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Abstract: Fatigue-related traffic accidents have a higher mortality rate and cause more
significant damage to the environment. To ensure driving safety, a real-time driver fatigue
detection method based on convolutional neural network (CNN) is proposed in this paper.
The proposed fatigue driving detection method is cascaded by two CNN-based stages, including
a detecting phase and classifying phase. The Location Detection Network is designed to extract
facial features and localize the driver’s eyes and mouth regions. Then the State Recognition
Network is training to recognize the driver’s eyes and mouth status. Simulations show that
the proposed method has good effect of real time process and high accuracy of detection.
Experiments conducted on Raspberry Pi 4 embedded system indicate that the proposed method
has a good performance in the real driving environment.

Keywords: Driving safety; Driver fatigue detection; Facial feature; Convolutional neural
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1. INTRODUCTION

The rapid development of the transportation system has
also increased the number of casualties. Fatigued driving
has always been a driver’s occupational hazard, which is
a significant cause of road traffic accidents and has an
important impact on road safety (Sikander and Anwar,
2018). 16% of fatal traffic accidents and 13% of collisions
that cause injuries are related to fatigue driving (Asbridge
et al., 2012). The AAA Foundation published a report
on traffic safety (Arnold and Tefft, 2015), which stated
that drivers’ attention and decision-making ability during
fatigue driving would be affected and cause accidents.
They appeal to the public to pay attention to the danger
and seriousness of fatigue driving.
Many methods and experiments have been applied for
the driver fatigue detection. Currently, fatigue driving
detection can be divided into three categories according to
the input characteristics: physiological parameters, vehicle
data, and facial features.
The driver fatigue detection method based on monitoring
physiological parameters is closely related to the physio-
logical status of the driver. Some physiological features can
be utilized as fatigue representation, such as electrocardio-
gram (ECG) (Fu and Wang, 2014), electroencephalogram
(EEG) (Simon et al., 2011), electromyography (EMG)
(Zhang et al., 2013) and electrooculogram (EOG) (Lal and
Craig, 2002). The driver fatigue level can be determined
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by the changes of acquired physiological features. These
methods have been shown to have good accuracy. How-
ever, to measure these parameters, the driver is required
to wear the appropriate detection equipment during the
driving process, which is a driver’s intrusion mechanism
that interferes with the driver’s normal driving.
Fatigue driving detection method by analyzing vehicle
data is an indirect detection method. Data information
sharing between vehicles in (Al-Sultan et al., 2013) is used
to detect the driver’s abnormal behavior. (Sandberg and
Wahde, 2008) analyzed time-series data such as vehicle
speed and steering wheel angle for fatigue driving detec-
tion, which can predict fatigue-related lane departure six
seconds in advance. Obtaining and analyzing the real-time
data on the vehicle is susceptible to the driver’s driving
habits and the external environment, so the detection
accuracy is closely related to the driver and the driving
environment.
Facial fatigue characteristics include head posture, yawn-
ing cycle, blink frequency, etc. (Mandal et al., 2016) is
based on the adaptive integration of multiple models for
detecting eyes. It can be used to estimate driver’s fatigue
state but the multiple models are very complicated. In
(Alioua et al., 2014), yawning is used for driver fatigue
detection. Support Vector Machine (SVM) and gradient
edge detectors are used to locate the mouth. The method
needs more features to be included to improve accuracy.
Facial features can be learned through deep learning tech-
niques. Convolutional neural network (CNN) has shown
the high accuracy and efficiency in object detection and
recognition. Various object detection algorithms based on
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Fig. 1. Original and gamma correction renderings: (a) Underexposed image. (b) Underexposed image after gamma
correction. (c) Overexposed image. (d) Overexposed image after gamma correction.

CNN have become ubiquitous, like Faster RCNN (Ren
et al., 2015), single-shot multibox detector (SSD) (Liu
et al., 2016), you only look once (YOLO) (Redmon et al.,
2016), etc. To take advantage of the high accuracy and
high efficiency of CNN, we propose a CNN-based driver
fatigue detection method. It includes a Location Detection
Network and a State Recognition Network. The Location
Detection Network extracts eyes and mouth regions in-
stead of the driver’s whole face. Extracting local facial
regions can reduce network training parameters and un-
desirable noise effects. The State Recognition Network is
responsible for judging the state of the eyes and mouth
regions. The integration of the driver’s eyes state and
mouth state for a period of time can determine whether
the driver is driving fatigue.
The contributions of this paper are three-fold. First,
gamma correction is added on the frame image prepro-
cessing to achieve automatic grayscale correction of the
uneven illuminance image. Second, we propose a real-
time fatigue driving detection method based on a two-
stage convolutional neural network. Third, results on the
computer and the embedded device Raspberry Pi 4 are
provided to show the proposed method can achieve real-
time requirements with high detection accuracy.
The remainder of this paper is organized as follows. In
Section II, we introduce gamma correction in the frame
image preprocessing. In Section III, we propose a real-time
fatigue driving detection method based on a two-stage
convolutional neural network. In Section IV, we evaluate
the performance of the proposed method using a computer
and Raspberry Pi 4. We conclude the paper in Section V.

2. FRAME IMAGE PREPROCESSING

During the fatigue detection process, the driver’s face
would be unclear and the quality of the frame image
would be affected when the illumination intensity changed
drastically. The frame image can easily be underexposed
or overexposed. Fig. 1(a) shows the cases of underexposure
and Fig. 1(c) shows the case of overexposure. The grayscale
distribution of such images is uneven. It greatly reduces
the quality of the frame image, which will have a serious
negative impact on the subsequent use of real-time frame
images to analyze whether the driver is fatigued or not. To
solve this problem, gamma correction is added in the frame
image preprocessing to reduce the influence of uneven
gray distribution on the image and improve frame image
quality.

Cathode Ray Tube (CRT) display was once widely used
worldwide. The relationship between the input voltage of
CRT display and screen brightness is nonlinear. There is
a power-law curve relationship between them. The power-
law curve is described by the following gamma correction
formula:

Vout = V γ
in, (1)

where the non-negative real input value Vin is raised to
the power γ to get the output value Vout.
Color input in the camera will eventually diminish bright-
ness when displaying to the display, which will affect the
quality of imaging. The camera must perform gamma cor-
rection to keep the imaging quality. Therefore, the camera
need to introduce a nonlinear distortion opposite to the
display. We call it the gamma value of the camera, which
is 1/γ. The relevant formula is as follows:

Vout = (Vin)
1/γ

. (2)

The gamma correction of the camera and the gamma
correction of the display cancel each other out, which can
reduce the influence of the uneven grayscale distribution
of the image. From the equation (1) and the equation (2),
the equation (3) can be obtained:

Vdisplay =
(
V 1/γ1
camera

)γ2

= V γ2/γ1
camera. (3)

Equation (3) shows that when γ1 is equal to γ2, the display
can display the image of the original scene perfectly.
Gamma correction is essentially a power function on
grayscale. Therefore, gamma correction is also applied to
image processing to achieve image contrast enhancement,
smoothing the details of dark or light tones.
In the real driving condition, since the eyes and mouth re-
gions acquired through the frame image are hardly partial
overexposed or partial underexposed, gamma correction
can be performed on the entire frame image to improve
image contrast. As shown in Fig. 1(b) and Fig. 1(d),
the gray value of the input frame image is transformed
into a roughly similar desired gray value by the gamma
correction.

3. DRIVER FATIGUE DETECTION METHOD

In this section, we propose a driver fatigue detection
method based on convolutional neural network. The
framework of the proposed method is shown in Fig. 2. Lo-
cation Detection Network and State Recognition Network
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Fig. 2. Fatigue Driving Detection Method.

Fig. 3. YOLOv3 Network Structure compared with Loca-
tion Detection Network structure.

are proposed for the implementation of fatigue detection.
A driver fatigue criteria with three levels will be given to
determine whether the driver is driving fatigued.

3.1 Location Detection Network

Location Detection Network is inspired by YOLOv3,
which is an object detection algorithm based on CNN. As
shown in Fig. 3, YOLOv3 uses convolutional layers and
residual layers as the feature extraction network (back-
bone network) and uses a multi-scale detection method
for different size object detection. For the proposed driver
fatigue detection method, we focus on detecting two facial
features (i.e., eyes and mouth) and we have to guarantee
the detection speed and accuracy for the real-time driving
condition. The Location Detection Network is designed
with reference to the backbone network and multi-scale
detection method of YOLOv3.
Location Detection Network is built with convolution
layers and pooling layers, as shown in Fig. 3. We use 6
convolutional layers and 6 pooling layers as the feature
extraction network. Using a smaller number of convolution
layers is that we focus on two facial features extraction and
can ensure that training with a smaller size of dataset is
less prone to over-fitting problems. The residual layers are
removed because the residual layers in the shallow network
do not greatly optimize the accuracy but slow down the
detection speed. The reason for adding the pooling layer

Fig. 4. State Recognition Network structure.

is that pooling is an image downsampling operation that
speeds up the model computation.
A scale of detection result is obtained through two con-
volutional layers after the backbone network. The feature
map here for detection has 32 times downsampling com-
pared to the input image. As shown in Fig. 3, the input
image size is 416 x 416 and the feature map size is 13 x
13. The feature map contains the basic object informa-
tion, like edges, colors, primary position information, etc.
The feature map of the ninth layer upsamples and then
concatenate with the fifth layer feature map. The fusion
feature map has 16 times downsampling compared to the
input image. It contains the semantic information of the
eyes and mouth regions on the driver’s face.

3.2 State Recognition Network

The eyes and mouth regions are obtained by the Location
Detection Network. State Recognition Network is used to
determine the state of the mouth and eye regions, i.e., open
or closed.
State Recognition Network structure is shown in Fig. 4.
Eyes and mouth regions obtained from the Location De-
tection Network are in a different size. We resize the eyes
and mouth regions to 68 x 68 and then feed them to the
State Recognition Network. The convolution kernels’ size
is 3 x 3 and the step size is 1. To keep edge information
of the image, padding is used to fill all zeros around the
image after the first convolution. The maximum pooling
layer has a convolution kernel size of 2 x 2 and a step size
of 2. The features extracted by the previous convolutional
layer and the maximum pooling layer are integrated by the
fully connected layer. Eyes and mouth states are classified
by the softmax layer finally.
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3.3 Driver Fatigue Criteria

PERCLOS refers to the percentage of total eyes closure
time in a certain period of time, which is the most effective
indicator for visual fatigue detection. In this paper, N
frames are collected through the video stream in the time
period T , and the PERCLOS value is defined as:

PERCLOS =
Neye

N
× 100%, (4)

where Neye represents the number of closed eyes frames
in the N frames. People blink average ten to twenty
times per minute. The normal blink time of people is
between 0.2s and 0.3s, and the PERCLOS value is between
3.3% and 10%. If the blink time is between 0.5s and 3s,
the driver can be regarded as a fatigued state and the
PERCLOS value is between 16.7% and 100%. In this
paper, in order to distinguish fatigue state and normal
driving state accurately, when PERCLOS value is greater
than 20%, the driver is considered to be in a state of
fatigue.
During fatigue driving, the driver may fall asleep, his eyes
will close for a long time. When driver yawns, his mouth
will open for a long time. The continuous closed eyes frame
time Fe and the continuous opened mouth frame time Fm

are defined by the following formula:

Fe = (Eend − Estart)×
T

N
, (5)

Fm = (Mend −Mstart)×
T

N
, (6)

where Eend represents the end number of continuous
closed eye frames, Estart represents the starting frame
of continuous closed eye frames, Mend represents the
end frame of continuous closed mouth frames, Mstart

represents the starting frame of continuous closed mouth
frames and T

N represents the time interval between the
every two selected frames.
In this paper, the driver’s fatigue state is divided into
three levels. The first type is the danger level, where the
continuous eye-closing time is more than three seconds.
When the driver’s eyes are closed for more than three
seconds, they will unable to respond correctly when an
accident occurs. The system should remind the driver to
pay attention to road conditions. The second type is the
warning level, where the PERCLOS value exceeds the
threshold value of 20% or the continuous eye-closing time
is between 0.5s and 3s or the continuous mouth opening
time reaches 4s or more. The driver may be fatigued. The
driver should pay attention to have a rest and avoid fatigue
driving. The third type is the normal level. The driver is
driving normally.

4. EXPERIMENTS

In this section, we will first introduce the training data
set, which consists of the YawDD data set and the self-
build data set. Second, we compare the accuracy and speed
on the Location Detection Network with existing methods
on the computer. And we show the State Recognition
Network has good classification performance after train-
ing. Finally, we evaluate the performance of the proposed

Fig. 5. YawDD data set and self-build data set.
driver fatigue detection method on the embedded device
Raspberry Pi 4.

4.1 Data Collection

The proposed driver fatigue detection method is consisted
of Location Detection Network and State Recognition
Network. We need to collect samples to train the two
networks. As shown in Fig. 5, the training data set is
composed of the YawDD data set and the self-built data
set. The YawDD data set (Abtahi et al., 2014) is a driver
video data set with 351 video sequences, which is used
to design yawn detection algorithms and test models. We
select 20 videos from the YawDD data set to convert into
frame images. The self-built data set contains 1020 images,
which is collected from 10 volunteers. We use labelImg, an
open-source graphical image annotation tool to mark the
driver’s eyes and mouth position information. The frame
images with eyes and mouth position information are used
for the Location Detection Network training. Eyes and
mouth regions are used to train the State Recognition
Network.

4.2 Experiments on Computer

The experiment uses the CPU model Intel(R) Core(TM)
i5-8300H, a main frequency of 2.3 GHz, a memory of 16
G, and the GTX1060 GPU as the experimental platform.
In our experiments, the pytorch platform is used to build
the convolutional neural networks.
We evaluate the Location Detection Network’s detection
accuracy and detection speed with Faster RCNN, SSD,
and YOLOv3. Fig. 6 shows the result of PR (precision-
recall) curve on the YawDD data set and the self-build
data set. The proposed Location Detection Network has
obvious advantages in eyes and mouth regions position
detection compared with Faster RCNN and SSD, slightly
better than YOLOv3. Combined with Table 1, the Lo-
cation Detection Network detection speed is much faster
than the other three methods. Fig. 7 shows the detection
results by Location Detection Network on the two data
sets.
Eyes and mouth regions, which are consisted by the
YawDD data set and self-build data set, are set to train
the State Recognition Network. we set the batch size to
64 and the learning rate is set to 0.001. 100 epochs are
trained on the data set in this paper. Fig. 8(a) shows
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(a) (b)

Fig. 6. P-R curves on the two data sets: (a) YawDD data
set. (b) self-build data set.
Table 1. Average detection speed on YawDD

data set and self-build data set
Network Frames Per Second

SSD 17
Faster RCNN 5

YOLOv3 22
Location Detection Network 41

(a) (b) (c)

(d) (e) (f)

Fig. 7. Detection results of the Location Detection Net-
work on the two data sets: (a-c) self-build data set,
(d-f) YawDD data set.

that the classification accuracy of the training set is 98.3%
compared with 93.83% on the validation set, which can
be seen that the State Recognition Network has not been
over-fitting. The training loss and validation loss are shown
in Fig. 8(b). The State Recognition Network model with
the smallest loss on the validation set is saved as the final
training model.

(a) (b)

Fig. 8. Training results of the State Recognition Network.
(a) model accuracy on training set and validation set.
(b) model loss on training set and validation set.

4.3 Experiments on Raspberry Pi 4

Most of the object detection algorithms based on convolu-
tional neural network are deployed on the computer with

Fig. 9. Raspberry Pi 4 with driver fatigue detection model
in the real driving environment.

multiple GPUs. The platform has the mighty computing
power and can deploy large-scale network models. How-
ever, due to the relatively large size, it is difficult to achieve
industrial applications even if real-time object detection is
achieved on the platforms. Therefore, deploying model to
the embedded device is important for realizing intelligent
transportation.
The embedded device Raspberry Pi 4 is popular for its low-
cost, portability, and connectivity features. The Raspberry
Pi 4 has 4 GB RAM and 1.5 GHz processing speed, which
provides desktop performance comparable to entry-level
x86 PC systems. We choose Raspberry Pi 4 to build the
proposed driver fatigue detection model to verify the real-
time performance and accuracy.

Table 2. Average time cost on Raspberry Pi 4

Process Time Cost(ms)
Frame Image Preprocessing 4.8

Stage1(Location Detection Network) 65.8
Stage2(State Recognition Network) 25.7

Total 96.3

In Fig. 9, the Raspberry Pi 4 with a camera and a monitor
is put to a car. The proposed driver fatigue method has
three processes, including the frame image preprocessing,
facial feature extraction (stage1) and facial feature recog-
nition (stage2). As shown in Table 2, we record the average
processing time cost of the three processes on Raspberry
Pi 4. Location Detection Network costs much of the time
because it needs many computations. According to Ta-
ble 2, analyzing a frame image costs 96.3ms. Therefore, the
proposed driver fatigue detection speed achieves 10.4 FPS
on Raspberry Pi 4, which meets real-time requirements for
embedded device.
To verify the accuracy of the proposed method, we record
the eyes state and mouth state in the selected frames on
the Raspberry Pi 4. It shows that the average accuracy of
the records for driver fatigue detection is 94.7%, which
meets our requirements in terms of fatigue detection
accuracy. Fig. 10 shows the record results. When the state
is equal to 1, it means the eyes or the mouth is open. When
the state is equal to 0, it means the eyes or the mouth is
closed. Fig. 10(a) indicates that the driver is in a normal
driving condition. The number of closed eyes frames for the
driver is about three frames. The warning level is shown in
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Fig. 10. Eye state and mouth state with different fatigue level on Raspberry Pi 4: (a) eye state with normal level. (b)
eye state with warning level. (c) eye state with danger level. (d) mouth state with warning level.

Fig. 10(b) and Fig. 10(d). Fig. 10(b) presents that a total
of 216 frames in 1000 frames the eyes are closed, which
means the PERCLOS value is greater than 20%. Fig. 10(d)
shows that the continuous opened mouth frame number is
81, which means the yawning time of the driver is about
eight seconds. The driver at the warning level needs to
have a rest and prevent fatigue driving. The danger level
is shown in Fig. 10(c). The continuous eye-closing frame
number is 56, which means the continuous eye-closing time
of the driver is about six seconds and the driver has fallen
asleep. It’s very dangerous for the driver and should take
appropriate measures to assist the driver drive safely.

5. CONCLUSION

In this paper, a real-time driver fatigue detection method
is proposed to ensure driving safety. Gamma correction is
introduced first for improving the frame image contrast. In
order to achieve high detection accuracy and fast detection
speed, a two-stage convolutional neural network method is
proposed for driver fatigue detection. The method includes
a Location Detection Network and a State Recognition
Network. Experiments on the computer show that the
Location Detection Network has a significant superiority
in detection speed over existing methods and the State
Recognition Network has 93.83% classification accuracy.
Experiments on the Raspberry Pi 4 indicate that the
proposed driver fatigue detection model achieves 10.4 FPS
detection speed with 94.7% accuracy, which has great
reference value for industrial applications. In the future
work, we will fuse different kinds of features, such as
physiological parameters, vehicle data, and facial features
for driver fatigue detection.
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