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Abstract: Multi-agent formation control with obstacles avoidance (MAFC-OA) is one of the attractive 
tasks of multi-agent cooperation. Although a number of algorithms can achieve formation control 
effectively, they ignore the nature structure feature of the graph formed by agents. Given this problem, a 
model, MAFC-OA, which is composed of observation attention network, action attention network and 
Multi-long short-term memory (Multi-LSTM) is proposed. With MAFC-OA, the agents can be trained to 
form the desired formation and avoid dynamic obstacles in the environments with restricted 
communication. Specifically, the above two attention networks not only incorporate the influence of the 
nearby agents’ observation and actions, but also enlarge the agents’ receptive field (communication range) 
through the chain propagation characteristics to promote cooperation among agents. Moreover, the Multi-
LSTM allows the agents to take obstacles into consideration in the order of distance and to avoid the 
obstacles effectively. Simulations demonstrate that the agents can form the desired formation and avoid 
dynamic obstacles effectively. 

Keywords: Reinforcement learning control, Multi-agent system, Deep reinforcement learning, Graph 
attention network, Formation control, Obstacles avoidance 

 

1. INTRODUCTION 

Cooperative multi-agent systems have been widely applied in 
fields as varied as smart grid control (Radhakrishnan et al. 
(2016)), autonomous driving (Shalev-Shwartz et al. (2016)), 
resource management (Zhang et al. (2019)), and robotics 
(Hang et al. (2016)). During these fields above, multi-agent 
formation control is one of the most attractive tasks that can be 
considered as a multi-agent cooperation problem.  

For the formation control, there are two crucial issues 
including formation maintenance and collision avoidance (Sui 
et al. (2019)). For the former, the difficulty lies in how agents 
can maintain the expected formation in different situations. For 
the latter, the difficulty lies in how agents obtain all the 
information of environments or escape from the local 
minimum of force field ((Khatib et al. (1986))).   

There are many attempts which focus on the multi-agent 
formation control problem where deep reinforcement learning 
(DRL) is one of the most popular method. It’s worth noting 
that DRL has recently made exciting progress ((Mnih et al. 
(2015), Silver et al. (2016), Lillicrap et al. (2016)). Owing to 
the huge potential indicated by these deep learning based 
approaches, DRL has naturally been applied to the multi-agent 
reinforcement learning (MARL) to solve the multi-agent 
cooperation problems. Multi-Agent Deep Deterministic Policy 

Gradient (MADDPG) is proposed in mixed multi-agent 
cooperative-competitive environments (Lowe et al. (2017)). It 
follows a common paradigm centralized learning with 
decentralized execution. Counterfactual Multi-agent (COMA) 
also utilzies a centralized critic and computes a counterfactual 
advantage function which handle the problem of multi-agent 
credit assignment by marginalizing  the effect of each agent’s 
action (Foerster et al. (2018)). However, the centralized critic 
used in MADDPG and COMA has to use the global state, 
while only partial observability (due to limited range or noisy 
sensors)  and limited communication are available in most 
real-world environments, which means that each agent has to 
learn to behave cooperatively only on local observations and 
limited communication. To deal with this problem, the method 
of Mean-Field is proposed (Yang et al. (2018)) to capture the 
interaction of agents by mean action, which means that it can 
be applied to the environment with a large number of  agents. 
Nevertheless, Mean-Field treats all agents’ observation 
equally and ignores the fact that different agent’s observation 
has different influences on the centralized critic. To address 
these problems, the attention mechanism (Oh et al. (2016), 
Vaswani et al. (2017)) has been employed to effectively 
represent the influence of agents on centralized critics. 
Multiple-Actor-Attention-Critic (MAAC) employs the 
attention mechanism to model a centralized critic, from which 
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decentralized actors are derived using soft actor-critic (Iqbal et 
al. (2019)). But it still needs to take all agents’ states into 
consideration, which is unaviable in reality. Besides, the 
requirement of all agents’ states makes the MAAC not 
generalizable. However, graph networks have an inherent 
advantage to describe the communication topology among the 
agents. The characteristic of information exchange which is 
expressed in the graph could potentially help aggerate all 
agent’s observation via long chain and promote the 
cooperation behaviour (Wu et al. (2019)). Nonetheless, none 
of these approaches above studies multi-agent cooperation 
from the graph perspective and ignores the structure of multi-
agent system.  

Motivated by these issues, we propose a model named MAFC-
OA building on the framework of Graph Attention Networks 
(GAT) (Petar et al. (2018)). The model can be divided into two 
parts including formation control and obstacles avoidance. The 
first part based on the GAT focuses on the cooperation 
behaviour among the agents. A double graph attention network 
including agent observation attention network and agent action 
attention network is designed for training the cooperation 
behaviour. It not only incorporates the influence of nearby 
agents’ observation and actions, but also enlarges the agents’ 
receptive field or communication field through the chain 
propagation characteristics of graph neural networks to 
promote cooperation among the agents. The second part 
focuses on the obstacle avoidance. Instead of using the 
attention network, we extend long short-term memory (LSTM) 
method (Everett et al. (2018)) as Multi-LSTM in multi-agent 
environments. The Multi-LSTM allows the agents to take 
obstacles into consideration in the order of distance and avoid 
arbitrary number of obstacles. Moreover, in order to scale up 
to more agents, we use the parameters sharing method to train 
all the agents in a decentralized framework. We evaluate our 
architecture in environments with different number of agents, 
and the simulation results demonstrate that the agents can form 
the expected formation and avoid obstacles under the proposed 
model.  

2. PRELIMINARIES 

2.1  Problem Statement 

The environment of the multi-agent formation control with 
obstacles avoidance based on Multi-Agent Particle 
Environment (MAPE) (Lowe et al. (2017)) is presented in Fig. 
1. As shown in Fig. 1(a), six agents represented by blue circles 
are generated randomly in a 2 2×  square map of MAPE. The 
formation centre represented by a red star follows a random 
trajectory in each episode. Besides, the target centre 
represented by a red triangle is generated randomly in the map. 
Moreover, there are several obstacles represented by dark 
circles. They are generated randomly near the map edge and 
can move in random velocities. When the agents pass through 
the environment, each agent can only observe its own state and 
the obstacles in a fixed range. Moreover, considering the 
limitation of communication bandwidth in reality, each agent 
can only communicate with up to two nearby agents in this 
paper. In this paper, it is expected that the agents can avoid the 

dynamic obstacles, be evenly distributed around the moving 
formation centre and arrive at the target point . 

Let tS  denote the environment state at time t and t
io denote the 

agent i ’s local observation including its position, velocity, the 
formation center position and the obstacles’ positions. 
Specifically, we assume that at time t , the agent i ’s position

[ , ]
x y

t t t

i i i
p p p= , the agent i ’s velocity [ , ]

x y
t t t

i i i
v v v= ,the formation 

center position c
[ , ]

x y
t t t

c c
p p p=   and the obstacle j  ’s position

j
[ , ]

x y
t t t

o oj oj
p p p=  . Besides, the action space for each agent is 

discretized. The agent can move one step (0.1units) in both X 
and Y directions. 

Moreover, as shown in Fig. 1(b), the information 
communication among the agents can be represented in 
undirected graph ( ),G V E= . Specifically, }{1, ,V N= 

denotes the nodes consisting of the agents. E V V⊆ × denotes 
the edge set consisting of communication status among the 
agents where an edge from node i to j is denoted as

( ),i j E∈ .Besides, h is a set of node features, 

{ }1 2, ,..., Nh h h h=
  

, F
ih ∈


 ,where F is the number of features 

in each node. Moreover, iN is a set of neighbours 
communicating with node i in the graph. There is a weighted 
adjacency matrix A where 1ija = if ij N∈ otherwise 0ija = .  

2.2  Reinforcement Learning 

The environment in this paper is regarded as Partially 
Observable Markov Games which is an extension of the 
framework of Markov Games (Littman et al. (1994)). It is 
defined by a global state 𝑆𝑆, a set of actions 1, , NA A , and a set 
of local observations 1, , NO O . The local observation is 
composed of the agent’s position t

i
p and velocity t

i
v , the 

formation center position 
c

tp , and the obstacles’ positions 
j

t

o
p . 

To choose actions, each agent uses a learnable policy
( )i : i a iO P Aπ → ,which produces the next state according to 

the state transition function ( )'
1: ... N tT S A A P S× × × → that 

defines the probability distribution over possible next states, 
given current states and actions for each agent. Each agent 
obtains rewards from the environment after all agents take 

 
(a) Agents and obstacles 

 

 
(b) Graph communication 

Fig. 1. Simulation Environment 
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actions: 1i NR S A A= × × × →  . The agents aim to learn a 
policy that maximizes their expected discounted returns,  
     ( )

1 1 , , , 10
( ) , , ,

N N

t
i i a a s T it t t Ntt

J E r s a aπ ππ γ∞

=
 =  ∑

   

       (1) 

where itr is the reward that agent i obtain at time t , ts represents 
the global state S at time t . [ ]0,1γ ∈ is the discount factor that 
determines how much the policy favors immediate reward 
over long-term gain. 

2.3  Policy Gradient(PG) 

Policy gradient (Sutton et al.(2000)) aims to estimate the 
gradient of a single agent’s expected returns 𝐽𝐽𝑖𝑖(𝜋𝜋𝑖𝑖)with respect 
to the parameters (θ ) of its policy(𝜋𝜋𝜃𝜃). This gradient estimate 
takes the following form： 

       ( )( ) ( )'

' ' ''( ) log ,t
t t

t t t t tt
J a s r s aθ θ θ θπ π γ=

∞ −∇ = ∇ ∑         (2) 

2.4  Proximal Policy Optimization (PPO)  

Most PG methods perform one gradient update per sampled 
trajectory, which results in high sample complexity. The PPO 
algorithm is proposed by Schulman et al. (2017) to address the 
problem. Let 

( )
( )

( )k

t t
t

t t

a s
l

a s
θ

θ

π
θ

π
=  

denote the likelihood ratio. 𝜋𝜋𝜃𝜃𝑘𝑘  represents the agent policy 
before K steps. Then PPO optimizes the objective 

                
ˆ( ) [min( ( ) ( , ),

ˆ( ( ),1 ,1 ) ( , )]

k

k

t t t t

t t t t

L E l A s a

clip l A s a

θ

θ

θ θ

θ ε ε

=

− +
                 (3) 

where ˆ ( , )
k

t t tA s aθ  is the generalized advantage estimate and 

( )( ),1 ,1tclip l θ ε ε− + clips ( )tl θ in the interval [ ]1 ,1ε ε− + . 

3. APPROACH 

In order to train these agents to maintain a formation and avoid 
dynamic obstacles, a graph reinforcement learning model 
MAFC-OA is proposed as shown in Fig. 2. The model can be 
divided into two parts, formation control and obstacle 

avoidance.  

The first part focuses on the cooperation behaviour among the 
agents. A double graph attention network including agent 
observation attention network and agent action attention 
network is designed for training the cooperation behaviour. 
The observation attention network has three layers to conduct 
information exchange among the agents. Furthermore, the 
action attention network has the similary structure as the 
observation attention network to solve the non-stationary 
problem of the multi-agent system. The details of the two 
graph attention networks are presented in section 3.1 and 3.2. 

The second part focuses on the problem of obstacle avoidance. 
The LSTM is extended (Everett et al. (2018)) as a Multi-LSTM 
in multi-agent environments. The Multi-LSTM is constructed 
for two reasons as follows. On one hand, the variant number 
of obstacles results in the change of the adjacency matrix in its 
dimension and value, which means that it is difficult to 
converge in the process of training due to the dynamic graph. 
On the other hand, the direct use of attention network could 
not improve the model’s ability, and the network may also be 
difficult to converge due to a mass of hyperparameters 
resulting by complex network components. Therefore, the 
Multi-LSTM is designed to avoid obstacles. The details of the 
Multi-LSTM are presented in section 3.3. 

3.1  Agent Observation Attention Network  

Intuitively, each agent requires all the other agents’ 
information about their observations and actions to behave 
cooperatively. However, it is impractical for each agent to get 
information of all the other agents due to the limitation of 
communication. Therefore, to obtain the information of the 
other agents which are not communicate with the agent 
directly, the attention network based on graph convolution is 
designed due to the chain propagation characteristics of the 
graph convolution. By stacking graph convolutional layers, the 
receptive field of an agent gradually grows. Then the agent can 
collect more information, which means that the scope of 
cooperation can be expanded. Therefore, three graph 
convolution layers are utilized to enlarge each agent’s 
reception field. Under this setting, the number of the agents 
that each agent can communicate with can be increased from 

Fig. 2. Structure of MAFC-OA 
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two to six. 

3.1.1  Graph Generation 

Given the analysis above, a graph ( ),G V E= is generated 
before the graph attention network is designed to aggregate the 
agents’ information. As shown in Fig. 2, the agents’ 
observations t

so is embedded as node feature h of the graph
( ),G V E= via one-layer MLP1 represented by g𝑖𝑖: 

                              11( ) ( )t t t
i i i i MMh g o o bWσ= = +                       (4) 

where t
ih is one of the node feature h of the graph ( ),G V E= ,

( )t t t
i i so o o∈ represents the local observation of agent i at time

t , 1
MW and 1

Mb are weight matrix and bias of MLP1 to learn,σ
represents ReLu function.  

Then we define a symmetric adjacency matrix N NA ×∈
according to the communication status  among the agents. It is 
noted that the value of ija ( ija A∈ ) is varied with the change 
of distance between the agents. Besides, there is a self-loop for 
each agent because the cooperation behaviour is decided not 
only by its neighbourhoods’ observation but also by its own 
observation. 

3.1.2  Attention Distribution  

After the graph is generated, the nearby agent’s observation 
can be taken into consideration to form a designated formation 
by stacking the graph convoluaiton layers. In addtion to 
enlarging the receptive fields of agents, the neighbour agents 
need to be treated differently by agent i for promoting 
cooperation. One of the rest agents may be farther away from 
agent i than the other agents, which means agent i will be 
influenced differently due to the different distance among 
agents. 

Therefore, the GAT layers are leveraged to allow each agent 
to treat the other agents’ states differently and enlarge agents’ 
reception field. To aggregate the state from agent j in 
determining the policy for agent i , we embed the hidden state 
of the two agents from the MLP1 and calculate the attention 
coefficients ije from agent j to agent i and its normalized form: 

                              ( ),k k k
ij G G i G je a W h W h=                               (5) 

( )( )
( )( )

exp LeakyReLU
softmax( )

exp LeakyReLU
i

ij
ij ij

ijk N

e
e

e
α

∈

= ==
∑

              (6) 

where k
Ga is a single-layer feedforward neural network, 

parametrized by a weight vector and k
GW is a learnable weight 

matrix, LeakyReLU is a nonlinear activation function. Once 
we obtain the attention coefficient ijα , the latent node features

't
sh  can be computed by a liner combination of neighbourhood 

hidden states as shown in (7): 

                               ( )'

i

t t
s ij sj N

h Whσ α
∈

= ∑                           (7) 

                               ( )'

1
i

t K m m t
s m ij sj N

h W hσ α= ∈
= ∑                 (8) 

where || represents the concatenation , K represents the number 
of heads, m

ijα represents the normalized attention coefficient of 

the mth attention mechanism and mW  represents the weight 
matrix of the mth linear transformation. 

Vaswani et al. (2017) and GAT (2018) indicate that the import 
of multi-head attention is beneficial to stabilize the learning 
process of the attention. Besides, the agent can different state 
representation of the nearby agents from different 
representation subspace with multi-head setting. Thus, 
Equation (8) is utilized to obtain the hidden state 

't
sh  under the 

setting of multi-head attention.  

Besides, after the final GAT layer, the hidden state 
0t

sh  and
2t

sh

are concatenated with
5t

sh and they are fed into FC4 as shown 
in (9). Since the hidden state could disappear during the 
process of graph convolution, these hidden states are 
concatenated in the final layer to stabilize the training process 

                               
( )5 5 2 0 4 4t t t t

s s s s F Fh h h h W bσ  = +              (9) 

3.2  Agent Action Attention Network  

The multi-agent cooperation behaviour is determined not only 
by the nearby agents’ observation, but also the nearby agents’ 
actions. As mentioned in MADDPG, the multi-agent 
environment can be treated as stationary if we know the 
actions taken by all the agents, since 

      
' '

1 1 1

' ' '
1 1

( , , , , , , ) ( , , , )

( , , , , , , )

N N N

N N

P s s a a P s s a a

P s s a a

π π

π π

=

=

  

 

           (10) 

Hence, the actions of as many agents as possible shoule be 
taken into account. In our environments, the access to other 
agents’ action is also limited by the communication distance 
or the communication bandwidth. Therefore, a network 
structure is designed to enlarge the respective field and to treat 
the other agents’ states for each agent. As shown in Fig. 2, after 
passing through 3-layer GAT, the hidden state obtained is as 
follows:  

                       ( )5 5 2 0 7 7t t t t
a a a a F Fh h h h W bσ  = +  

                  (11) 

Besides, in order to better consider the actions of other agents 
in the process of learning, a LSTM layer is adopted to process 
current and previous actions.  

3.3  Obstacles Avoidance 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8251



 
 

     

 

During the process of obstacles avoidance, there are two 
crucial facts need to be considered—the variant number of 
obstacles in the detective range and different influence of 
different obstacles. To be specific, the number of obstacles in 
the agent’s detective range is variant due to the moving agents 
and obstacles. The varying obstacles lead to an un-fixed input 
for feedforward neural networks. In the graph network, it 
means that the topology is dynamic. If we utilize graph 
convolution layer, the adjacency matrix will change in its 
dimension and value. The change means the graph of the 
obstacles and agents is dynamic, which will result in difficulty 
of convergence. To address these problems, a LSTM is 
adopted to process the obstacles’ state. In general, the LSTM 
is a recurrent architecture that the output is produced from a 
combination of a stored cell state and an input. It can accept an 
arbitrary-length sequence to produce a fixed-size output. In 
other words,this advantageous property solves the problem of 
unfixed size of input. Based on the characteristics, Everett et 
al. (2018) utilizes the LSTM to encode a sequence of 
information that is not time-dependent. 

In the case of a large number of agents, the early states have 
less influence on the agent, so the states are fed in reverse order 
of distance to the agent, which means that the closest agents 
(fed last) should have the biggest effect on the final hidden 
state.  In other words, this is a similar way to the attention 
mechanism but it’s simpler. The importance of obstacles to the 
agents only depends on the distance between them instead of 
the attention coefficients. In this way, the problem of variant 
number of obstacles and different influence of different 
obstacles can be solved. Therefore, the existing LSTM 
(Everett et al. (2018)) is extended to multi-agent systems 
instead of using the GAT. As shown in Fig. 3, all the agents 
share the LSTM layer, 

ij

t
os represents the relative position of 

obstacle j  to agent i  at time t . For instance, the Multi-
LSTM receives 

1i

t
os then generates 1h , then feeds 1h  and 

relative distances between obstacle 2 and agents i  to produce
2h , and so on. Finally, LSTM outputs the last hidden state nh

after all the obstacles and all the agents have been processed. 
It is intuitive that nh contains encoded information about all 
the obstacles. 

3.4  Components Integration  

After the states are extracted by the MAFC-OA model and the 
Multi-LSTM, they are utilized to optimize the agents’ policy. 
For the agents’ learning, the centralised training and 
decentralised execution is a common paradigm. However, 
there are two disadvantages for the paradigm. On one hand, a 

critic is learned with information from all agents, which is not 
available in the reality. On the other hand, the actors receive 
information only from their nearby agents, which influences 
the performance of cooperation. As mentioned above, these 
disadvantages can be addressed with the MAFC-OA model. In 
particular, although a critic is learned with information from 
nearby agents in this paper, it can obtain all the other agents’ 
information by the MAFC-OA model. Besides, the actor can 
receive all the other agents’ information to promote the 
cooperation behaviour. Thus, the centralised training and 
decentralised execution can be adopted with the MAFC-OA 
model to circumvents the challenge of non-Markovian and 
non-stationary environments during learning. Through the 
above analysis, we design a complete architecture including 
graph generation, the MAFC-OA model and policy 
optimization in Fig. 2. 

As shown in Fig. 2, all the agents’ information including 
observations, actions and obstacle states are extracted with the 
MAFC-OA model as 

6t
sh ,

7t
ah and

2t
oh . Then 

6t
sh and

2t
oh are 

concatenated as the inputs to actor network.   

( )6 2 4 4
0

actor t t
total s M Mh h h W bσ  = +   

6t
sh ,

2t
oh and

7t
ah are concatenated as the inputs to critic network.  

( )7 6 2 5 5
0

critic t t t
total a s M Mh h h h W bσ  = +    

After these inputs are obtained, the PPO is implemented in an 
actor-critic framework. According to the objective function of 
PPO as shown in (3), it is changed as (12) after the 
concatenation of all the states: 

( )
( )

( )k

actor
t total

t actor
t total

a h
l

a h
θ

θ

π
θ

π
=

 

                             
ˆ( ) [min( ( ) ( ),

ˆ( ( ),1 ,1 ) ( )]

k

k

t t

critic

t t total

critic
totalL E l A

clip l A h

hθ

θ

θ θ

θ ε ε

=

− +
        (12) 

Moreover, to scale up to more agents, the parameters sharing 
method is applied to train all the agents in a decentralized 
framework.  

4. SIMULATION AND RESULTS 

4.1  Environments settings  

In order to demonstrate and evaluate our proposed architecture, 
4 environments are designed in this paper. As Fig. 4 shows, 
scenario (a) and (b) are designed to evaluate the effectiveness 
of our architecture. The only difference between them is the 
number of agents. The red star represents the target point that 
the agents need to keep the formation to arrive. Scenario (c) 
and (d) are designed to evaluate the effectiveness of obstacle 
avoidance. The agents need to form the expected formation 
without collision. After forming the formation, the agents need 
to keep the formation, pass through the group of obstacles 

Fig. 3. Multi-LSTM 
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without any collision and arrive at the target point. 

4.2  Simulation results 

The most recent work which is similar to us is (Akshat et al. 
(2019)). Although it focuses on multi-agent formation control 
but does not consider the behaviour of obstacle avoidance. We 
compare our architecture with it in the 4 environments.  

First, the simulation results conducted in the environments 
with 3 agents are presented in Fig. 5, curves of min distances 
between the agents and the expected positions, steps, distance 
entropy, loss of value and success rate are given as indicators 
of our training in the environments with 3 agents. Specifically, 

the curve of min distance reflects whether the agents can form 
the designated formation correctly. Moreover, the curves of 
distance entropy and steps reflect the time the agents need to 
take to form the designated formation. Besides, the curve of 
success rate reflects obviously the performance of the training 
methods. It can be observed from Fig. 5 that all the curves 
converge to a stable status, which demonstrate the 
effectiveness of the proposed model. Besides, all the curves 
reflect that the proposed model converges faster than the 
original method. The fluctuation of the curves of steps and 
distance entropy is because that the agents generated randomly 
in the map have different positions in each episode. As 
indicated by the curves of success rate, there are some 
fluctuation with the original method.  On the contrary, there 
are no fluctuation with the proposed method, which indicates 
that the proposed method is more stable than the original 
method. 

Next, the curves of training in the environments with 6 agents 
are presented in Fig. 6. There is no obvious difference in the 
curve of min distance because the min distance is depended on 
the formation demand. The curves of steps and success rate 
demonstrate that the proposed method performs better when 
the number of agents increases. Besides, the curve of distance 
entropy indicates that the proposed method has more robust 
performance.  

(d)   Success rate (c)   Distance entropy 

(b)    Steps (a)   Min distances 

Fig. 6. Training results of 6 agents 

Fig. 5. Training results of 3 agents 
(d)     Success rate  (c)     Distance entropy  

(a) Min distances (b)   Steps 

Table 1. Success rate with obstacles avoidance 
Number of 
obstacles 1 3 6 12 

The 
original 

method (3) 
100/100 95/100 88/100 82/100 

The 
original 

method (6) 
97/100 90/100 87/100 80/100 

The 
proposed 

method (3) 
100/100 98/100 96/100 95/100 

The 
proposed 

method (6) 
99/100 97/100 95/100 94/100 

 

Fig. 4. Environment scenarios 

 
(c)Three agents with 

obstacles 

 
(d)Six agents with 

obstacles 

 
(a) Three agents 
without obstacles 

 
(b)Six agents without 

obstacles 
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Moreover, our proposed method is compared with the original 
method in the environments with different number of obstacles. 
The results can be observed in TABLE 1. It is shown that the 
improvement of our method over the original method grows 
with respect to the number of obstacles. The performance of 
obstacles avoidance of the original method gradually declining 
when the number of agents grows. In contrast, our method can 
keep the satisfying performance of obstacles avoidance 
regardless of the rise in the number of obstacles and agents.  

5.  CONCLUSIONS 

In this paper, we present a MAFC-OA model for multi-agent 
formation control with obstacle avoidance under restricted 
communication. The key idea is to utilize the characteristics of 
graph, attention and LSTM to promote the cooperation 
behavior. The model is shown to perform a satisfying strategy 
under with dynamic obstacles. Future work will expand the 
fixed number of agents to variant number of agents and 
consider the spatial temporal characterises of multi-agent 
systems. 
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