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Abstract:

In this work we propose a Model Predictive Control (MPC) framework that combines multi-
region route guidance with demand management at a macroscopic level. While route guidance
is employed to control all vehicular routes, demand management is introduced to control the
flows’ departure times. In effect a portion of the demand may be instructed to wait at their
origin before commercing their journey (i.e., delayed departure) and thus ensure that, when
vehicles do enter the network, they will travel at free-flow conditions. We show that the resulting
problem is a nonlinear optimization problem that is solved by a novel convex relaxation with
tight lower bounds on the optimal solution. Extensive simulations are conducted to evaluate
the performance of the proposed MPC convex optimization problem indicating the substantial
performance improvements in the network utilization.
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1. INTRODUCTION

Traffic congestion is increasingly becoming the number one
issue in cities with many socio-economic adverse effects.
Interestingly, traffic congestion does not necessary occur
due to the infrastructure’s limited capacity but is a result
of the absence of effective management strategies. One of
the most popular approaches to resolve this issue is route
guidance that aims to reduce the imbalances across the
urban network Papageorgiou (1990).

Most of the scientific work on route guidance consider
detail microscopic models, with complete information of
the underlying network conditions (e.g., the speed and
position of all vehicles) assumed to be known Papageor-
giou (1990). However, microscopic models tend to be
highly complex, especially in large-scale networks Daganzo
(2007). To reduce this complexity, large network areas are
split into smaller homogenous regions Mazloumian et al.
(2010) in which their traffic dynamics defined according
to the Macroscopic Fundamental Digram (MFD) Daganzo
(2007). The MFD captures the macroscopic relations be-
tween the three mobility parameters, i.e., speed, flow,
and density which can then be used for region-level route
guidance.

The new connected capabilities of vehicles have strengthen
the applicability of such route guidance methods. Cur-
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rently, cars are already equipped with onboard units that
inform drivers about real-time trip information while also
suggesting alternative less congested routes to follow. De-
spite these great features, congestion remains because
most of route guidance approaches aim only to optimize
the benefit of individuals, as opposed to the benefit of the
whole Macfarlane (2019). Nonetheless, literature indicates
that routing solutions that intend to improve the system
optimum can substantially reduce travel times and con-
gestion, with a slight decrease in traffic demand Macfar-
lane (2019). To achieve this, drivers’ route and departure
time choices should be manipulated appropriately (i.e.,
distributing traffic demand in space-time) through the
integration of route guidance with a demand management
method for Commuter Transportation (2004).

In this work we employ a Model Predictive Control (MPC)
framework to optimize the control decisions for route
guidance and demand management taking into account
future implications that are estimated utilizing the MFD
model. MPC solutions utilizing the MFD characteristics
have been considered in the past including Geroliminis
et al. (2013) that employ a nonlinear MPC framework to
control a free-way system and a two-region urban network,
respectively.

The most of the aforementioned MPC approaches rely on
nonlinear MFD models, resulting in nonconvex optimiza-
tion problems with solutions that yield suboptimal results
since nonconvex solvers may get stuck in local optima
points. The work and Menelaou et al. (2019) tries to
address this issue by approximating the nonconvex MPC
problem with a Mixed Integer Linear Program (MILP).
The work in Kouvelas et al. (2019) proposes, instead, an
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Extended Kalman Filter framework to provide traffic state
estimates to the MPC scheme, transforming the nonlinear
problem into a linear parameter-varying model.

To summarize, this work develops an MPC framework
to jointly solve the multi-regional joint route guidance
and demand management problem utilizing a generalized
MFD. Demand management is used to regulate flow de-
parture times (i.e., a portion of requesting flows may be
delayed at their origin) while route guidance seeks to find
the appropriate paths for the flows to follow in order
to increase the network’s efficiency. Given the origin and
destination pair of requesting flows, an MPC framework
is employed to find the best departure time and the best
alternative route to follow by each requesting flow to min-
imize for all vehicles the total time spent in the network.
Note that the entire time spend accounts for both the
waiting time outside the network (i.e., delayed departure)
and the travel time in the network. Hereafter, our main
contributions are as follows:

e The formulation of an MPC framework that jointly
optimizes route guidance and demand management
assuming macroscopic traffic dynamics that follow a
generalized MFD.

e Derivation of an efficient lower bound solution to
the problem that can be achieved by relaxing all
the nonconvex constraints. The proposed relaxation
provides a tight lower bound on the optimal solution.

e For those cases that the lower bound solution is infea-
sible, we proposed two algorithmic methods demon-
strating how a good quality feasible solution can be
achieved by properly manipulating of control inputs.

The rest of this paper is organized as follows. Section 2
presents the multi-regional system model for joint route
guidance and demand management and Section 3 derives
the mathematical formulation of the MPC framework.
Section 4.1 relaxes the problem to a Quadratically Con-
strained Program (QCP), and then utilizes the derived
control inputs to propose two methods that guarantee
feasibility of the computed solutions. Furthermore, Section
5 includes simulation results demonstrating that by intro-
ducing demand management the ordinary route guidance
method is improved significantly. Finally, Section 6 con-
cludes this work and discusses future research directions.

2. SYSTEM MODEL
2.1 Traffic Flow Model

An urban area is partitioned into |R| homogeneous
regions denoted by parameter r € R = {1,...,|R|}. In
this work we assume that the traffic dynamics within each
partitioned region are modelled according to macroscopic
traffic relations, Immers and Logghe (2003) , that follow
a generalized MFD shape that can be approximated by
an asymmetric unimodal curve, Knoop and Hoogendoorn
(2013). Using the MFD we can outline all important
parameters of region r such as the jam density p!, as
well as the critical density p¢ and capacity ¢¢ where
the region operates at its maximum outflow, Immers
and Logghe (2003). The flow-density MFD relationship is
complemented by the fundamental relationship that the

1

1 Homogeneity is defined according to the homogeneous distribution
of accumulated traffic as proposed in Mazloumian et al. (2010).

intended outflow of region k, q,(p,-(k)) (veh/h), is equal to
the product of density p, (k) (veh/km) and speed v, (p,(k))
(km/h) at discrete time-step k, i.e.,

Q7'(p7'(k)) = pr(k)vr(pr(k))' (1)

The term “intended outflow”; ¢, (p,-(k)), indicates the total
flow that r is ready to transfer to its neighbours and/or to
the outside world when there are no flow/storage capacity
restrictions from neighbouring regions. It has been empir-
ically observed that p¢ < p’/2 and that ¢,(p,(k)) is well-
approximated using a third-order polynomial of density,
Geroliminis and Daganzo (2008)

ar(pr(k)) = a"'lp'f'(k)B + a7-2p,n(k’)2 +arpr(k) (2
where, a,,, a,, and a,, are constant calibration parame-
ters. It follows from (1) that the regional speed, v,.(p,-(k)),
is related to density through a second order polynomial,
ie.,

vy (pr(k)) = arlpr(k)Q + ary pr (k) + arg.- (3)
Let O € R and D C R denote the sets of origin and
destination regions of different flows, respectively. Also, let
J~ C R denote the set of neighbouring regions directly

accessible from region r € R, and similarly let 7% = J~U
{r}, such that

7. = Jr,ifr eD
" | J7, otherwise. (4)

Furthermore, let d,q(k) (veh) denote the new external
demand which determines the number of new vehicles
requesting to enter into the network from o € O to
d € D at time-step k. Similarly, let doq(k) (veh) denote the
admitted external demand that determines the number of
vehicles that actually enter into the network from region
o € O towards d € D at time-step k. Variable doq(k) is
restricted by three factors:

(1) The physical ability of the region to accommodate
more vehicles.

(2) The maximum possible demand that can physically
enter region o during time-step k denoted by D%AX .

(3) The proposed demand management approach that
may only allow a portion of the requesting demand to
enter into the network; in this case the remaining ve-
hicles will wait at their origins (outside the network)
until their admission time.

The cumulative external demand, Doq(k) (veh), is used to
keep track of the remaining demand that remains to be
served at time-step k, such that

Dog(k 4+ 1) = Dog(k) — dpa(k) + doa(k), k= 1,2, ...
where, Dyq(1) = 0.

, (5)

To keep track of the portion of traffic destined for different
regions, we further introduce variables p,.4(k) which denote
the density in region r € R that is destined to d € D.
Clearly, it is true that

pr(k) =" pralk). (6)

deD

Similarly, variables ¢,.q(k) and g,;q(k) denote the intended
transfer flow from r € R to d € D, and from r € R to
d € D through neighbouring region j € J, respectively,
defined as
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ara(k) = vr(pr(k))pra(k), (7)
qr(pr(k)) = Z Z qrjd(k)' (8)
deD jeT-

Note that in the case that {r = j = d} € D, the
variables gqqq(k) determine the number of vehicles reach
their destination andy hence exit the network.

As mentioned above, the intended transfer flow of a region
r € R is restricted by the flow/storage capacity of its
neighbouring regions j € J~ with variable C,;(p;(k)),
denotes the inter-boundary capacity of region r with region
j. The inter-boundary capacity specifies the maximum
flow that can be exchanged between the two neighbouring
regions, for a specific value of p;(k). According to Sirmatel
and Geroliminis (2019), C,;(p;(k)) can be modelled as

O i pj(k) < apy,

Crjlpi(k)) = ¢ O™

(1— P;/‘)(f)

o ), otherwise, (9)

where C%AX is the maximum inter-boundary capacity and

ozpf is the point where the inter-boundary capacity starts
to decrease with 0 < a < 1. Therefore, the intended
transfer flow is restricted from the volume of density in
region r € R, while the transfer flow of neighboring region
J is analogous to its remaining storage capacity which also
depends on the transfer flows from other regions s € {7, —
r}. Hence, the actual transfer flow fromr € R to j € J,.,
denoted by variable Grjq(k), is defined as

’ (10)

Taking the above into account, the dynamics of traffic
density aiming to move from region r» € R to region d € D
are defined as

pra(k +1) = pra(k) + 7—dra(k)

1
L
h Gird(k) — Grja(k 11
+ L Z (Gjra(k) = Grja(k)) (11)
jETr

where L, and T; denote the average distance travelled
(km) by each vehicle inside region r and the duration
of the discrete simulation time -step, respectively. Similar
to Sirmatel and Geroliminis (2019), in this work we have
assumed that L, is independent of the origin-destination

flow pair and the route choices of drivers.

3. PROBLEM DESCRIPTION

In this section, we employ the traffic dynamics described
in Section 2 to formulate an optimization problem that
aims to optimize the performance of the traffic network
under joint route guidance and demand management.
Route guidance splits each origin-destination traffic flow
into distinct paths, while demand management regulates
the entry of different flows into the network to optimize
performance. The optimal performance is defined in terms
of the minimization of the Total Time Spent (TTS), that
includes both the Total Travel Time (TTT) of all vehicles
inside the network and the Total Waiting Time (TWT)
outside the network from the request to the actual time of
entry of vehicles.

8.1 Objective function

In an effort to define our objective function, we introduce
variables S%(k) and S®(k) representing the cumulative
number of vehicles that request to enter the network and
successfully arrive at their destination, respectively, as
follows

Sk +1) =Sk) + > Y doalk), (12)
0cOdeD
SP(k+1) = 8"(k) + T > qaaa(k), (13)
deD

for k=1, 2,..., where S%(1) = 0 and S°(1) = 0.

Summing over all time-steps, yields the TTS in the net-
work of all vehicles Jrrg (veh-h)
Jrrs =T, S (8°(k) — S*(k). (14)
k
Note that the TTS includes both the TWT and the TTT
(TTS=TTT+TWT).

3.2 Model Predictive Control Formulation

To formulate the considered optimization problem we
follow a Model Predictive Control approach with the
control time-step equal to the simulation time-step such
that any control action can be taken every discrete time-
step T. The control and prediction horizons are both equal
to Np, while a new MPC problem is solved every m time-
steps. Hence, we solve the [-th MPC problem, [ =1,2,...,
for the time horizon K; = {m(l — 1)+ 1,...,m(l — 1) +
N,} and apply to the traffic network the control actions
corresponding to time-steps {m(l — 1) + 1,....,mi}. The
control variables of the MPC problem are the intended
transfer flows, ¢,;a(k) (route guidance), and admitted
external flows dyq(k) (demand management) to minimize
the TTS as follows:

(P1) min JpH7() =T, Y (S*(k) = S"(k)
ke,
s.t. Traffic dynamics: (2) — (13),

doa(k) < DMAX ke Kj,0€ O,d € D, (

Jod(k) SDOd(k)7 ke’C[,OEO,dED, (

0<pe(k)<pl keK,reR, (15d)
)

(15a)

Variables: p,(k), pra(k), doa(k), Dra(k), g-(k
QTd(k)v QTjd(k)v ‘jrjd(k)a Ur(k)a Sa(k)v Sb(k)

Problem P, is an MPC optimization problem where con-
straints (2) - (13) define the traffic dynamics modelled
according to a generalized shape MFD. Constraints (15b)
and (15¢) define the physical constraints of the external
demand inflows ensuring that it is always smaller than
the maximum possible external inflow, D%AX , and the
total external demand, D,q(k). Similarly, constraint (15d)
ensures that the density of each region is within physical
limits. Problem P1 is a nonconvex Nonlinear Program
(NLP) due to presence of the third order polynomial of
Eq. (2), the bilinear term in Eq. (7) and nonlinear func-
tions in Eq. (9) and Eq. (10).
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4. SOLUTION APPROACH

In this section, we first reformulate Problem Py to obtain
a lower bound solution (Section 4.1) and then utilize the
derived control inputs for the development of two solu-
tion approaches. The Flow Normalization Route Guidance
and Demand Management (FN-RGDM) normalizes the
intended transfer flows from the lower bound solution to
derive flow ratios that should be transferred from one
region to its neighboring regions. The Iterative Bounding
Box Route Guidance and Demand Management (IBB-
RGDM) is an iterative method that produces bounding
box constraints for the traffic densities and speeds and
solves a convex optimization problem with tighter relax-
ations in each iteration.

4.1 Lower Bound Solution to Problem Py

In this section we present how problem P; can be re-
laxed into a Quadratically Constrained Program, and
hence solved to optimality using standard mathematical
programming solvers. The developed formulation relaxes
all nonconvex constraints with constraints whose domains
are supersets of the corresponding nonconvex constraint
domains. As a result, the obtained solution from this
formulation yields lower bounds to the optimal objective
value and hence, the particular formulation can be used
to derive the optimality gap of any developed solution
approach. Next, we derive superset convex constraints for
the four nonconvex constraints of Problem P1, namely, (2),
(7), (9) and (10).

To convexify Eq. (2), we construct a convex envelop of the
generalized MFD diagram using piecewise linear segments.
Towards this direction, we define a set of affine functions
of the form, a,p,(k) + b,, r € R, n € N, such that

¢ (pr(k)) < anpr(k) + bn,Vn € N, (16)

where N, = {1,..,N,} is the set of piecewise linear
segments defined for the approximation of Eq. (2) in region
r. Because we are interested in obtaining a lower bound
solution, all affine functions should be selected to lie above
the curvature of g, (p,(k)).

To convexify Eq. (3), we substitute the equality sign “="
with an inequality sign, either “>” when a,, > 0 or
“<” when a,, < 0. Usually a,, > 0, yielding the convex
relaxation

vr(pr(K)) = ar, pr(k)? + ary pr(k) + . (17)
Let us now consider constraint (7) which involves the
product of two variables p.q(k) and v,.(p.(k)). As this
constraint has a bilinear term, we use the McCormick
method, McCormick (1976), to derive convex envelopes to
these constraints using the lower and upper bounds of the
two variables. In this case, we can use the physical limits
of the variables, i.e., 0 < p.q(k) < p and 0 < v, (p,.(k)) <
vf, where v/ denotes the free-flow speed v/ = v,(0) = a,,
to obtain the following set of inequalities:

%"d(k) >0, 18
19
20

(
(
(
(21

)
)
)
)

Eqgs. (18) and (19) are referred as underestimators, while
Egs. (20) and (21) as owverestimators of Eq. (7). The
above linear inequalities construct a convex envelop to
the original equality g¢.q¢(k) = pra(k)v.(p-(k)), called
McCormick envelope, that is a superset of the nonconvex
feasibility domain of (7).

Finally, constraints (9) and (10) are handled together. It is
true that constraint (10) is the minimum of two functions
and thus it can be relaxed by substituting the equality sign
“=" with the inequality sign “<” yielding:

drjd(k) < Q7'jd(k)a

Grja(k) < Crj(p;(k))

(22)
qrja(k)
Zy €D Grjy(k)”

Observing the two new constraints (22) and (23), it
can be observed that constraint (22) is linear, while
constraint (23) is nonconvex; hence, further relaxation is
required. Taking the sum over all §,;q(k) for d € D in
constraint (23) yields

> Grja(k) < Crj(p;(k)),

dep
which is a relaxed version of (23). This stems for the fact
that individual constraints are always at least as tight as
the sum of the associated constraints. Although convex,
constraint (24) is still nonlinear due to presence of the
min operator in Cy;(p;(k)). It can be easily verified that
constraint (24) is equivalent to

(23)

(24)

> drja(k) < CHAX, (25)
deD

) CA% - pjlk
Sty < S P (g
deD o pJ

forall k e K, r€R, je J,.

Therefore, egs. (9) and (10) are relaxed into the linear
constraints (22), (25) and (26).

In sum, Problem P; can be relaxed into:
min Jp'7 (1) = To Y (S*(k) — S°(k))
kEK,
s.t. Constraints: (1), (4) — (6), (8), (11) — (13), (16)—
(21), (22), (25) — (26).
Variables: p,.(k), pra(k), doq(k), Dyra(k), ¢ (k),
Gra(k); @rja(k); Grja(k), vr(k), S°(k), S°(k).

Formulation (27) is a Quadratically Constrained Program
(QCP) that provides a lower bound to the optimal ob-
jective value which can be used to assess the optimality
gap of any solution approach for Problem P;. Although,
formulation (27) may lead to infeasible solutions due to
possible non-satisfaction of the relaxed constraints, feasi-
ble solutions can be obtained through the two developed
approaches (FN-RGDM and IBB-RGDM) implemented
within the MPC framework that follows.

(27)

4.2 General MPC' framework

In this work the considered physical plant is described
according to the non-linear problem (P;) whereas, every m
time-steps the external demands for the prediction horizon
and the current state of the network are input into the
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MPC controller which computes the Lower Bound values
(according to problem 27) for the control variables (i.e.,
the admitted demands and intended transfer flows) for
the entire prediction horizon. It should be emphasized
here that the intended transfer flows g¢,;q are not used
directly to the physical plant, but are converted into split
ratios (i.e., arja(k)=qrja(k)/ > 4ep @rja(k) ) which denote
the percentage of the actual transfer flow to each of the
destination regions. Unfortunately even if ratios are used
in the physical plant, the solution still may not be feasible
due to the modelling differences of the actual and relaxed
model. More specifically, the actual capacity accounted
for different destinations in each region of the network
may not be equal to what is assumed from the relaxed
models in the lower bound solution. To address this,
either FN-RGDM or IBB-RGDM methods are employed
to ensure feasible control inputs. In doing so, flow rations
(a7 (k)gra(k)) are used to normalize the intended transfer
flows of each region and are used as control inputs to
the network. The control inputs are then used to update
the state of the the physical plant for the next m time-
steps using the nonlinear multi-regional model dynamics
described in Section 2. The procedure is then repeated
until the end of the simulation.

4.8 Flow Normalization Route Guidance and Demand
Management

The FN-RGDM method is responsible to find the normal-
ized split ratios that will result in feasible transfer flows
across neighbouring regions. In this method, split ratios
are normalized as follows:
nor q”I’IdB (k)
arjd(k) aTJd(k) qf;ls(k)
where ¢ZP (k) and ¢f%(k) denote the portion of intended
outflows obtained from the lower bound solution and the
actual ones that are measured from the network, respec-
tively. In this way, split ratios are changed proportionally
to the actual available capacity of each particular region.

(28)

4.4 Iterative Bounding Box Route Guidance and Demand
Management

The IBB-RGDM is an iterative method that is based
on three repetitive steps. On each iteration, the method
temporarily simulates the physical plant to get future
estimates about each region’s density and speed, that in
turn are used to create tight box constraints for traffic.
In the sequel, problem (27) is linearised based on the
derived box constraints. More specifically, at the first
step the solution of (27) is simulated (using the non-
linear MFD models) for the whole prediction horizon.
The estimated values of speed and density (i.e.,u?(p,(k))
and pJ(k)) are then used to derive tighter bounds in the
linearised program (27) by replacing constraint Eq. (17)
with following inequalities:

CrpS(k) < pr(k) < CapS(k), (29)

Cauy (pr(K)) < vr(pr(k)) < Caug(pr(K)),  (30)
where, C; are constants such that C1,C5 € [0,1], Cy > 1
and Cy > 1. By doing so, program (27) is replaced by
program (31) where in each algorithm iteration tighter
bounds are provided. The third step updates a,;q(k) before

the procedure is repeated until the desired convergence is
achieved. Note that this iterative algorithm can terminate
by applying a gradient based methodology on the conver-
gence or by setting a predefined number of iterations, as
is done in the simulation results of this work. Finally the
updated a,;jq(k) are normalized using (28) before control
inputs are returned to the plant.
min JC (1) = To Y (S°(k) — S°(k))
ke,
s.t. Constraints: (1), (4) — (6), (8), (11) — (13), (16),
(18) — (21), (22), (25) — (26) and (29) — (30).

Variables: p,-(k), pra(k), doa(k), Dra(k), q-(k), ¢ra(k)
qud(k)7 q~rjd(k)7 ’UT(k)a Sa(k)7 Sb(k)

5. SIMULATION RESULTS

(31)

Hereafter, an extensive performance evaluation is con-
ducted for the proposed methodologies considering a
Manhattan-style network in which 4 regions are consid-
ered as origins and 4 as destinations. The network con-
sists of 16 regions each one assumed to have identical
MFDs with the following parameters: a,, = 8/1225, a,
1992/735, ay, = 14768/147, pC = 43 (veh/km), p/ =
118 (veh/km), L, = 1 (km) and ¢¢ = 1850 (veh/h).

Furthermore, the inter-boundary capacity constraint pre-
sented in Eq. (9) and (10) is considered, with C’%I.AX =
2000 (veh/h) and a = 0.25. The prediction and control
horizons are set to mV,, = 20 and m = 1, respectively, and
a simulation sample time T = 30s is used. For comparison,
the performance of the following schemes is examined:

e SP: In this scheme all vehicles follow the shortest
distance path from their origin to their destination,

e FN-RGDM: The Flow Normalization Route Guid-
ance and Demand Management as presented in Sec-
tion 4.3 is employed,

e IBB-RGDM: The Iterative Bounding Box Route
Guidance and Demand Management as presented in
Section 4.4 is employed.

where the Gurobi solver Gurobi Optimization Inc. (2016)
is used to solve all related optimization problems. Finally,
all three schemes are evaluated for the following 3 demand
scenarios: (i) light with average demand around 1000
veh/h, (ii) moderate with average demand around 3000
veh/h and (iii) heavy with average demand around 6000
veh/h. The demand loading lasts for one hour and varies
for different O-D pairs. In this work we assume that the
compliance rate of drivers is equal to 100%.

5.1 Performance evaluation

On Table 5.1 we present the performance results of the
three schemes in terms of the Average Time Spent (ATS),
the Average Travel Time (ATT), and the Average Waiting
Time (AWT) at the origin (waiting occurs outside the
network). Looking at these results, it is clear that the SP
scheme leads to very large travel times for the high demand
scenarios while the proposed schemes yield good perfor-
mance for all loading scenarios, with their performance
only slightly affected with increasing demand. Note that
although waiting at the origin is not explicitly imposed in
the SP scheme, waiting occurs implicitly for vehicles that
want to enter a region that is in a gridlock.
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Demand Level

Light Moderate Heavy
L= SP 2.73 198.38  670.01
2 Z FN-RGDM  2.68 3.69 5.66
<= IBB-RGDM 2.64 3.38 4.78
.= SP 2.73 68.5 93.56
£ £ FN-RGDM  2.68 3.49 4.33
<= IBB-RGDM 2.64 3.23 3.69
e SP 0 127.3 573.26
= £ FN-RGDM 0 0.2 1.32
<=  IBB-RGDM 0 0.14 1.09

Table 1. Performance evaluation of different so-
lution approaches for different demand levels.

Scenario Average Optimality Gap
Number Demand FN-RGDM IBB-RGDM
1 1000 veh/h 4.25% 2.12 %

2 3000 veh/h 9.81 % 3.65%
3 4000 veh/h 14.94% 4.91%
4 5100 veh/h 18.22% 4.96%
5 6000 veh/h 25.80 % 5.71 %

Table 2. The optimality gap of FN-RGDM and
IBB-RGDM compared to the lower bound.

5.2 Optimality Gap

To examine the optimality gap between the Lower Bound
(LB) and both upper bound methods (i.e., FN-RGDM
and IBB-RGDM) we have evaluated the optimal objective
value of the LB obtained using formulation (27) with
the problem solved once for the entire time horizon, i.e.,
K=1{1,...,T+N,}. For the FN-RGDM and IBB-RGDM,
we consider m = 1 and N, = 20 time-steps, similar to
the results presented in the previous experiments. The
optimality criterion of choice is the optimality gap defined
as follows:

JAlg _ JLB
w x 100%,
JTTS

where JEB  and J{f}ﬁs, Alg = {LFN-RGDM , IBB-RGDM},
denote the TTS values, according to Eq. (14), obtained
from the LB solution and the FN-RGDM and IBB-RGDM
solutions, respectively. Table 2 illustrates the optimality
gap of the FN-RGDM and IBB-RGDM schemes for six
demand scenarios of increasing average value for the same
simulation time-step and duration (i.e., Ts = 30 sand T' =
120 min). From the results, we can observed that the IBB-
RGDM method can provide results closer to optimality in
all the cases considered. This is a very important result
which highlights the fact that IBB-RGDM obtains tight
bounds near optimality. Furthermore, again it is clear that
IBB-RGDM outperforms FN-LB as the performance of
the latter method tends to drop for increasing congestion
levels.

Optimality Gap =

6. CONCLUSIONS
This work investigate a novel multi-region route guidance
approach with demand management using a generalized
MFD model. The resulting framework is a nonlinear non-
convex problem that is solved efficiently by implement-
ing a convex relaxation solved using QCP optimization.
The proposed methodology can successfully eliminate con-
gested conditions by managing the departure times of

vehicle flows (i.e., vehicular flows may held at their origin
before instructed to commence their journeys).

Future research will include a detailed comparison of
the proposed methodology with other state-of-the-art ap-
proaches (e.g., ordinary route guidance and perimeter con-
trol) while we will also examining adaptations of state-of-
the-art solutions using our proposed convex relaxation.
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