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Abstract: We investigate the stability properties of a nonlinear stochastic dynamical model
of a person’s heart beat rate (HBR) during a treadmill exercise. The analysis is based on the
Lyapunov direct method and it is valid for systems with either known or unknown parameters.
Specifically, we characterize an upper bound on the norm of the cumulative noise that holds in
the presence of bounded errors in the model parameters and guarantees p-stability. Numerical
simulations are presented that corroborate the theoretical results.
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1. INTRODUCTION

Physical exercise plays an important role in improving
the general fitness and quality of life of both healthy
individuals and patients with cardiovascular diseases. Fur-
ther advantages include diabetes control, rehabilitation
of spinal cord injury and stroke patients, prediction of
cardiac failure from dialysis, developing more efficient
weight loss protocols for the obese, physical fitness, in-
dividual health programs, etc Mersy (1991); Achten and
Jeukendrup (2003); Barbeau et al. (1999); Aronow (2001).

A common and very relevant indicator of the intensity of a
physical exercise for a given subject is her heart beat rate
(HBR). The HBR can vary as the body’s need to absorb
oxygen and excrete carbon dioxide changes, such as during
sleep, illness and, in particular, when sustaining some
physical exercise. Because each individual has a constant
blood volume, one of the physiological ways to deliver more
oxygen to an organ is to increase the HBR so to make
blood pass through the organ more often. These biological
facts, together with the ease of use and the low cost of
measurement equipment, have made HBR the best-known
and most widely used indicator of exercise intensity.

Indeed, HBR monitoring helps physicians manage and
control training exercises in order to ensure that the sub-
ject is safe during the practice. For further reliability and
safety, physicians individualize HBR profiles by taking into
account the physiological state of the subject. Such pro-
cedures clearly call for appropriate (accurate and reliable)
models to simulate HBR. A very flexible, and commonly
accepted, simulation model for the HBR during a treadmill
exercise was introduced in Cheng et al. (2008). This model

describes a specific nonlinear input-output relationship
linking the HBR (the output) and the treadmill speed
(the input). One advantage of this approach is that it
yields a rather simple characterization consisting of just
two states –one representing the deviation of the HBR
from the subject’s HBR when at rest, and another one
modeling any internal peripheral effects.

In a previous work Asheghana and Miguez (2016), we
provided a sufficient and necessary (but rather rigid)
condition for the stability of the nonlinear model of Cheng
et al. (2008). Here, we introduce a stochastic version of
the latter model and then proceed to analyse its long-
term stability. Stochasticity is introduced in the system
by way of an additive Wiener process whose intensity
depends on a (possibly nonlinear) transformation of the
HBR itself. Compared to its deterministic counterpart, the
proposed stochastic model can account for physiological
effects that are not explicitly represented, as well as
measurement errors. Our main contribution is the stability
analysis of this stochastic HBR model. The technique
we employ departs from the analysis in Asheghana and
Miguez (2016) for the deterministic system. Indeed, we
incorporate ideas from Deng et al. (2001) in order to
obtain a sufficient condition (on the ranges of the unknown
model parameters) for global stability in probability of the
stochastic dynamical system.

The rest of the paper is organized as follows. In Section (2)
we introduce the model of Cheng et al. (2008) and the basic
stability result from Asheghana and Miguez (2016). The
new stochastic version of the HBR model is introduced and
analyzed in Section (3). Then, in Section (4) we present
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some illustrative numerical results and finally make some
concluding remarks in Section (5).

2. BACKGROUND

The model proposed in Cheng et al. (2008) to simulate the
HBR consists of the system of differential equations

ẋ1(t) =−a1x1 (t) + a2x2 (t) + a2u
2 (t)

ẋ2(t) =−a3x2 (t) + φ (x1 (t)) (1)

where φ is a nonlinearity defined as

φ (y) =
a4y

1 + exp (− (y − a5))
,

ai > 0, i = 1, ..., 5, are positive and static model pa-
rameters, x1(t) is proportional to the deviation of the
instantaneous HBR from the nominal rate when the sub-
ject is at rest (in particular, the instantaneous HBR is
h(t) = 4x1(t) + 74) and x2(t) represents the superposition
of various internal, and typically slower, processes that
take place in the body during the exercise and affect the
HBR. Changes in types and density of hormones, boosted
metabolism and the increase of body temperature are some
examples of such processes (see Cheng et al. (2008) for
additional details and examples). The input signal u(t) is
the treadmill speed, which serves as an indicator of the
exercise intensity. Note that, according to Eq. (1) and the
definition of φ, the signals x1(t), x2(t) and u(t) are always
positive Cheng et al. (2008). In the rest of the paper, we
use v(t) = a2u

2(t) for simplicity.

In Asheghana and Miguez (2016) we introduced the per-
turbed model

ẋ1(t) =−ã1x1 (t) + ã2x2 (t) + v (t)

ẋ2(t) =−ã3x2 (t) + φ̃ (x1 (t)) , (2)

where

φ̃ (x1 (t)) =
ã4x1 (t)

1 + exp (− (x1 (t)− ã5))
(3)

and the parameters ãi, i = 1, . . . , 5, are unknown but
bounded and contained in the open intervals (ai, āi), i =
1, . . . , 5, where 0 < ai < āi <∞. It is shown in Asheghana
and Miguez (2016) that system (1) is stable if

m =
a1a3

a2a4
> 1, (4)

while the system is unstable with m < 1.

3. STOCHASTIC MODEL AND STABILITY
ANALYSIS

In this section we extend our results to a “noisy” version of
system (2). Consider the stochastic differential equation 1

1 In this section we adopt a standard notation for stochastic differ-
ential equations (see, e.g., Øksendal (2007)) in order to make the
results easily comparable with the literature in the field. The time
dependence of x is left implicit.

dx = h (x, t) dt+ g(x, t)dω, (5)

where state variable x(t) is a stochastic process taking
values on Rn with an associated probability measure P,
ω(t) is an independent standard Wiener process, and h :
Rn×[0,∞)→ Rn and g : Rn×[0,∞)→ Rn are continuous
functions of x(t) that satisfy h(0, t) = g(0, t) ≡ 0. The
following definitions and Lemma (1) below will be used
throughout this section.

Definition 1. (from Khalil and Grizzle (2002)). A real and
continuous function α(r), defined for r ∈ [0,∞), is said to
belong to class K if it is strictly increasing and α(0) = 0.
It belongs to class K∞ if limr→∞ α(r) =∞.

Definition 2. (from Deng et al. (2001)). The equilibrium
x ≡ 0 of system (5) is globally stable in probability if,
∀ε > 0, there exists a class K function γ (·) such that
P {‖x(t)‖ < γ (‖x (0)‖)} ≥ 1− ε, ∀t ≥ 0, x(0) ∈ Rn\0.

Definition 3. (from Khalil and Grizzle (2002)). We say a
real function V : Rn → R belongs to the class C2 if every
partial derivative of V up to order 2 is continuous.

Lemma 1. (from Deng et al. (2001)). Consider system (5)
and assume that there exists a C2 function V : Rn →
[0,∞), class K∞ functions α1, α2 and a continuous non-
negative function W : Rn → R such that

α1 (‖x‖) ≤ V (x) ≤ α2 (‖x‖) (6)

and

LV (x, t) =
∂V

∂x
h(x, t) +

1

2
Tr{g>(x, t)

∂2V

∂x2
g(x, t)} (7)

≤−W (x, t),

then there is a unique strong solution of (5) for each
x(0) ∈ Rn, the equilibrium x ≡ 0 is globally stable in
probability and

P
{

lim
t→∞

W (x, t) = 0
}

= 1, ∀x(0) ∈ Rn. � (8)

We can recast the perturbed deterministic model of Eq.
(2) under the framework in this section if we simply define

x(t) = (x1(t), x2(t))
>

and

f(x, t) =

(
−ã1x1(t) ã2x2(t)

φ̃ (x1(t)) −ã3x2(t)

)
(9)

where φ̃ (x1(t)) is defined in (3). Recall here that the
parameters ãi, i = 1, ..., 4, are unknown but bounded,
namely ãi ∈ (ai, ai), for some positive boundaries 0 <
ai < ai. Then the stochastic differential equation

dx = f (x, t) dt+ g(x, t)dω (10)

becomes a stochastic version of model (2), whose theoreti-
cal properties may vary depending on the form of function
g(x, t). If we assume that g(x, t) grows at most sublinearly
with respect to x, namely

‖g(x, t)‖ ≤ η ‖x(t)‖ , ∀t > 0, (11)

where η > 0 is a real constant, then we can provide an
explicit condition to guarantee that model (10) is globally
and asymptotically stable with probability 1.
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Theorem 1. Assume that the inequality (4) holds and the
constant η > 0 in (11) satisfies

η <

√
a1 + a3 −

√
(a1 − a3)

2
+ 4ā2ā4. (12)

Then, system (10) is globally stable in probability around
x ≡ 0 and

P
{

lim
t→∞

‖x (t)‖ = 0
}

= 1, ∀x (0) ∈ Rn (13)

Proof: Define the candidate Lyapunov function

V (x(t)) = x>(t)Px(t), P =

(
ã4 0
0 ã2

)
. (14)

We aim at applying Lemma (1) with function V in (14)
in order to prove that model (10) is stable around x ≡ 0.
Replacing function h(x, t) in (8) by f(x, t) as defined in
(9) we obtain

LV (x, t) = x>(t)
(
PA+A>P

)
x(t)

+ g>(x(t))Pg(x(t)), (15)

where

A =

(
−ã1 ã2

ã4Φ̃ (x1(t)) −ã3

)
and

Φ̃ (x1(t)) =
1

1 + exp (− (x1 (t)− ã5))
. (16)

Equations (11) and (15) together lead us to the inequality

LV (x, t) ≤ x>(t)Zx(t), (17)

where

Z = PA+A>P +
η2

2

(
ã4 0
0 ã2

)

=


−ã1ã4 + ã4

η2

2
ã2ã4

(
1 + Φ̃ (x1(t))

2

)

ã2ã4

(
1 + Φ̃ (x1(t))

2

)
−ã2ã3 + ã2

η2

2

 .(18)

In order to use Lemma (1) we first introduce the class K∞
functions

α1 (‖x(t)‖) = min {a2, a4} ‖x(t)‖2

α2 (‖x(t)‖) = max {ā2, ā4} ‖x(t)‖2 (19)

that obviously satisfy (6), and all that remains is to con-
struct a continuous and non-negative function W (x) that
satisfies LV (x, t) ≤ −W (x), for LV (x, t) given by (15).
From (17), the obvious choice is W (x) = −x>Zx, as long
as we can guarantee that Z < 0. Indeed, straightforward
calculations (see Appendix A) show that if η is chosen to
satisfy

η < ηmax =

√
ã1 + ã3 −

√
(ã1 − ã3)

2
+ 4ã2ã4, (20)

then both

det(Z) > 0 and trace(Z) < 0 (21)

which, in turn, imply Z < 0. Since ai ≤ ãi ≤ āi for every
i = 1, . . . , 4, if we select η such that

η < min
ai∈(ai,āi)
i=1,...,4

√
ã1 + ã3 −

√
(ã1 − ã3)

2
+ 4ã2ã4,

=

√
a1 + a3 −

√
(a1 − a3)

2
+ 4ā2ā4 (22)

then (21) is guaranteed to hold and hence Z > 0 is ensured
as well 2 . Therefore, if (22) holds, α1 and α2 in (19)
together with W (x) = −x>Zx satisfy the assumptions of
Lemma (1) and, as a consequence, system (10) is globally
stable in probability around x ≡ 0 and

P
{

lim
t→∞

‖W (x, t)‖ = 0
}

= 1, ∀x(0) ∈ Rn.

Finally, since Z < 0 (strictly negative definite), it is
apparent that lim

t→∞
W (x, t) = 0 implies lim

t→∞
‖x(t)‖ = 0

and, therefore, Eq. (13) holds, which concludes the proof.
�
Remark 1. Substitution of the nominal values

â1 = 1.84, â2 = 24.32, (23)

â3 = 0.0636, â4 = 0.00321, â5 = 8.32,

(adopted from Cheng et al. (2008)) in (12) reveals that
η ≤ ηmax ' 0.2 is a sufficient condition for this set of
parameters. In particular, it is guaranteed that the bound
on the right hand side of (22) is real for this range of the
parameters. �

4. NUMERICAL SIMULATION

In this section, we present computer simulation results
that corroborate the validity of upper bound in expression
(22) which, in turn, determines how restrictive the con-
straint ‖g(x, t)‖ ≤ η‖x(t)‖ becomes. We use the nominal
parameter values (24), which yield ηmax ' 0.2, as an upper
bound for η. The simulations are based on Eq. (10) with

initial values [x1(0), x2(0)]
>

= [2, 0.8]
>

and

g (x, t) = η


x1(t)− x2(t)√

2
x1(t) + x2(t)√

2

 . (24)

This choice of g(x, t) readily implies that ‖g(x, t)‖ =
η‖x(t)‖.
Simulations show that system (10) with g(x, t) defined as
in (24) is stable with η = 0.15 < ηmax = 0.2, as expected
(see Fig. (1).a). Based on Theorem (1), convergence to-
wards x ≡ 0 is not guaranteed for η > ηmax. This is in
agreement with the computer simulations shown in Fig.
(1).b and c, where system does not display convergence
with η = 0.25 (Fig. (1).b) and diverges with η = 0.35
(Fig. (1).c).

We have also studied numerically how the bound ηmax
evolves as the parameters ai, i = 1, . . . , 4, change. This
2 Taking derivatives on the right hand side of (20) it is easy to verify
that the minimum of η is given by (22), as long as ãi > 1, i = 1, . . . , 4
and (4) is satisfied.
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Fig. 1. System behavior with different values of the con-
stant η. (a) For η = 0.15 we obtain convergence
to98y3o2; x ≡ 0. (b) For η = 0.25 the state does
not converge. (c) For η = 0.35 the state diverges.

Fig. 2. Evolution of the bound ηmax in (11) using the
nominal values in (24) when we let single parameter
run from its nominal to its marginal value. Upper
left: a1 changes, a2, a3, a4 are kept fixed. Upper right:
a2 changes, a1, a3, a4 are kept fixed. Lower left: a3

changes, a1, a2, a4 are kept fixed. Lower right: a4

changes, a1, a2, a3 are kept fixed.

is shown in Fig.(2), where each plot represents the bound
ηmax calculated using the nominal values in (24), except
for one parameter which varies from its nominal to its
marginal value (i.e., the value that makes m = 1 in the
stability condition of (4)). The figure shows that, for all
parameters a1, . . . , a4, the bound ηmax drops when the
perturbed non-stochastic system approaches its stability
margin. In other words, Fig.(2) shows that the constraint
(11) is less restrictive, and the system can tolerate a “larger
amount” of noise, when the ratio m = a1a3/a2a4 of (4) is
further from 1.

5. CONCLUSIONS

We have tackled the analysis of the stability of a stochas-
tic model of HBR, built upon the one originally intro-

duced in Cheng et al. (2008) in deterministic form. In
our study, we have assumed that the system parameters
are unknown. Specifically, each parameter ai is subject
to arbitrary perturbations within a fixed interval, while
cumulative stochastic noise vanishes when the system state
approaches a rest status. In our analysis, we have in-
troduced a sublinear condition, of the form ‖g(x, t)‖ ≤
η‖x(t)‖, for the function that controls the intensity of the
additive Wiener process in the differential equation. Then,
we have shown numerically that the constant η (for which
we have obtained an explicit upper bound ηmax) is key to
determine the range of parameter values that guarantee
system stability.

Appendix A. CALCULATION

The inequality

Z =


−ã1ã4 + ã4

η2

2
ã2ã4

(
1 + Φ̃ (x1(t))

2

)

ã2ã4

(
1 + Φ̃ (x1(t))

2

)
−ã2ã3 + ã2

η2

2

 < 0

(A.1)
is satisfied when trace(Z) < 0 and det(Z) > 0. In the
sequel, we seek an upper bound for η such that Z < 0 is
guaranteed. We proceed by constructing intervals for the
parameter η that satisfy trace(Z) < 0 and det(Z) > 0
separately and then take their intersection.

Let us start finding conditions on η such that trace(Z) < 0.
From the definition of matrix Z in (A.1) we can write

trace(Z) = −ã1ã4 + ã4
η2

2
− ã2ã3 + ã2

η2

2
. (A.2)

The constraint trace(Z) < 0 then implies that

η < ηtr =

√
2
ã1ã4 + ã2ã3

ã2 + ã4
. (A.3)

where ηtr ∈ R whenever (4) is satisfied.

On the other hand, det(Z) can be written as

det(Z) =
ã2ã4

4
η4 − ã2ã4

2
(ã1 + ã3) η2 (A.4)

+ ã1ã2ã3ã4 − ã2
2ã

2
4

(
1 + Φ̃ (x1(t))

2

)2

.

Since
1 + Φ̃ (x1(t))

2
< 1, ∀x1(t) > 0,

it readily follows that

det(Z) =
ã2ã4

4
η4 − ã2ã4

2
(ã1 + ã3) η2 + ã1ã2ã3ã4 − ã2

2ã
2
4

(A.5)
is a lower bound for det(Z), i.e., det(Z) < det(Z). The
roots of the equation det(Z) = 0 are real (assuming (4)
holds) and can be easily calculated as

η1 = −η2 =

√
ã1 + ã3 −

√
(ã1 − ã3)

2
+ 4ã2ã4

η3 = −η4 =

√
ã1 + ã3 +

√
(ã1 − ã3)

2
+ 4ã2ã4

. (A.6)
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Moreover, a simple inspection reveals that det(Z) > 0
when η ∈ (−∞, η1)∪ (η3,+∞), and det(Z) ≤ 0 otherwise.
If we substitute ηtr into det(Z), we have

det(Z)|η=ηtr
= − ã2

2ã
2
4

(ã2 + ã4)
2

(
(ã1 − ã3)

2
+ (ã2 + ã4)

2
)
< 0,

(A.7)
hence η1 < ηtr < η3 (by combining (A.3) and (A.6)).
Therefore, if η ∈ (−∞, η1) then

(i) the inequality (A.3) holds and, as a consequence,
trace(Z) < 0;

(ii) det(Z) > 0 and, as a consequence, det(Z) > 0;
(iii) from (i) and (ii) it follows that Z < 0.

Finally note that the bound on the right hand side of (20)
is η1 as defined in Eq. (A.6).
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