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Abstract: This paper presents new conditions to design linear parameter-varying (LPV) state-
feedback controllers for systems under saturating actuators. The proposed design ensures a
minimal rate of contractivity of an associated Lyapunov function. A proportional-integral (PI)
like structure is employed to ensure null tracking error for piecewise constant reference signals.
Therefore, this proposal fits the design requirements of LPV and quasi-LPV real systems under
saturating actuators. Experimental essays conducted on a second-order nonlinear level control
illustrate the potential of the proposed approach. Additionally, the tests indicate how the
contractivity rate affects the size of the estimate of the region of attraction.
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1. INTRODUCTION

Linear parameter-varying (LPV) models are used to de-
scribe with high fidelity complex dynamics systems or
those requiring high performance. These LPV systems
have a time-varying parameter vector that modifies their
dynamic behavior. Quasi-LPV and quasi-NLPV systems
are more general cases of LPV ones, where the parameter
vector is calculated from some available measures on the
system (such as output or state of the system), while in
LPV systems the parameter is measured directly (Grim-
ble, 2018). NLPV models may lead to high fidelity rep-
resentations with the time-varying parameters appearing
nonlinearly (Blesa et al., 2014).

Many real systems exhibit dynamics that can be better
described by LPV models. Moreover, there is a growing
interest in this modeling structure in several areas, such
as automotive systems (Yamamoto et al., 2019), energy
(Morato et al., 2020), among others. When considering
LPV systems, parameter-dependent controllers and fil-
ters can achieve higher performance than robust struc-
tures (Sename et al., 2019; Lacerda et al., 2016). A quite
common approach consists in using the Lyapunov method
to design LPV controllers (Briat, 2014). The advantage of
using this method is that we can usually obtain convex
conditions formulated in terms of Linear Matrix Inequali-
ties (LMIs).

In real systems, the magnitude of the control signal should
be limited, either for physical or safety reasons. However,

⋆ Authors thank the financial support from CEFET-MG and the
Brazilian agency CNPq, grant 311208/2019-3.

this limitation may cause undesirable effects in the system,
such as limit cycles, parasitic equilibrium points, and even
lead the closed-loop to instability, thus justifying the study
of saturating actuators (Tarbouriech et al., 2011). For
these reasons, it is necessary to characterize the region of
attraction of the system to find a set of admissible initial
states, such that the trajectories starting in such a set
converge to the origin, assuring the local stability of LPV
systems (Binazadeh and Bahmani, 2017; Ruiz et al., 2019)
and quasi-LPV systems (Lopes et al., 2018).

This paper presents a new convex procedure to design LPV
controllers with a proportional action over the state of
the system and an integral action over the tracking error.
The Lyapunov function and both gains are parameter-
dependent. Additionally, our proposal can ensure perfor-
mance to the closed-loop systems by ensuring a rate of
contractivity of the Lyapunov function. We illustrate the
application of our design method in nonlinear second-order
coupled tanks, modeled as a quasi-LPV system. We run
four real-time essays, two for reference tracking, and two
for disturbance rejection. We explore different saturation
levels, showing the efficacy of the proposal.

Notation: The symbol ⋆ represents a symmetric block in
the LMIs. Identity and zero matrices are represented by I
and 0, respectively. The set of real numbers is denoted
by R. M ∈ R

n×nu is matrix of dimension n × nu with
real entries and x ∈ R

n is a vector with n positions and
real entries. He(M) = M +MT . The term diag{X,U} is

equivalent to a block diagonal matrix, i.e.,

ï

X 0
0 U

ò

.
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2. PROBLEM FORMULATION

Consider the time-varying discrete-time linear system sub-
ject to saturating actuators described by:

xk+1 = A(αk)xk +B(αk)sat (uk) ,

yk = Cxk,
(1)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the con-
trol input, sat (uk) is the symmetric saturation function
given by sat

(

uk,(r)

)

= sign
(

uk,(r)

)

min(|uk,(r)|, ρ(r)), r =
1, . . . , nu, ρ ∈ R

nu , ρ(r) is the maximum allowed amplitude

of uk,(r) due to the actuator saturation, and C ∈ R
ny×n

is the output matrix. Due to the presence of saturating
actuators, the local stability approach is required. The
linear parameter-dependent matrices of the dynamic equa-
tion (1), A(αk) ∈ R

n×n and B(αk) ∈ R
n×nu , belong to a

polytopic domain given by the convex combination of N
known vertices:

[A(αk), B(αk)] =

N
∑

i=1

αk,i[Ai, Bi], (2)

where αk ∈ Λ is the known vector of the time-varying
parameters verifying the unit simplex Λ:

Λ=
{

αk ∈ R
N :

N
∑

i=1

αk,i = 1, αk,i ≥ 0, i = 1, . . . , N
}

. (3)

Such a polytopic representation is quite general and often
found in LPV context, where αk concerns the measured
parameter (Briat, 2014).

The objective of this work is to design a parameter-
dependent proportional-integral (PI) action, based on
state feedback controller, for the system (1)-(3). The con-
troller is designed to ensure null steady-state error for
piecewise constant references. The error is given by

ek = rk − yk, (4)

where rk is the desired output of the system. Fig. 1 depicts
the topology of the controller to be designed in this work.
The closed-loop system has order greater than system (1)

+

+

+
+

+

−

ū

−ū

ek

sat (uk)

z−1Iq KP (αk)

Integral action Proportional action

KI (αk)
rk vk

vk−1yk

xk

uk

uIk

uPk

System (1)

Fig. 1. Topology of an integral action state feedback LPV
controller.

because of the integral action. By defining an augmented

state vector ξk =
[

xT
k vTk

]T
, the closed-loop system shown

in Fig. 1 can be rewritten as

ξk+1 = A(αk)ξk + B(αk)sat (uk) ,

yk = Cξk,
(5)

with C =

ï

CT

0

òT

, A(αk) =

ï

A(αk) 0
−CA(αk) I

ò

, B(αk) =
ï

B(αk)
−CB(αk)

ò

. A control law for system (5) is proposed as

uk = K(αk)ξk, K(αk) = [KP (αk) KI(αk)] , (6)

with K(αk) =
∑N

i=1 αk,iKi. Moreover, to handle the non-
linearity sat (uk), the dead-zone function Ψ(uk) will be
employed

Ψ(uk) = uk − sat (uk) . (7)

By considering (6)-(7), we rewrite the closed-loop system
(5) as

ξk+1 = Acl(αk)ξk − B(αk)Ψ(uk), (8)

where Acl(αk) = A(αk) + B(αk)K(αk) is the closed loop
dynamic matrix.

We use the generalized sector condition proposed by
Gomes da Silva Jr. and Tarbouriech (2005) to deal with
the dead zone function. Also, the set S is defined as

S(uk − dk, ρ) =

{ξ ∈ R
n+1 : |

[

K(r)(αk)−G(r)(αk)
]

ξk| ≤ ρ(r)}, (9)

r = 1, . . . , nu, with the auxiliary signal dk = G(αk)ξk used
as a degree of freedom in the design conditions.

Due to the saturating actuators, only initial conditions
in a subset of R

n+1 yield the trajectories of (5)-(6)
to converge to the origin. Such a subset is denoted by
RA ⊆ R

n, being called the region of attraction or basin of
attraction. The determination of RA is not an easy task
even for small order systems since it can be non-convex,
open, and in some cases, unbounded (Tarbouriech et al.,
2011). Therefore, an estimate of the region of attraction
RE ⊆ RA is computed, usually the largest possible. One
way to construct the RE estimate is to employ level sets
taken from the Lyapunov function associated with the
closed-loop system. To this end, a quadratic parameter-
dependent Lyapunov function is considered:

V (ξk, αk) = ξTk P (αk)ξk, P (αk) =
N
∑

i=1

αi,kPi > 0. (10)

From (Daafouz and Bernussou, 2001a), if there exist a
function given by (10) fulfilling the Lyapunov conditions
for stability of (5)-(6), then we say that such a system is
polyquadratic stable. In such a case, a level set associated
with the Lyapunov function can be defined as in the
following lemma.

Lemma 1. Suppose that V (ξk, αk) given in (10) is a Lya-
punov function for system (5)-(6). Then, a possible level
set is given by

LV(µ) =
⋂

αk∈Λ

E(P (αk), µ) =
N
⋂

i=1

E(Pi, µ) (11)

for µ > 0 and

E(Pi, µ) = {ξ(k) ∈ R
n; ξTk Piξk ≤ µ}. (12)

For the proof, see of this lemma can be found in (Jungers
and Castelan, 2011).

Observe that, when the time-varying parameters αk in (1)
are computed from other measured variables, for instance,
the output of the system, then, the system is called a quasi-
LPV system. An example of such system can be found in
the Takagi-Sugeno approach, where αk can be analytically
computed from the states of the system. Another example
is given in Section 4, where the values of αk are computed
from the measured output of the system.
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















He(X11,i)− λQ11,i X12,i +XT
21,i − λQ12,i −WT

11,i XT
11,iA

T
i −XT

11,iA
T
i C

T +XT
21,i −LT

11,i

X21,i +XT
12,i − λQ21,i He(X22,i)− λQ22,i −WT

12,i XT
12,iA

T
i −XT

12,iA
T
i C

T +XT
22,i −LT

12,i

⋆ ⋆ He(V11,i) −V T
11,iB

T
i V T

11,iB
T
i C

T 0

⋆ ⋆ ⋆ Q11,j −R11,ij Q12,j −R12,ij BiZ11,j − Y T
11,j

⋆ ⋆ ⋆ ⋆ Q22,j −R22,ij −CBiZ11,j − Y T
12,j

⋆ ⋆ ⋆ ⋆ ⋆ Z11,j + ZT
11,j

















>0

(13)

3. MAIN RESULTS

The following theorem presents conditions for the stabi-
lization of system (5) under the effect of λ-contractivity
and assuming the control law (6). Our approach is inspired
by the recent work of Pandey and de Oliveira (2017), where
the LMI conditions proposed in (Daafouz and Bernussou,
2001b) for polyquadratic stabilization were generalized to
consider time-varying input matrix.

Theorem 2. Consider the saturating LPV discrete-time
system given by (5) and a scalar λ ∈]0, 1]. Suppose
that there exist positive-definite matrices Qi = QT

i ∈
R

(n+1)×(n+1), diagonal positive-definite matrices Vi ∈
R

(nu+1)×(nu+1), matrices Xi ∈ R
(n+1)×(n+1), Li ∈

R
(nu+1)×(n+1), Yj ∈ R

(nu+1)×(n+1), Zj ∈ R
(nu+1)×(nu+1),

Wi ∈ R
(nu+1)×(n+1), i, j = 1, . . . , N , such that the LMIs

(13) (top of this page) and





−ρ2(r) L11,i(r) −W11,i(r) L12,i(r) −W12,i(r)

⋆ Q11,i −He(X11,i) Q12,i −X12,i −XT
21,i

⋆ Q21,i −X21,i −XT
12,i Q22,i −He(X22,i)



 < 0

(14)
with

Rij = He
(

ï

BiY11,j BiY12,j

−CBiY11,j −CBiY12,j

ò

)

, (15)

∀i, j = 1, . . . , N , and r = 1, . . . , nu, are satisfied. Then,
the parameter-dependent control gain

Ki = [L11,i L12,i]

ï

X11,i X12,i

X21,i X22,i

ò−1

(16)

i = 1, . . . , N , where Ki = [KP,i KI,i], with control law
(6), locally and polyquadratically stabilizes the resulting
closed-loop system for all initial conditions belonging to
the set RE = LV(1).

Proof. By assuming (13) holds, we replace [L11,i L12,i]
and [W11,i W12,i] by [KP,iX11,i + KI,iX21,i KP,iX12,i +
KI,iX22,i] and [G11,iX11,i+G12,iX21,i G11,iX12,i+G12,iX22,i],
respectively, and we use the known fact for matrix R > 0
andM we have (M−R)R−1(M−R)T ≥ 0⇒MR−1MT ≥
−R + M + MT , to overbound the block (1, 1) of the
resulting inequality. Next, by pre- and post-multiplying

the resulting condition by diag
{

[

X11,i X12,i

X21,i X22,i

]−T

, I, I, I
}

,

and its transpose, respectively, and defining Hi = Z−T
11,i,

Pi =

ï

Q11,i Q12,i

⋆ Q22,i

ò−1

, Fi =

ï

P11,i P12,i

⋆ P22,i

ò ï

Y11,j

Y21,j

òT

H11,i,

for all i, j = 1, . . . , N , we get (17) (see top of the next
page), with Rij given by (15), which can be rewritten as

Rij = He
(

ï

Bi

−CBi

ò

H−T
11,j

[

F11,j FT
21,j

]

ï

P11,j P12,j

⋆ P22,j

ò−1 )

,

for all i, j = 1, . . . , N. By pre- and post-multiplying (17)

by diag

{

I, V −T
11,i ,

[

0 0 H11,j

P11,j P12,j F11,j

⋆ P22,j F21,j

]

}

and its transpose,

respectively, and due the regularity of Vi, replacing Si =
V −1
11,i, we can multiply the resulting inequality by αi, αj ,

α ∈ Λ, and summing them up for i, j = 1, . . . , N , and pre-
and post-multiply the result by







0 0 0 P (αk+1)
−1

I 0

ï

KP (αk)
T

KI(αk)
T

ò

0

0 I 0 0







and its transpose, respectively, to get a parameter-
dependent inequality. After, apply Schur’s complement
and pre- and post-multiplying the resulting inequal-
ity by

[

ξTk Ψ(uk)
T
]

and its transpose, to rewrite it as

ξTk+1P (αk+1)ξk+1 − ξTk λP (αk)ξk − 2Ψ(K(αk)ξk)
TS(αk)

(

Ψ(K(αk)ξk)−G(αk)ξk
)

< 0 with K(αk) in (6),

P (αk)=
[

P11(αk) P12(αk)
⋆ P22(αk)

]

,G(αk)=[G11(αk) G12(αk)]. (18)

Suppose ξk ∈ S (defined in equation (9)); note that, this
hypothesis is confirmed later with the aid of (14). Then,
take β as the minimal eigenvalue of Pi, i = 1, . . . , N .

Similarly, take β̄ as the maximal eigenvalue of Pi, i =
1, . . . , N . Then, we have β‖ξk‖22 ≤ V (ξk, αk) ≤ β̄‖ξk‖22
and there exists some β > 0 such that ∆V (ξk, αk) =
ξTk+1P (αk+1)ξk+1 − ξTk λP (αk)ξk ≤ −β‖ξk‖22, for all αk ∈
Λ. As a consequence, we conclude that system (5) have tra-
jectories such that its Lyapunov function is λ-contractive.
Therefore, the feasibility of inequality (13) implies the
(local) polyquadratic (Daafouz and Bernussou, 2001a) sta-
bilization of system (1) by a control law (6) with state-
feedback gain (16), ensuring a minimal contractivity rate
of the Lyapunov function.

Condition (14) ensures that LV(1) given in (11) is in-
cluded in S defined in (9). Then, if (14) is also satisfied,
by using (16), we replace [L11,i L12,i] and [W11,i W12,i]
by [KP,iX11,i + KI,iX21,i KP,iX12,i + KI,iX22,i] and
[G11,iX11,i + G12,iX21,i G11,iX12,i + G12,iX22,i], respec-
tively, and use again the fact MR−1MT ≥ −R+M +MT

to bound the block (2, 2). Pre- and post-multiplying by

diag
{

I,
[

X11,i X12,i

X21,i X22,i

]−T
}

and its transpose, multiply by

αi, α ∈ Λ, and summing them up for i = 1, . . . , N ,
and applying Schur complement, getting

[

K(αk)(r) −
G(αk)(r)

]T
ρ−2
(r)

[

K(αk)(r) −G(αk)(r)
]

− P (αk) ≤ 0, ∀αk ∈
Λ and r = 1, . . . , nu. Pre- and post-multiply the last
inequality by ξTk and its transpose, respectively, yields

ξTk
[

K(αk)(r) − G(αk)(r)
]T

ρ−2
(r)

[

K(αk)(r) − G(αk)(r)
]

ξk −
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















λP11,i λP12,i −GT
11,i

⋆ λP22,i −GT
12,i

⋆ ⋆ He(V11,i)









AT
i −AT

i C
0 I

−V T
11,iB

T
i V T

11,iB
T
i C

T









−KT
P,i

−KT
I,i

0





⋆ P−1
j −Rj BiH

T
j − P−1

j FjH
−1
j

⋆ ⋆ H−1
j +H−T

j













> 0 (17)

ξTk P (αk)ξk ≤ 0 for all αk ∈ Λ and r = 1, . . . , nu, where
K(αk) given in (6), and G(αk) and P (αk) given in (18).
Consequently, the set S includes the contractive set RE =
LV(1). As a result, the LPV closed-loop system subject
to saturating actuators (1) and control law (6) with state-
feedback gain (16), has its trajectories emanating from RE
converging to the origin without leaving RE .

3.1 Optimization design procedures

We consider the procedure of maximizing an ellipsoid given
by E(H), H ∈ R

(n+1)×(n+1), internal to the ellipsoids
determined by E(Pi), ∀i = 1, . . . , N . Thus, we have:

PH≡



































min
Qi,Xi,Li,Yi,Zi

trace(H)

subject to: LMIs (13), (14) and








ñ

Q11,i Q12,i

⋆ Q22,i

ô

I

I

ñ

H11 H12

⋆ H22

ô









≥ 0,

(19)

for all i = 1, . . . , N.

Thus, due to Theorem 2, this optimization procedure
allows saturating control signal, yielding more aggressive
control actions.

4. EXPERIMENTAL RESULTS

We illustrate our proposal with a second-order nonlinear
level process modeled by a quasi-LPV model. The process
consists of two coupled tanks with standard industrial
sensors and actuators. In the sequel, we present the ex-
perimental setup, followed by the physical modeling, and
lastly, the experimental achievements.

4.1 Experiment Setup

The tests are made on a plant using two cylindrical tanks,
TQ-01 and TQ-02, each of them with 200 l capacity and
0.7 m height, actuated by a 1 hp pump with variable
velocity. The output flow rate of the tank TQ-01 goes to
a reservoir that supports 400 l, utilized by the pump to
recirculate the water to the tank TQ-02. The level must
be controlled in the tank TQ-01, where a nonlinear solid
designed in expanded polystyrene was put inside. Fig. 2
shows the schematic of the system.

We program the controller with the aid of a Python-based
interface (Sousa et al., 2018) and runs it in a low-cost
computer (Raspberry Pi 3) where it is easily programmed.
The controller takes the measures performed and stored
in a Simatic S7-300 programmable logic controller (PLC)
using ethernet communication. The PLC sends the control
signal to a WEG CFW09 inverter that commands the
pump velocity.

qin

q12
qout

h1

h2

TQ-01 TQ-02

Fig. 2. Schematics of Tank System

4.2 Modeling

We model the system by applying mass balance equations
on each tank. From experimental data, we have the follow-
ing equations modeling the flow to TQ-02 (qin), between
TQ-02 and TQ-01 (q12), and from TQ-01 to the reservoir
(qout): qin = (1.64u + 35.7) × 10−5, q12 = (33.5(h2(t) −
h1(t)) + 4.31) × 10−4, qout = (8.71

√

h1(t) + 3.1) × 10−4,
where 0% ≤ u ≤ 100% is the control signal, h1(t) and
h2(t) the level on tanks TQ-01 and TQ-02, respectively.
Thus, we have for tank TQ-01:

d

dt

∫ h1

0

a(h)dh = q12 − qout (20)

where q12 and qout are the inlet and outlet flows, a(h1)
is the transverse area at level h1: a(h1(t)) = 3r

5

(

2.7r −
cos(2.5π(h1(t)−µ))

σ
√
2π

e
−((h1(t)−µ)2)

2σ2
)

.

The variable r = 0.31 m is the radium of the tank,
the parameters µ = 0.4 and σ = 0.55 are related to
the Gaussian profile of the solid. Because of a(h1), the
integral in (20) do not have an analytical expression. We
propose to overcome this issue by approximating the terms
depending on cos(z) and ew by their Taylor’s series, with

z = 2.5π(h1(t) − µ) and w = −(h1(t)−µ)2

2σ2 . The number of

terms was chosen to ensure |a(h1)− ã(h1)| ≤ 4× 10−3.

ã(h1(t)) =
3r

5

(

2, 7r − 1

σ
√
2π

(

1− z2

2
− z4

720
− z6

720

+
z8

40320

)(

1 + w +
w2

2
− w3

6
+

w4

24

)

)

(21)

Replacing a(h1) by ã(h1) in (20), it is possible to get:

ḣ1(t) =
q12 − qout

ã(h)
, (22)

which models the level dynamics in tank TQ-01. For the
tank TQ-02, the cross area is constant and equals to
0.3019 m2, which, by similar steps done for TQ-01, yields:

ḣ2(t) =
qin − q12

0.3019
, (23)

Therefore, the nonlinear model given by (22)-(23) model
the dynamics of the couple tanks.
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We highlight that the obtained model depends on the
measured levels. In particular, the area ã(h1) depends on
the height of TQ-01, which is measured. Therefore, the
system fits in a system quasi-LPV, i.e., a system that
depends on a parameter that is obtained indirectly from
other measurements taken online.

Because of the maximal height of the tanks, we take the
levels in the range of 0.28 m ≤ h1(t) ≤ 0.48 m. For such
a range, it is possible to envelop the dynamics by two
linear models, one at each extreme value of h1(t). The
LPV parameter is then computed by

α1(k) = −0.05h1 + 2.4. (24)

We discretized the continuous-time model with a sample
time of Ts = 5.2632 s, which is about one-fifth of the faster
time constant in the operational range, and including the
zero-order-holder effect. The matrices of the discretized
version of the continuous-time model, computed at the
extreme values of h1(t) yield the vertices matrices:

A1 =

ï

0.9455 0.0540
0.0752 0.9057

ò

, A2 =

ï

0.9466 0.0528
0.1130 0.8652

ò

, C =

ï

0
1

òT

,

B1 =

ï

0.2779
0.0111

ò

× 10−3, B2 =

ï

0.2780
0.0167

ò

× 10−3. (25)

4.3 Experimental Results

The gain scheduling demand a choice of the saturation
limit ρ and the contractivity constant λ. To illustrate
our proposal, we apply the optimization problem (19)
to the modeled system for ρ = 25% and ρ = 15%.
The first ρ is the maximal symmetrical control value
around the minimal operational condition in the range
0.28 ≤ h1(t) ≤ 0.48 m. The second one leads to even
constrained values on the actuator. The value of λ affects
the size of RE directly. The smaller λ, the smaller the
region of attraction. If λ is chosen too close to unity, the
region RE is unrealistic, allowing levels higher than the
height of the tanks. On the other hand, small values of
λ lead to very fast convergence, but too small regions of
attraction. We choose λ = 0.95, empirically, establishing a
compromise between the size ofRE and the velocity of con-
vergence. So, with ρ = 25% the optimization problem (19)
yields KP1 = [−2.6568 −1.6630] × 103, KI1 = 109.6971,
KP2 = [−2.7894 −1.6076] × 103, KI2 = 111.8418, and
with ρ = 15% we got KP1 = [−2.7336 −1.7116] × 103,
KI1 = 112.9695, KP2 = [−2.8681 −1.6491] × 103, KI2 =
114.8949. Because of (24), equation (6) can be rewritten
as: KP (h1(t)) = 0.05h1(t)(KP2−KP1)−2.4KP1+1.4KP2

and KI(h1(t)) = 0.05h1(t)(KI2 −KI1)− 2.4KI1 +1.4KI2.

With these gains, we performed two kinds of essays: one
for reference tracking and another for regulation around a
given setpoint.

Reference tracking: For each controller designed, we run
a real-time experiment to track a sequence of reference
steps. The achieved results are in Fig. 3 where it is clear
that both controllers drive the level to the desired value
with null off-set. The reader can observe in the detail of
this figure that, the design with ρ = 25% (red dotted
line) is more aggressive, leading to a faster time-response,
with smaller rise-time. The overshoots of both designs are
almost the same, as well as the settling time. In both

designs and for all steps, the controlled output goes to
the reference value, as expected. The reader can note in
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Fig. 3. Level of tank TQ-01, (h1(t)), for the controllers
assuming ρ = 25% (red dotted line) and ρ = 15%
(orange solid line).

Fig. 4 the control signals (blue lines) and the respective
saturation limits (red dashed lines). Note that the control
uses all the allowed range, achieving saturation in several
instants, especially at those corresponding to the reference
step.
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Fig. 4. Control Signals. The red dashed lines represents the
control signals bounds and the blue lines the control
signals for ρ = 25% (top) and ρ = 15% (bottom).

Level regulation: For each controller designed, we run a
real-time experiment to keep the level at h1(t) = 0.32 m;
we show the achieved results in Fig. 5. At t = 3500 s, a
standard disturbance is imposed on the process, raising
the controlled level to more than 0.335 m; see also the
zoom, where it is clear that the controller with a larger
saturation bound (ρ = 25%) has a slightly more aggressive
action driving the controlled level (red dotted line) back
to the reference. The control signals act to reject the
disturbance achieving the saturation bounds, as shown in
Fig. 6. It is clear that in the more constrained control
signal (ρ = 15%, bottom plot), the number of times that
the actuator saturates is bigger than for the saturation
bound ρ = 25% (top plot). Such difference occurs because
both designs share the same contractivity parameter of
λ = 0.95 despite the concerning saturation bounds.

We chose the more severe case, ρ = 15%, to illustrate that
the controlled trajectories do not leave the estimated RE .
This case has a smaller region RE than the achieved one
with ρ = 25%. Therefore, we plot in Fig. 7 the trajectories
of both tests (reference tracking and level regulation),
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Fig. 5. Level of TQ-01 under disturbance for controllers
design with ρ = 25% (red dotted line) and ρ = 15%
(orange solid line).
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Fig. 6. Control Signals. The dashed lines represents the
signals limits

showing that they remain inside RE . On the detail, we
show a cut of the ellipsoidal sets with the plane xI = 0
and the projection of the trajectories.

Fig. 7. Estimate RE for ρ = 15% and the tracking and
regulation trajectories (black line).

5. CONCLUSIONS

We presented new convex design conditions for a linear pa-
rameter varying proportional-integral (PI) like action. The
LPV proportional action comes from state feedback, and
the LPV integral-one acts over the tracking error. These
conditions ensure the local-polyquadratic stabilization of
parameter-dependent processes. We illustrate the proposal
with the application to a quasi-LPV level control of a
second-order nonlinear system. The real-time experiments
show the effectiveness of the design procedure that also
ensures a performance index, given by the contractivity of
the Lyapunov function.
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