). Effective
dose delivery in atmospheric pressure plasma jets for
plasma medicine: a model predictive control approach.
Plasma Sources Science and Technology, 26(8), 085005.

Gidon, D., Graves, D.B., and Mesbah, A. (2019). Pre-
dictive control of 2D spatial thermal dose delivery in
atmospheric pressure plasma jets. Plasma Sources Sci-
ence and Technology, 28(8), 085001.

Herceg, M., Kvasnica, M., Jones, C., and Morari, M.
(2013). Multi-Parametric Toolbox 3.0. In Proceedings
of the European Control Conference, 502–510. Zürich.

Jones, C.N. and Morari, M. (2010). Polytopic approxi-
mation of explicit model predictive controllers. IEEE
Transactions on Automatic Control, 55(11), 2542–2553.

Karg, B. and Lucia, S. (2018). Efficient representation and
approximation of model predictive control laws via deep
learning. arXiv preprint arXiv:1806.10644.

Mirko, F. and Mazen, A. (2017). Computing control
invariant sets is easy. arXiv preprint arXiv:1708.04797.

Parisini, T. and Zoppoli, R. (1995). A receding-horizon
regulator for nonlinear systems and a neural approxi-
mation. Automatica, 31(10), 1443–1451.

Paulson, J.A. and Mesbah, A. (2018). Nonlinear model
predictive control with explicit backoffs for stochas-
tic systems under arbitrary uncertainty. IFAC-
PapersOnLine, 51(20), 523–534.

Paulson, J.A. and Mesbah, A. (2020). Approximate closed-
loop robust model predictive control with guaranteed
stability and constraint satisfaction. IEEE Control
Systems Letters, In Press.

Richter, S., Jones, C.N., and Morari, M. (2009). Real-time
input-constrained MPC using fast gradient methods. In
Proceedings of the IEEE Conference on Decision and
Control, 7387–7393. Shanghai.

Sapareto, S.A. and Dewey, W.C. (1984). Thermal dose
determination in cancer therapy. International Journal
of Radiation Oncology Biology Physics, 10(6), 787–800.

Shin, J. and Raja, L.L. (2007). Run-to-run variations,
asymmetric pulses, and long time-scale transient phe-
nomena in dielectric-barrier atmospheric pressure glow
discharges. Journal of Physics D: Applied Physics,
40(10), 3145–3154.

Summers, S., Jones, C.N., Lygeros, J., and Morari, M.
(2011). A multiresolution approximation method for
fast explicit model predictive control. IEEE Transac-
tions on Automatic Control, 56(11), 2530–2541.
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