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Abstract: Slip detection plays a vital role in robotic dexterous grasping and manipulation,
and it has long been a challenging problem in the robotic community. Different from traditional
tactile perception-based methods, we propose a Generalized Visual-Tactile Transformer (GVT-
Transformer) network to detect slip based on visual and tactile spatiotemporal sequences. The
main novelty of GVT-Transformer is its ability to address unaligned vision and tactile data
in various formats captured by various tactile sensors. Furthermore, we train and test our
proposed network on a public and our visual-tactile grasping datasets. The experimental results
show that our method is more suitable for sliding detection tasks than previous visual-tactile
learning methods and more versatile.

Keywords: Information and sensor fusion, Perception and sensing, Intelligent robotics, Deep
neural networks, Visual-tactile fusion perception.

1. INTRODUCTION

With the rapid development of representation learning
methods (see Sünderhauf et al. (2018)) and robot learning
methods (see Kroemer et al. (2019)), the perception and
decision-making ability of the robots have been improved
rapidly, and it has been possible to solve Rubik’s cube
with one hand (see OpenAI et al. (2019)), play Jenga
(see Fazeli et al. (2019)) and perform other complex ma-
nipulation tasks (see Sanchez et al. (2018)). However,
there are still some fundamental but challenging issues in
robotic grasping and manipulating tasks. For grasping, it
is necessary to manage the force distribution between the
object and gripper before lifting and during grasping to
ensure grasping stability (see Stachowsky et al. (2016)).
Manipulation additionally deals with the contact dynamics
between objects and the gripper during executing desired
motions or undergoing changes form the external environ-
ment (see Wu et al. (2019)). For these issues, the primary
issue is how to adjust actions to respond to changing
contacts. Detecting slip and incipient slip can assist robots
to automatically adjust the grasping force may provide a
solution to this problem (see Su et al. (2015)). It is not
surprising that many studies have developed various tactile
sensors and corresponding learning methods to address
this issue in the past decades (see Yousef et al. (2011),
Van Wyk and Falco (2018)). Some recent review papers
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about slip detection and robotic tactile perception can be
found in Francomano et al. (2013) and Luo et al. (2017).

Humans can naturally estimate the grasping force required
to lift an unknown object and grasp it and can adjust the
force accordingly. In this process, humans mainly rely on
the sensory-sensitive tactile afferents (FA-I, SA-I, FA-II,
and SA-II) with a reasonable distribution and excellent
neural processing system (see Yousef et al. (2011)). Fur-
thermore, vision also plays a critical role in this determi-
nation process, especially when the performance of current
tactile sensors is far less than that of humans.

Recently, robotic visual-tactile perception has successfully
been used for a variety of tasks, such as surface classifi-
cation (see Gao et al. (2016)), object recognition (see Liu
et al. (2017)), contact-rich tasks (see Lee et al. (2019)),
etc. These studies strongly suggest that visual-tactile per-
ception has better performance than visual-only or tactile-
only perception. Unfortunately, most of the existing stud-
ies fuse the visual and tactile data by Early Fusion (EF)
methods that have been shown to the lack of ability to
capture modal-specific and cross-modal features in other
multimodal sequence learning tasks (see Li et al. (2018),
Zadeh et al. (2018)). Additionally, the existing methods
are designed for tasks with specific tactile data format
(e.g., image, matrices, vector, etc.) and aligned sequences,
which leads to significant limitations on these platform
generalization performance.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9664



To tackle these issues, we propose a Generalized Visual-
Tactile Transformer network (GVT-Transformer) to learn
features from aligned or unaligned visual-tactile sequences
for slip detection. Our primary contributions are:

• A representation learning method from which appro-
priate visual-tactile features can be learned for a slip
detection task.
• We demonstrate that the proposed method is more

suitable for sliding detection tasks than the tradi-
tional early fusion method.
• We show that the generalization of our proposed

model for tactile sensors with different data formats
and whether the sequences from the two modalities
are aligned.

2. RELATED WORK

2.1 Slip Detection

Slip detection has always been one of the hot research
fields in robot manipulation community. Yousef et al.
(2011) presents a robotic grasp controller that allows
a parallel jaw gripper to gently pick up and set down
unknown objects once a grasp location has been selected.
The controller selects an appropriate initial grasping force,
detects whether an object is slipping from the grasp,
increases the grasp force as needed, and determines when
to release an object to set it down. Later, Stachowsky
et al. (2016) proposes a slip detection and correction
strategy for precision robot grasping by a common matrix
tactile sensor. More recently, Dong et al. (2017) detect
slip using a GelSight sensor by directly measuring the
relative displacement between the marker and texture
for textured objects. Zhang et al. (2018) and Zapata-
Impata et al. (2019) both adopt CNN with ConvLSTM
networks to learn spatiotemporal tactile features for slip
detection, and the tactile signal is captured by BioTac and
FingerVision sensors, respectively. Unfortunately, tactile-
only perception may not achieve the desired detection
performance due to the limitation of sensing capability.

Adding visual perception is an intuitive solution. Li et al.
(2018) proposes a visual-tactile learning method based
on a deep neural network to detect slip, which shows
the importance of visual-tactile fusion perception in slip
detection tasks. A compact and multimodal representation
of the sensory inputs was learned by self-supervision (see
Calandra et al. (2018)), which can be used to improve the
sample efficiency of policy learning. However, these meth-
ods concatenate features from visual and tactile modalities
directly, which called early-fusion and have been shown
the lack of the ability to capture modal-specific and cross-
modal features (see Zadeh et al. (2018)). Additionally,
most of the above methods are explicitly designed for
tactile sensors with different data formats and sample
rates, which leads to significant limitations in platform
generalization performance.

2.2 Transformer Network

Vaswani et al. (2017) introduces the transformer network
for neural machine translation tasks firstly in 2017. It
consists of an encoder and a decoder constructed with

MODEL

Slip or Not

Visual Sequence

Tactile Sequence

Fig. 1. A framework of slip detection using visual-tactile
perception.

the self-attention mechanism (see Parikh et al. (2016)),
and shows powerful temporal information capture capa-
bilities from the source domain to the target domain. In
addition, transformer networks have also been successfully
applied to many other tasks (see Strubell et al. (2019)).
More recently, Tsai et al. (2019) proposes a Multimodal
Transformer to model multimodal human language time-
serials without explicitly aligning the data.

We absorb strong inspirations from the multimodal trans-
former to extend to a visual-tactile setting. Visual-tactile
learning is different from conventional multimodal learning
in that it is more focused on the capture of cross-modal
and cross-temporal interaction features. It pays more at-
tention to the ability to extract the fusion features of two
modalities simultaneously, which is not implemented in
Tsai et al. (2019).

3. TASK FORMULATION

We define the slip detection task as a binary classification
problem, as shown in Fig. 1. Given the visual XV and
tactile XT sequences, the slip detector model Fsp output
the detection result y (slip or not). This task is formulated
as

y = Fsp(XV , XT )
XV = {x0

v, x
1
v, ..., x

TV
v }

XT = {x0
t , x

1
t , ..., x

TT
v }

(1)

where y = 0 or 1, which y = 0 denotes a slip occurs at the
current moment. x0

v and x0
t represent the first element in

the visual and tactile sequences, respectively. TV and TT

indicate the length of two sequences. Note that TV and
TT are usually not equal due to the different sample rates
of visual and tactile sensors, which means the model Fsp

may need to address unaligned sequences from the two
modalities.

4. PROPOSED METHOD

The overall architecture of GVT-Transformer is shown
in Fig. 2. Firstly, the feature extraction modules and
temporal convolution layers are used to extract visual
and tactile features. Next, the modal-specific and cross-
modal features are extracted by modal-specific and cross-
modal transformers, respectively. Then, the modal-specific
and cross-modal features of each modal are concatenated
and fed into a fusion transformer layer. Finally, the final
tactile and visual features are concatenated and sent into
a classification layer to obtain an output. The detailed
description of each component in GVT-Transformer is
shown in this section.
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Fig. 2. The diagram of GVT-Transformer model.

4.1 Feature Extraction

Given the visual sequence (XV ∈ RTV ×DV ) and tactile
sequence (XT ∈ RTT×DT ), we first extract visual features
XF

V ∈ RTV ×dV and tactile features XF
T ∈ RTT×dT , re-

spectively. The visual features are extracted by pretrain
Inception-v3 convolution neural network (CNN) (see Li
et al. (2018)). The tactile features are extracted by differ-
ent methods for different data formats, including LSTM,
WaveNet (see Lee et al. (2019)), CNN, etc.

XF
V = FV

f ∈ RTV ×dV

XF
T = FT

f ∈ RTT×dT
(2)

where dV and dT indicate the dimensions of visual and
tactile features, respectively.

4.2 Temporal Convolutions

To ensure that each element of the input sequences has suf-
ficient awareness of its neighborhood elements, we encode
the input sequences through some 1D temporal convolu-
tion layers:

XV→V = Conv1D(XF
V ) ∈ RTV ×dC

V

XV→T = Conv1D(XF
V ) ∈ RTV ×dC

T

XT→T = Conv1D(XF
T ) ∈ RTT×dC

T

XT→V = Conv1D(XF
T ) ∈ RTT×dC

V

(3)

where dCV and dCT indicate the dimension of visual and
tactile features after temporal convolutions, respectively.
Note that XV→V and XT→T are used to extract modal-
specific features, while XV→T and XT→V are used to
extract cross-modal features.

4.3 Modal-specific Transformers

Different form Tsai et al. (2019), we build modal-specific
transformers to extract modal-specific features further. In
this subsection, we introduce the Tactile-Specific Trans-
former (TST) as an example to explain the modal-specific
transformers. Given the tactile features XT→T , the tactile-
specific transformer first adds position information on it
by Positional Embedding (PE) to obtain XPE

T→T , which is

Multi-Head 
Self Attention

Add + Norm

Feed 
Forward

Add + Norm

N x

PE+

(a)

x

x

(b)

Fig. 3. (a) The tactile-specific transformer. (b) The Cross-
modal attention module (T → V ).

fed into N× self-attention transformer layers to compute
tactile-specific features Xspec

T→T , as shown in Fig. 3(a). For
specific details of the PE and self-attention transformer
layers, please refer to Vaswani et al. (2017). Finally, we
get the tactile-specific features

Xspec
T→T = TST(XT→T ) ∈ RTT×dC

T (4)

Note that the modal-specific transformers do not change
the shape of the input feature maps.

4.4 Cross-modal Transformers

Similar to Tsai et al. (2019), we also build cross-modal
transformers to extract cross-modal features in visual-
tactile learning. Also, the biggest difference between the
module constructed in this paper and Tsai et al. (2019)
is that the number of input feature channels of different
modalities is not necessarily consistent, which ensures that
our proposed model can address different tactile data. The
detailed architecture of the Cross-Modal Attention module
(CMAT→V ) is shown in Fig. 3(b), which is the core module
of the proposed cross-modal transformer (T → V ).

Given the features XV→V ∈ RTV ×dC
V , XT→V ∈ RTT×dC

V ,

and XT→T ∈ RTt×dC
T , CMAT→V first obtains three fea-

tures by

QV = XV→V WQ, WQ ∈ RdC
V ×dK

KT→V = XT→V WK , WK ∈ RdC
V ×dK

VT = XT→TWV , WV ∈ RdC
T×d

C
T

(5)

where QV ∈ RTV ×dK , KT→V ∈ RTT×dK , and VT ∈
RTT×dC

T . dK is a scaled dimension of QV and KT→V , which

is set as
√
dCV in this paper. Next, the correlation matrix of

all positions of the two modal sequences can be calculated
by

CorrT→V = SoftMax(
QV K

T
T→V√
dk

) (6)

where Corr ∈ RTV ×TT . Finally, the output of CMAT→V is
obtained by

X
cross[0]
T→V = CorrT→V × VT (7)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9666



Multi-Head 
Cross-modal 

Attention

Add + Norm

N x

PE+ ++

Multi-Head 
Self Attention

Add + Norm

N x

PE+

Fig. 4. The different inputs and attention module of cross-
modal transformers and model-specific transformers.

where X
cross[0]
T→V ∈ RTV ×dC

T . The superscripts [0] repre-
sents the cross-modal features obtained by inputs passing
through the cross-modal attention module for the first
time. In the next layers, XV→V will be replaced by the
output of the previous layer as the new input, while XT→V

and XT→T will not.

X
cross[i]
T→V = CMAT→V (X

cross[i−1]
T→V , XT→V , XT→T ) (8)

where i > 0 is the index of transformer layers.

In this way, the cross-modal transformer (T → V ) uses
the CMAT→V instead of self-attention module in model-
specific transformers to complete the cross-modal features
(T → V ) extraction. The different key parts of cross-modal
and modal-specific transformer are shown in Fig. 4.

4.5 Fusion Transformers and the Classification Module

After the modal-specific and cross-modal features extrac-
tion, we concatenate these features and sent them into
visual and tactile fusion transformers to extract the final
feature of each modal. The architecture of these fusion
transformers are the same as the model-specific trans-
former, as shown in Fig. 3(a).

Finally, the extracted final visual (XR
V ∈ RTV ×(dC

V +dC
T ))

and tactile (XR
T ∈ RTT×(dC

V +dC
T )) features are concatenated

and fed into the fully connected (FC) layers for classifica-
tion, and the final classification result y is obtained by

y = FC((XR
V ⊕XR

T )) (9)

where y = 0 or 1.

5. EXPERIMENTS AND ANALYSIS

In this section, we perform comparative experiments on
two visual-tactile slip detection datasets to verify the
performance of the proposed GVT-Transformer model.
Our goal is to answer the following two questions:

(1) Is our proposed model more suitable for slip detection
tasks than the Early Fusion (EF) method?

(2) Can the proposed model accommodate unaligned
visual and tactile sequence data and different tactile
sensors?

Visual Sequence

Tactile Sequence

Fig. 5. The visual and tactile sequences of D1.

4x4x3  
Force Distribution

XELA  
Tactile sensor

Camera

UR3

Kinect v2

Fig. 6. The grasping setup of D1.

5.1 Visual-Tactile Grasping Datasets Introduction

D0: Li et al. (2018) build a visual-tactile grasping
dataset for slip detection tasks, in which the training
data is acquired by a GelSight tactile sensor (see Yuan
et al. (2017)), and a camera mounted on the gripper,
respectively. Note that the train-test partition of D0 is
not completely consistent with the original paper.

D1: We collect visual and tactile sequence data by
two XELA tactile sensors (see Tomo et al. (2015)) and
a camera mounted on a gripper, as shown in Fig. 6. An
example of collected visual-tactile sequences is shown in
Fig. 5. In total, we perform 5, 000 grasps on 17 dairy
objects, and the number of grasping routines is nearly 10
times as D0 did. For more detailed information of D1,
please refer to our detailed dataset 1 .

Note that the visual-tactile sequences of D0 are aligned,
while D1 is not.

5.2 Experiments on D0

Implementation details: We use Inception-V3 as the
backbone CNN to extract features, and the sequence
length is set to 8 according to Li et al. (2018). The detailed
parameters of GVT-Transformer on dataset D0 is shown
in Table 1. We use Xavier initialization, cross-entropy loss
function, Adam optimizer with a learning rate of 5e-5, and
a batch size of 64 to train the models on an Nvidia GeForce
Titan X GPU platform with PyTorch 1.3.0 package.

Results: The precision, recall, and F1 score of the two
models on D0 are shown in Table 2. The detection
performance of the proposed method is not inferior and
even better than EF in an aligned situation, which answers
our first question.

1 https://drive.google.com/drive/folders/

1IcYp4oIjFWUlw-X8Ei27JSBiaeiV32Ts?usp=sharing
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Table 1. Details network parameters of GVT-
Transformer on D0

Layers Operations FeatureMap

T/V CNN Inception v3(avg-pool) 8 × 2048

T/V-Conv1D outdim(64),kernel(2),padding(0) 7 × 64

T/V-S TF layers(3),head(4) 7 × 64

T/V-C TF layers(3),head(4) 7 × 64

T/V-B TF layers(5),head(4) 7 × 128

Classification FC(256,64),FC(64,2) 2

Table 2. Comparison of classification perfor-
mance on D0

Methods Precision (%) Recall (%) F1 score (%)

Early Fusion 84.75 84.75 84.74
GVT-Transformer 85.83 85.37 85.28

5.3 Experiments on D1

Implementation details: We set the initial network pa-
rameters of GVT-Transformer shown in Table 3, and the
detailed parameter optimization process can be found in
the supplementary material 2 . Note that the training
strategy here is the same as experiments on D0 except
for batch size (512) and learning rate (1e-6).

Table 3. Initial parameters of proposed model

Layers Operations Feature Map

V CNN Inception v3(avg-pool) 5 × 2048
T Signal No operations 11 × 92

T/V Conv1D out(64/64),kernel(2),pad(0) 10 × 32/4 × 64

T/V-S TF layers(5),head(8) 10 × 32/4 × 64

T/V-C TF layers(5),head(8) 10 × 64/4 × 32

T/V-F TF layers(5),head(8) 10 × 96/4 × 96

Classification FC(192,64),FC(64,2) 2

Ablation study: To further study the influence of the
individual components in GVT-Transformer, we perform
a comprehensive ablation analysis on dataset D1. The
results are shown in Table 4.

Table 4. An ablation study of GVT-
Transformer on D0.

Parameters Precision (%) Recall (%) F1 score (%)

Visual-only 72.67 58.66 61.39
Tactile-only 96.83 89.61 92.30

No modal-spec 85.58 89.69 87.48
No cross-modal 83.39 69.99 74.74

GVT-Transformer 97.43 90.12 93.37
Adapted EF 90.83 90.89 92.50

Firstly, we consider the performance for only using uni-
modal transformers, i.e., tactile or visual only. The ex-
periment results show that the tactile-only transformer
outperforms the visual-only transformers, which indicates
that tactile plays a more critical role in the slip detection
task. This finding aligns with the observations in prior
work (see Li et al. (2018)). Furthermore, we consider the
modal-specific transformers and cross-modal transformers.
The experiment results show both of them are useful for
the task, and cross-modal features are even more effective,

2 https://drive.google.com/file/d/

1XoWQMfucB2bMf6jpzFzIqOYrZ8gQ40CM/view?usp=sharing

Fig. 7. Three-dimensional force readings for two tactile
sensors and a slip detection label variation plot.
Predicted slip label: 0 means no slip and 1 denotes
slip.

which also indicates that the visual-tactile improvements
based on Tsai et al. (2019) are beneficial for this task.

Furthermore, we also apply the adapted Early Fusion
method on D1 by directly concatenating tactile data to
align with visual sequence, and the experimental results
show that our method outperforms adapted EF by a
large margin (about 7% precision). In other words, GVT-
Transformer is better suited for addressing unaligned
visual-tactile data, which answers our second question.

5.4 Experiments on robots

A slip detection experiment based on GVT-Transformer
is performed on our robot to verify its effectiveness in
practice. A Nestlé bottle with a half bottle of water is
selected as a grasping object. We first set the initial
grasping force of 15N, which is sufficient to hold and hold
the bottle stably. During the lifting process, we suddenly
set the grasping width to 71 mm so that a slip will occur
without causing the water bottle to fall. In this grasping
routine, the three-dimensional force readings of two XELA
tactile sensors and the slip detection labels changes are
shown in Fig. 7. Obviously, the label changes immediately
following the command and the grasping video can be
found in https://youtu.be/oGkhwo9yGMQ.

6. CONCLUSION

A transformer network-based slip detection method named
GVT-Transformer is proposed to solve the unaligned
visual-tactile sequence learning problem in this paper.
Specifically, modal-specific and cross-modal transformers
of GVT-Transformer are presented to capture modal-
specific and cross-modal features, respectively. Further-
more, The experimental results show that our proposed
method not only outperforms traditional early fusion
methods in detection performance but also more suitable
for unaligned situation. A sliding detection experiment
carried out on a real robot also confirm the proposed
method.
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