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Abstract: This study describes the influence of user parameters on control performance in
a Monte-Carlo model predictive control (MCMPC). MCMPC based on Monte-Carlo sampling
depends significantly on the characteristics of sampling distribution. We quantified the effect
of user determinable parameters on control performance uisng the relatonship between the
algorithm of MCMPC and convergence to the optimal solution. In particular, we investigated the
limitations associated with the variance of sampling distribution causing a trade-off relationship
with the convergence speed and accuracy of estimation. To overcome this limitation, we proposed
two variance updating methods and new MCMPC algorithm. Furthermore, the effectiveness of
the numeriacl simulation was verified.
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1. INTRODUCTION

In recent years, model predictive control (MPC) has at-
tracted considerable attention in various fields owing to
its ability of explicitly handling the required constraints
Carlos E. Garcia and Morari (1989),Ohtsuka (2004). In
MPC, an algorithm is used to determine the optimal con-
trol inputs by repeatedly solving the optimization problem
with constraint up to a finite time in the future. From the
view point of implementation, MPC can be separated into
two categories, i.e., gradient and sample-based MPC.

The former method is currently being researched to be
applied in various real-world systems. The C/GMRES
proposed by Ohtsuka (2004) is a quite efficient methods
among gradient-based MPC. The C/GMRES is known
to be an efficient algorithm Cairano and Kolmanovsky
(2019) for nonlinear systems and has been considered
for application in various systems such as smart grid
systems Toru (2012) and vehicle collision avoidance control
Masashi Nanno (2010).

In gradient-based MPC, the optimal input is determined
by solving the optimal control problem using the gradient
information of the cost function. Therefore, if the optimal
control problem is simple, the optimal solution can be
derived quickly and accurately. Alternatively, the target
system is limited to systems with differentiable cost func-
tion.

In another method, i.e., sample-based MPC, the optimal
input is determined using Monte-Carlo approximation. In
general, Monte-Carlo method requires a significant num-
ber of computational resources; therefore, real-time im-

⋆ This work was not supported by any organization

plementation of sample-based MPC is difficult. However,
in literature Williams et al. (2016); Ohyama and Date
(2017), it has been reported that the efficient approach
is to take advantage of the parallel nature of sampling
and use graphical processing unit to implement it in real
time. In addition, as sample-based MPC does not require
gradient information of the cost function, there are many
significant advanteges. The literature Nakatani and Date
(2019) describes the feature of the Monte-Carlo model
predictive control (MCMPC), which is a type of sample-
based MPC. It also explains its capability of handling
discontinuous events, based on the result of experiments
of collision of pendulum on a cart.

From theoretical point of view, the most successful method
is the path integral optimal control framework Kappen
(2007); Satoh et al. (2017). The key idea in this framework
is that the solution of the optimal control problem is trans-
formed into the expectation over all possible trajectories
and corresponding trajectory costs. This transformation
allows stochastic optimal control problems to be solved by
using a Monte-Carlo approximation with guaranteed con-
vergence. However, in these studies, effect of the variance
of sampling distribution on convergence was not consid-
ered. Williams et al. (2015) mentions this problem and
proposes a framework that allows users to freely determine
the variance of the sampling distribution. These previous
studies are common in that the theory of path integration
is applied to stochastic optimal control problems.

Alternatively, the MCMPC investigated herein aims to
overcome the optimal control problem for deterministic
systems. Therefore, herein we discuss the convergence of
MCMPC by considering the optimal control problem for
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discrete-time linear systems, wherein the only optimal
solution can be derived analytically.

This study aims to mainly describe the trade-off relation-
ship between the variance of sampling distribution and the
convergence, i.e., if we choose large sampling variance, the
convergence can be fastened while a large noise remains on
the solution. This problem requires that the variance must
be properly controlled to perfectly match the sub-optimal
input to the optimal solution. This also means that we
need to adjust the sampling variance properly to achieve
fast convergence and precision at the same time. Two types
of variance update methods are proposed: The one is in-
spired by cooling principle in simulated annealing method
and the other is based on the use of the most recent sample
variance. These methods are compared in simulation of
a linear system. Besides the variance update methods,
we also introduce two types of optimization among the
Monte Carlo samples: Top-1 sample and weighted mean.
Taking the best sample among all samples tends to achieve
fast convergence but suffered from large estimation noise
compared with weighted mean. These are compared in
simulation.

Based on these results, we show that the newly proposed
method is one of the effective methods for the problem
discussed in this paper.

2. FINITE-TIME OPTIMAL CONTROL PROBLEM
FOR DISCRETE-TIME LINEAR SYSTEMS

We considered an optimal control problem for discrete-
time linear systems on the k-th control cycle with predic-
tion for I-th steps, indicated by {k|0}, . . . , {k|i}, . . . , {k|I}.
Consider a class of linear discrete-time systems described
by the following equation:

x{k|i+1} = Ax{k|i} +Bu{k|i}, (1)

where the state is denoted by x{k|i} ∈ R
n, control input

by u{k|i} ∈ R
1, and system matrices are denoted by

A ∈ R
n×n and B ∈ R

n×1. In addition, it is assumed that
the initial state x{k|0} of the system at each control cycle k
is known and there are no constraint about input or state
for simplicity. For the system (1), the cost function used in
the finite-time optimal control problem from the current
control cycle to I−steps future is described by following
equation:

J(xk, uk, k) =
1

2

N−1
∑

i=0

(

xT
{k|i+1}Qx{k|i+1} + uT

{k|i}Ru{k|i}
)

,

(2)
where the Q ∈ R

n×n is the positive definite weight for the
state, R ∈ R

1 is the positive definite weight for the input.
In the rest of this study, we use J as the cost value unless
otherwise noted. Then, the solution of this optimal control
problem is defined as

u∗
{k|i} = arg min

u{k|i}

J(xk, uk, k). (3)

At this moment, by using the fact that the time evolution
of the system (1) can be expressed using only the initial
state x{k|0} and input sequences u{k|0}, · · · , u{k|N−1}, we
can rewrite the equation (2) as following equation:

J(xk, uk, k) =
1

2
û
T Q̂û+ xT

{k|0}B̂û+
1

2
xT
{k|0}Âx{k|0}, (4)

where the matrices Â ∈ R
n×n, B̂ ∈ R

n×N , and Q̂ ∈ R
N×N

and the vector û ∈ R
I , are shown in from (5) to (8).

Â = ATQA+ (A2)TQA2 + · · ·+ (AN )TQAN (5)

B̂ =





N
∑

k=1

(Ak)TQAk−1B,...,

N
∑

k=j

(Ak)TQAk−jB,...,(AN )TQB



 (6)

Q̂ =















q̂11 · · · q̂1j · · · q̂1I
...

. . .
...

q̂1i q̂ij q̂iI
...

. . .
...

q̂1I · · · q̂jI · · · q̂II















(7)

û =
[

u{k|0}, . . . , u{k|I−1}
]

(8)

The matrix Q̂, whose element in the i−th row and j−th
column of the upper triangle, is a symmetric matrix Q̂ and
is given by

q̂ij =























N−i
∑

k=0

BT (Ak)TQAkB +R, (i = j)

N−i
∑

k=j−i

BT (Ak)TQAk+i−jB. (i < j)

(9)

If the matrix Q̂ is positive definite symmetric matrix, the
unique solution u

∗ can be obtained as

u
∗ = −Q̂−1B̂Tx{k|0}. (10)

These discussions so far are a general theory when con-
sidering a finite-time optimal control problem using cost
function (2) for discrete-time linear systems (1). In the
next section, we discuss the relationship between algorithm
of MCMPC which takes expectation over all possible tra-
jectories as sub-optimal input and convergence. We also
propose an alternative method: Top-1 sample algorithm
for MCMPC.

3. ALGORITHM OF TWO TYPES MCMPC

In this section, we describe two different MCMPC algo-
rithms. First, we describe the relationship between con-
vergence and the normal type MCMPC algorithm that
uses the expectation over all possible trajectories as sub-
optimal inputs. Next, we describe the TOP1 sample
MCMPC algorithm that uses the best trajectories from
all sample trajectories as a sub-optimal input.

3.1 Relation between algorithm of normal type MCMPC
and convergence

Normal type MCMPC consits of three main phases.

Phase 1
Generating input sequenses

Phase 2
Running forward simulation in parallel
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Phase 3
Estimating the sub-optimal input sequences ũ

At the Phase 1, input sequences are generated by random
sampling from normal distribution as following equation:

û ∼ N (ū,Σ), (11)

where the mean values ū is initialized and updated by
using following equation:

ū =

{

0, (k = 0)
[

ũ{k|0}, . . . , ũ{k|I−1}
]T

, (k 6= 0)
(12)

where ũ means sub-optimal input estimated in the pre-
vious estimation. Σ ∈ R

I×I is the variance-covariance
matrix and satisfies the following two assumptions.

Assumption 1. The standard deviation σ used in all pre-
diction steps is constant.

Assumption 2. For all u{·|i} ∈ R
1, each element are inde-

pendent from each other:

E
(

u{·|i}u{·|j}
)

= 0, (i 6= j) (13)

where E(·) means expected value.

Then, we can describe Σ as following equation (14) using
these two assumptions.

Σ =







σ2 · · · 0
...

. . .
...

0 · · · σ2






(14)

Therefore, û can be regarded as a random variable with
probability density function (PDF) as shown in the follow-
ing equation:

f(û) =
1√
2πσ2

exp

(

−1

2
(û− ū)TΣ−1(û− ū)

)

=
1√
2πσ2

exp

(

− 1

2σ2
(û− ū)T (û− ū)

)

.

(15)

In Phase 2, the system state for the number of samples
used for predicting and estimating is updated using the
system model (1) and input sequences sampled randomly
as shown in (11). The updated system state and randomly
sampled inputs are also used to calculate the cost values
J(xk, uk, k).

In Phase 3, sub-optimal input sequences ũ are derived as
the sample mean using the randomly sampled inputs û

and the weights w(û) for each input sequence:

ũ =

M
∑

w(û)û

M
∑

w(û)

, (16)

where w(û) can be derived as the following equation if Q̂
is positive definite:

w(û) = exp

(

− J

λ2

)

= exp

(

− 1

2λ2
û
TQ̂û− 1

λ2
xT0B̂û− 1

2λ2
xT
{k|0}Âx{k|0}

)

= exp

(

− 1

2λ2
(û− u

∗)T Q̂(û− u
∗) + const

)

,

(17)

where λ is positive constant. Then, E(ũ), the expected
value of the sample mean (16), can be described by
following equation:

E(ũ) =

∫

w(û)ûdû. (18)

Note that we are interested in the expected value of the
function (17) approximated by using a random variable û

with the PDF (15). Then, equation (18) can be rewritten
as the following equation from the definition of the expec-
tation of the function of random variables:

E(ũ) =

∫

w(û)f(û)dû

= (σ2Q̂+ λ2I)−1(σ2Q̂u
∗ + λ2

ū), (19)

where I ∈ R
N×N is the identity matrix. The derivation

of (19) is shown in Appendix A. Then, the variance of
the sample mean ΣS can be expressed by the following
equation:

ΣS =
σ2λ2

M
(σ2Q̂+ λ2I)−1, (20)

where M is the total number of samples used for the pre-
diction and estimation, (See Appendix A for derivation).
Next, we consider the relationship between iteration of
prediction and estimation and the convergence of sub-
optimal input sequences û. Considering about updating
the expected value in (11) by repeating the estimation
shown in (18), and the sub-optimal input value by the
d−th estimation is ūd, ūd+1 can be described as

ūd+1 = E(ũ) = (σ2Q̂+ λ2IN )−1(σ2Q̂u
∗ + λ2

ūd). (21)

If we define the error between the optimal input sequences
u
∗ and the sub-optimal input ūd estimated by the d−th

estimation as ed = ūd − u
∗, we can describe the d + 1-th

estimation error as

ed+1 =

(

σ2

λ2
Q̂+ I

)−1

ed (22)

As a result of the above considerations, we obtain the
theorem on the relationship between convergence and
parameters specific to MCMPC as shown below.

Theorem 1. In (4), it is assumed that the matrix Q̂ is a real
positive definite symmetric matrix and the unique optimal
inputs sequences exists as shown in (10).

Then, the sub-optimal input ūd converges to u
∗ when

d → ∞.

Proof. The necessary and sufficient condition for the
error ed to asymptotically converge to 0 is that the
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absolute value of all eigenvalues of matrix Ω shown in (23)
is less than 1.

Ω =

(

σ2

λ2
Q̂+ I

)−1

(23)

Assuming that for any real positive definite symmetric
matrices MA, MB , the following inequality holds:

λi(MA +MB) > λi(MA), (24)

where λi(Z) means the i-th eigenvalue of a matrix Z

(Proof omitted.). Based on the assumption that Q̂ is a real
positive definite symmetric matrix, the following equation
holds:

λi

(

σ2

λ2
Q̂+ I

)

> λi(I) = 1. (25)

Since λi(Z
−1) = 1

λi(Z) holds for any non-singular matrix,

the following inequality holds:

λi(Ω) = λi

(

(

σ2

λ2
Q̂+ I

)−1
)

< λi(I). (26)

As the eigenvalues of all real positive definite symmetric
matrices are positive real numbers, the absolute value of
all eigenvalues of the matrix Ω is less than 1.
Then, the error ed satisfies the following equation:

lim
d→∞

ed = 0. (27)

This means:
lim
d→∞

(ūd − u
∗) = 0. (28)

Thus, the sub-optimal input sequences ūd converges
asymptotically to u

∗ when d → ∞. ✷

Corollary 1. When σ → ∞ , Eq. (26) satisfies the follow-
ing equation:

lim
σ→∞

λi

(

(

σ2

λ2
Q̂+ I

)−1
)

= 0, ∀i. (29)

Eq. (29) shows that if σ → ∞, the first estimation result
ū
(1) satisfies ū

(1) = u
∗. Therefore, if σ is larger, the sub-

optimal input sequences ūd converges to the optimal values
faster.
Then, the variance-covariance matrix of the sample mean
ΣS shown in Eq. (20) can be described as the following
equation:

lim
σ→∞

ΣS =
λ2Q̂−1

M
. (30)

Eq. (30) means that if λ is sufficiently small, the variance
of the sub-optimal input sequences ūd is small. This con-
sideration is consistent with the results of path integral
analysis. Therefore, this means that there is a tradeoff be-
tween convergence and variance. Moreover, equation (30)
shows that if sample number M is large, the error of the
expected value E(ũ) by the Monte-Carlo approximation is
O( 1√

M
).

Corollary 2. When σ → 0, equation (20) satisfies the
following equation:

lim
σ→0

ΣS = 0, (31)

However, the eigenvalue of the coefficient matrix Ω in
equation (22) is as shown below:

lim
σ→0

λi

(

(

σ2

λ2
Q̂+ I

)−1
)

= 1, ∀i. (32)

These equations show that there is a tradeoff between the
convergence and variance of sample mean ΣS . Equation
(31) and (32) show that if the user choses the variance σ2

as small as possible to eliminate the variance of sample
mean ΣS , the error ed at the previous estimation will
remain. Moreover, if σ is too small, the sub-optimal input
sequences ūd slowly converges to the optimal values.

From Corollary 1 and Corollary 2, it is understood that the
variance needs to be controlled appropriately to improve
the estimation accuracy and convergence speed.

3.2 Algorithm of TOP1 sample MCMPC

In Top1 sample MCMPC, the optimization problem is
solved by iterating the following three processes within
the same control cycle.

Phase 1
Generating input sequences

Phase 2
Running forward simulation in parallel

Phase 3
Estimating the sub-optimal input sequences ũ and up-
dating standard deviation σ.

Phase 1 and phase 2 are the same as the MCMPC
algorithm described above.

In phase 3, sub-optimal input sequences ũ is described by
the following equation:

ũ = arg min
u{k|i}∈U

J(xk, uk, k), (33)

where U means a set of all inputs sequences û randomly
sampled in phase 1. In addition, the standard deviation σ
updated as described in section 4

3.3 Model predictive control algorithm

So far we have described how to repeat the prediction
in one control cycle. In the model predictive control we
propose, the prediction is repeated every control cycle, and
the sub-optimal input predicted in the previous control
cycle is re-optimized. So, sub-optimal input in k-th control
cycle correspond to the result of iteration of k × d times
predictions.

4. SAMPLING VARIANCE UPDATE METHODS

In this section, we describe two types of update methods
that are used each time of the iteration of precision. The
first variance update method used in this study can be
described as following equation:

σd = γdσ0, (34)

where γ is a positive constant γ ∈ [0.8, 1.0), and d is the
number of iteration, and σ0 is a parameter that represents
the initial standard deviation that should be designed by
the user. Equation (34) is inspired by the cooling schedule
used in the simulated annealing (SA) method. In SA, it is
guaranteed that the estimated value can reach the optimal
solution when γ is chosen appropriately and cooled enough
times. For example, if we chose γ = 1/log(1+d), estimated
value reliably converges to optimal value. But, the cooling
rate γ = 1/log(1 + d) is too slow, so, in practically, the
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cooling rate γ ∈ [0.8, 1.0) is generally used Rosen and
Nakano (1994).

The second method can be described by the following
equation:

σd =

√

√

√

√

√

1
M
∑

wd−1(û)

. (35)

Equation (35) corresponds to the error variance of equa-
tion (16) that can be calculated based on the error prop-
agation law. Note that equation (35) is a variance update
method that reflects the quality of the estimation results.
In the rest of this study, we will refer to the method shown
earlier as the geometric cooling method and the method
shown later as latest sample variance method.

5. NUMERICAL SIMULATION

In this section, we first show the models used in two differ-
ent numerical simulations. Next, we show the simulation
results when using normal type MCMPC, which shows
the effect of variance σ on convergence. Furthermore, we
show the results of applying the two types of variance
update methods shown in the subsection 4 to normal type
MCMPC and Top1 sample MCMPC. Finally, we show
the results of the application to the problem of swing-
up stabilization of a double inverted pendulum, which is a
type of nonlinear system.

5.1 Simulation models

Example 1. As the first example, we consider the optimal
control problem when MCMPC is applied to a three-
dimensional unstable discrete-time linear system that can
be described by the following equation:

xk+1 = Axk +Buk

xk ∈ R
3, uk ∈ R

1 (36)

where we denote coefficient matrices A and B as show in
the following equations:

A=

[

0 1 0
0 −1.1364 0.273
0 −0.1339 −0.1071

]

(37)

B =

[

0
0

0.0893

]

, (38)

then, the eigenvalues ofA are as Λ = [0,−1.1059,−0.1376]
T
.

Since one of eigenvalues of A exists outside of the unit cir-
cle, system (36) is an unstable system. Then we consider an
optimal control problem for system (36) that takes a pre-

diction horizon N = 15, initial state x0 = [2.98, 0.7, 0.0]
T
,

state weight matrix Q and an input weight R as follow:

Q = diag(2.0, 1.0, 0.1), R = 1. (39)

Then, the optimal input sequences u
∗ can be easily cal-

culated using equation (3). In this study, we show only
the analytical solution u∗

0 = −2.69 used in the following
discussion.

Example 2. As the second example, we consider the swing-
up stabilization of an arm type double inverted pendulum.

Table 1. Parameters of arm type double pen-
dulum

Name Symbol (·) Value

Angle of the first link θ1 (rad) Variable

Angle of the second link θ2 (rad) Variable

First link drive torque τ1 (N ·m) Variable

Mass of first link m1 (kg) −

Mass of second link m2 (kg) 9.60× 10−2

Coefficient of friction µ2 (kg ·m2s−1) 1.26× 10−4

Gravity acceleration g (ms−2) 9.81

Length of first link L1 (m) 2.27× 10−1

Length of second link l2 (m) 1.95× 10−1

Moment of inertia J2 (kg ·m2) 1.10× 10−3

Positive constant a1 6.29

Positive constant b1 1.64× 101

Fig. 1. Model of arm type double pendulum

The state equation of the arm type double inverted pen-
dulum shown in Fig. 1 can be described by the following
two equations:

θ̈1(t) = −a1θ̇1(t) + b1u(t) (40)

α1cos θ12(t)·θ̈1(t) + α2θ̈2(t) = α1θ̇
2(t)sin θ12(t)+α3 sin θ2(t)

+ µ2θ̇1(t)− µ2θ̇2(t)
(41)

The time-invariant parameters α1, α2, and α3 and the
variable θ12 in Equation (40) and Equation (41) are as
follows:

α1 = m2L1l2, α2 = J2 +m2l
2
2

α3 = m2l2g, θ12(t) = θ1(t)− θ2(t).
(42)

The parameters of equations (40) to (42) and Fig. 1 are
listed in Table 2. Then we consider an optimal control
problem for this example that takes a prediction horizon
N = 80, initial state shown in equation (43), state weight
matrix Q and an input weight R shown in equation (44).

[

θ1(0), θ̇1(0), θ2(0), θ̇2(0)
]

= [ π, 0, π, 0, ] . (43)

Q = diag(5.0, 0.01, 5.0, 0.01), R = 1. (44)

5.2 Trade-off between precision and convergence

In this subsection, we consider the relationship between
the variance σ of the sampling distribution and conver-
gence using the result of applying normal type MCMPC
to Example 1. Fig. 3 shows the average and standard
deviation 3σ of the simulation results of 30 independent
trials under each condition.
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Table 2. Parameters (for Example 1)

Name Symbol Value

Num of predictive steps N 15 step

Num of samples M 5,000

Num of iterations d 100

Variance σ2 Variable value

Variance λ 6.3

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50

E
r
r
o
r

Iterations

σ=0.5
σ=1.0
σ=2.0
σ=4.0

Fig. 2. Effect of σ on estimation error e0 = ũ0 − u∗
0 in the

Example 1

Table 2 lists the specific parameters of MCMPC used
in this simulation to confirm the relationship between
variance σ and convergence. In Fig. 3, we compare the
result when σ gradually increase to 0.5, 1.0, 2.0, 4.0. As σ
increases, error e0 converges to 0 with fewer iterations.
However, it can e confirmed that the variation in error e0
as the variance σ increases. This result is a good example
showing that the variance σ of sampling distribution
results in a trade-off relationship between the speed of
convergence and the accuracy of the estimated sub-optimal
inputs at the time of convergence.

From the results shown in Fig.3, it is necessary to update
the variance σ appropriately to obtain the optimal inputs
faster and more accurately.

5.3 Comparison of sampling variance update methods

Fig. 3 shows the result obtained by using geometric cooling
method, as shown in (34). Then, we plotted the result
of the average of 30 independent trails and range of the
standard deviation 3σ in Fig. 3. The upper figure shows
the result obtained using normal type MCMPC, whereas
the lower figure shows the results obtained using Top1
sample MCMPC. We determined γ in equation (34) using
the following equation:

γ = exp

(

1

D
log

(

δ

σ0

))

(45)

where D number of iterations, σ0 is initial variance σ of
sampling distribution, and δ is variance σ of sampling dis-
tribution used in the D−th iterations. In this simulation,
the conditions of D = 100,δ = 10−5 remained, and the
value of σ0 was changed from 0.5 to 4.0. In the upper
figure in Fig. 3, it can be confirmed that the error e0 may
or may not converge to 0 depending on the initial variance
σ0. On the contrary, in the lower figure in Fig. 3, the error
e0 converges to 0 at any initial variance. In either case,
the variation with respect to the estimated sub-optimal

-3
-2
-1
 0
 1
 2
 3
 4

(a) Nomal type MCMPC

E
r
r
o
r

σ0=1.0
σ0=4.0

-3
-2
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 4
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(b) Top1 sample MCMPC

E
r
r
o
r

Iterations

σ0=1.0
σ0=4.0

Fig. 3. Effect of σ on estimation error e0 = ũ0 − u∗
0 in

the Example 1 when using geometric cooling method.
(This figure shows results of mean and variance 3σ of
30 trials.)

input can be reduced. When normal type MCMPC was
applied, the error e0 in result did not converge to 0 when
the initial variance σ0 was set considerably small because
σd converged earlier than error e0.

Fig. 4 shows the result obtained by applying latest sample
variance method, as shown in (35). In the upper figure,
which shows the result obtained by applying the normal
type MCMPC, it can be confirmed that the error e0 did
not converge because σ converged earlier than error e0.
Alternatively, when the TOP1 sample MCMPC, as shown
in the lower figure in Fig. 4, is applied, the erro e0 and
variation in the error e0 of results converged near 0.

These results shown in Fig. 3 and Fig. 4 indicate that
the two variance update methods proposed in this study
cannot improve the trade off relationship between the
convergence speed and the estimation accuracy when the
normal type MCMPC is applied. However, when the
update method shown in (34) is applied, choosing the
appropriate (i.e., sufficiently large) initial variance can
improve the trade-off relationship. On the other hand, in
the case of TOP1 sample MCMPC, any of the updating
methods can reliably converge to the optimal solution if
sufficient iteration is taken. This means that TOP1 sample
MCMPC has high affinity with any distribution update
method.

5.4 Application to a nonlinear system

In this section, we show the results of applying what we
have analogized so far to nonlinear systems. The discussion
of convergence for the linear system can be applied to
a nonlinear system that can be linearly approximated
around the optimal solution. The system model and cost
function are shown in Example 2. The parameters of the
controller used for this simulation are as shown in Table 3.
We set the initial variance to the lower bound given by:

σ0 ≥ umax − umin

6
. (46)

The method of determining the variance σ0 as in equa-
tion (46) is also used in Nakatani and Date (2019). Fig. 5

shows time responses of θ1, θ2, θ̇1, θ̇2, respectively, and
shows a plot of the average value of 30 trails and a stan-
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Fig. 4. Effect of σ on estimation error e0 = ũ0 − u∗
0 in the

Example 1 when using latest sample variance method.
(This figure shows results of mean and variance 3σ of
30 trials.)

dard deviation 3σ. In addition, (a) shows in the figure
corresponds to the result of applying the TOP1 sample
MCMPC, and (b) is the result of applying the normal type
MCMPC. When the variance update method considered
in this study was applied to normal type MCMPC, none
of the methods achieved swing-up stabilization. For this
reason, the result shown in Fig. 5 is a result of applying
normal type MCMPC without variance updating. More-
over, the result of TOP1 sample MCMPC is the result of
using the variance update method shown in equation (34).
In addition, the variance σ used in this simulation was one
with the best performance among the five different simu-
lations using variance σ2

0 = 0.5, 1.0, 2.0, 3.0, 4.0 in normal
type MCMPC. Both controllers stabilized the swing up in
approximately 2.0 s after the start of control.

The upper figure in Fig. 6 and Fig. 7 shows the input
sequences. Immediately after the start of control, TOP1
sample MCMPC selects the smallest input that satisfies
the input constraints. On the contrary, the normal type
MCMPC selects the conservative input. The lower figure
in Fig. 6 and Fig. 7 shows the value of the cost function
calculated based on the input sequences predicted in each
control cycle. The smaller the value shown in Fig. 6 in
each control cycle, the better the control performance.
According to the results shown in this study, the TOP1
sample MCMPC demonstrates superior control perfor-
mance. Moreover, this result was the same when the initial
variance σ0 and the variance update method were changed.

In normal type MCMPC, when the variance σ or the
distributed update method was changed, the control per-
formance deteriorated or the swing-up stability could not
be stabilized due to the trade-off relationship described in
subsection 3.1.

6. CONCLUSION

Herein, we examined the relationship between the con-
vergence of MCMPC and user determinable parameters.
Additionally, it was analytically verified that the variance
σ of sampling distribution has a trade off relationship with
the convergence speed and the accuracy of estimation.
Next, we proposed two types of variance update meth-

Table 3. Parameters (for Example 2)

Name Value

Simulation time 5.0 (s)

Control cycle 100 (Hz)

Prediction horizon 0.8 (s)

Num of predictive steps 80 step

Num of samples 5,000

Num of iterations 100

σ2

0
or σ2 1.0

λ2 40

γ 0.9

Input constraint −3.0 ≤ u(t) ≤ 3.0 (V)
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Fig. 5. Simulation result ((a) TOP1 sample MCMPC
vs (b) Normal type MCMPC). Left side top: time
response of θ1. Right side top: time response of θ2. Left
side bottom: time response of θ̇1. Right side bottom:
time response of θ̇2.
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Fig. 6. Top: Simulation result of input sequences. Bottom:
Cost value caluclated in each control cycle.(This fig-
ure shows results of mean and variance 3σ of 30 trials.)

ods and TOP1 sample MCMPC to overcome this trade-
off problem. Finally, we completed numerical simulations
and discussed the effects of applying the variance update
method and TOP1 sample MCMPC. We also showed an
example of numerical simulation applied to a nonlinear
system and examined the possibility of applying the pro-
posed analogy for controlling nonlinear systems.
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Appendix A. DERIVATION OF SAMPLE MEAN
EXPECTATION AND VARIANCE OF SAMPLE

MEAN

In this section, we describe how to derive the analytical
solution (21) from Eq. (18). Substituting the results of
Eq. (15) and Eq. (17) for Eq. (18) can be transformed as:

E(ũ)

= 1√
2πσ2

∫

exp

(

− 1

2λ2
(û− u

∗)T Q̂(û− u
∗)− (û− ū)TΣ−1(û− ū)

)

dû

= C̄1

∫

exp

(

− 1

2λ2
(û−u

∗)TQ̂(û−u
∗)− 1

2σ2
(û−ū)T(û−ū)

)

dû

= C̄2

∫

exp

(

−û
T

(

1

2λ2
Q̂+

1

2σ2
I

)

û+
1

λ2
(u∗)TQ̂û+

1

σ2
ū
T
û

)

dû

= C̄3

∫

exp

(

− 1

2λ2σ2
û
T
(

σ2Q̂+λ2I
)

û+
σ2

λ2σ2
(u∗)T Q̂û+

λ2

λ2σ2
ū
T
û

)

dû

= C̄4

∫

exp

(

− 1

2λ2σ2
(û− ũ)T

(

σ2Q̂+λ2I
)

(û− ũ)

)

dû (A.1)

where C̄1, C̄2, C̄3 and C̄4 are equivalent to terms that
are listed as constants to arrange them into terms of the
quadratic form and other terms related to û, respectively.
Then, we define the contents of the exponential function
on the fourth line in Eq. (A.1) as g, and obtain a stationary
point by partial differentiation of g with û to obtain the
following result:

∂g

∂û

∣

∣

∣

∣

û=ũ

= (σ2Q̂+ λ2I)ũ− (σ2Q̂u
∗ + λ2

ū) = 0. (A.2)

Here, solving the Eq. (A.2) for ũ agrees with the result of
Eq. (21).
Next, we find the variance of sample mean ũ using
Eq. (A.1). Let random variable û be a random variable
that follows a multidimensional normal distribution with
expected value ũ and variance ΣS . From the PDF of this
distribution and the result of the coefficient comparison of
the integrand on the fifth line in Eq. (A.1), the variance
of ΣS can be shown as:

1

2λ2σ2

(

σ2Q̂+λ2I
)

=
1

2
Σ−1

S (A.3)
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