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Abstract: Functional movements in the paralyzed upper limb can be restored with the help of brain-

computer-interface (BCI). A BCI system typically adopts a functional electrical stimulation (FES) system 

that activates weakened muscles that are otherwise responsible for actuating finger movements. A BCI-

FES system can enable muscle contraction through the delivery of electrical stimulation pulses. The 

control of voltage or current stimulation parameters such as pulse width, frequency, and amplitude along 

with feedback signals from finger joints positions are essential for stable grasping. For the design of a 

closed-loop functional electrical stimulation controller, it is obligatory to set standard reference 

trajectories of finger joints’ angular positions and velocities for controlling stimulation parameters in 

neuroprosthetics and rehabilitation. This study proposes a new closed-loop control architecture targeted 

for achieving successful and stable grasping of an upper limb paralyzed subject. This can be achieved by 

characterizing each of the finger joints’ instantaneous angular position and velocity, through reference 

trajectories. These reference trajectories are generated corresponding to various types of grasping for 

feeding to the controller, responsible for stimulation of muscles. Hence, to generate such trajectories, 

first, grasping classification has been implemented using standard machine learning algorithms on a large 

set of existing real-time data of different types of objects’ grasping such as various diameter, abducted 

thumb and other types of objects, from many healthy subjects. The results demonstrate the successful 

implementation of fairly accurate classifications and trajectory generations which are crucial for closed-

loop control towards stable grasping. 

Keywords: BCI, FES, EMG, EEG, closed-loop control, trajectory generation, classification of grasping, 

machine learning.  



1. INTRODUCTION 

Worldwide, millions of people experience spinal cord injury 

(SCI), stroke and other nerve diseases which lead to loss of 

voluntary limb movements, as the signal pathway between 

the brain and the muscles are disrupted (Chad et al., 2018). 

Currently, over 90 million people worldwide suffer from SCI 

and become paralyzed while spending an average of 40 years 

in wheelchairs (Zhan et al., 2018). For the activity of daily 

life (ADL), our hand plays an essential role in grasping 

different objects. Therefore, the restoration of functional 

movement would provide the most significant practical 

benefit for an upper limb paralyzed person. Functional 

Electrical Stimulation (FES) can be used as a neural bypass 

system (NBS) to restore the motor function by delivering 

electrical pulses to paralyzed or weakened muscles using 

surface electrodes on the forearm. Several forms of closed-

loop methods have been proposed for FES that have induced 

better adaptability and smaller steady-state error (Zhan et al., 

2018). Recently, the cortically recorded signal has been used 

to trigger an FES system and deliver electrical pulse on the 

forearm by surface electrodes for the restoration of functional 

movements (Chad et al. 2018) and the same enables graded 

control of muscles’ contraction (Friedenberg et al., 2016). A 

feature-based classification model of electroencephalography 

(EEG) signals has been developed to decode the grasp pattern 

from the motor imagery signal and estimate the fingertip 

force (Roy et al., 2016, Mattar et al., 2017, Sburlea et al., 

2018). Two broad categories of grasp pattern, power grasp 

and precision grasp were classified in the alpha sub-band 

(Roy et al., 2016). Recently, model predictive control (MPC) 

has been used for smooth grasp and release tasks and to 

control stimulation parameters on the muscles (Westerveld et 

al., 2012). The obtained MPC results have been compared 

with a Proportional (P) controller for the same application, 

and it was found that MPC takes less time for tracking the 

reference trajectories. However, all the mentioned systems 

have not been able to achieve stable grasping for all types of 

objects, and they lack selectivity, comfort, accuracy and the 

convenience of using the respective technology in 

rehabilitation. 

The broad aim of this work is to develop strategies and 

reference trajectories that may be used in a closed-loop 

control system for assisting a stable and smooth grasping, 

only applicable for people with forearm muscles who can 

perform sufficient grasping by themselves for different types 

of objects, thereby restoring voluntary control of paralyzed 
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patients. The set of suitable criteria for the reference 

trajectories thus generated are achieved by studying, 

interpreting and characterizing the angular positions and 

velocities of every finger joints for different types of object 

during their successful grasping. To fulfil the real-life daily 

needs of standard 33 types of grasps that are reported in 

literature Feix et al. (2009), a large set of an existing dataset 

that has been collected by ‘CyberGlove’ has been used to 

classify them using standard machine learning algorithms. 

Based on the classified grasping, the set of characterizing 

(finger joints) angular position and velocity trajectories have 

been generated corresponding to each grasping using suitable 

curve fitting techniques to ensure smooth grasping. 

2. PROPOSED SYSTEM DESCRIPTION 

The closed-loop control architecture proposed for this work 

to achieve stable grasping of paralyzed patients adopts an 

EEG based data acquisition as it can measure cortical activity 

with a temporal resolution of less than a millisecond (Roy et 

al. 2016). The overall system architecture has been depicted 

in Fig.1. The acquired motor imagery signals from EEG will 

be classified according to the intended grasping of a 

particular object (Esmeralda et al., 2016, Mattar et al. 2018), 

so as to discriminate the various movements with an upper 

limb (Yong et al. 2015). The classified grasping type will 

enquire corresponding kinematic data of each finger joints’ 

movement from the database as indicated in the first block 

inside the dotted block. From these kinematic data of finger 

joints, reference trajectories will be generated for angular 

positions and velocities. These reference trajectories will be 

used by respective position and velocity controllers to 

calculate the error from the actual finger motion. These errors 

will be used by final controller to control stimulation 

parameters. The final controller compute stimulation 

parameters by taking muscles excitation response through 

EMG along with kinematic errors. For a stable and smooth 

grasping, an FES system will inject current stimulation on 

corresponding muscles for assisting to grasp in closed-loop 

operation.  

To achieve these functionalities, a large set of existing 

kinematic data of angular joint positions have been used to 

classify the grasping types using machine learning algorithms 

as shown in the first block, inside the dotted box. The 

kinematic data has been used to classify grasping type due to 

non-availability of EEG data, currently. This existing data set 

of 33 types of objects’ grasping have been further used to 

find the reference trajectories of 16 joints’ instantaneous 

angular positions and their velocities with a confidence 

bound of 95%. Based on this confidence bound, it creates an 

envelope of upper and lower bounds around the generated 

trajectory (angular positions and velocities for different 

grasping). Now, these reference trajectories for angular 

positions and velocities of each of the finger joints, along 

with its upper and lower set-point values (corresponding to 

upper and lower bounds), are fed to the respective position 

and velocity controller. Further, based on the error w.r.t. 

feedback from actual angular positions and velocities, the 

respective position and velocity controllers generate 

corrective control inputs that are fed to the final controller, 

which are responsible for computing the stimulation 

parameters for the FES system. The final controller, as shown 

in Fig.1, will help to decide to set the voltage or current 

stimulation parameters such as pulse width, frequencies and 

amplitudes. A multichannel programmable FES system will 

typically generate the stimulation by surface electrodes 

placed on the forearm’s muscles such as Flexor Digitorum 

Profound (FDP), Flexor Digitorum Superfilcialis (FDS), 

Palmaris Longus (PL) and Extensor Digitorium (ED), 

Adductor Policis (AP), Palmar Interossei (PI), Abductor 

Policis Longous (APL), Abductor Digitorum Minimi (ADM) 

Fig.1: Proposed the architecture of a closed-loop (EEG and EMG based) bionic grasping system. 
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and Dorsal Interssei (DI) for actuating corresponding 

tendons. Due to the activation of these muscles, finger joints 

such as Carpometacarpal (CMC, only for thumb), 

Metacarpophalangeal (MCP), Proximal Interphalangeal 

(PIP) and Dorsal Interphalangeal (DIP) of each finger will 

displace and help to grasp an object (Bandara et al., 2014). 

The stimulation on the corresponding flexion and extension 

muscles simultaneously will actuate and will help to move 

each finger joints for grasping a particular object. Initially, 

we will consider a data-driven model for muscle dynamics 

and actuation by FES while grasping an object. In future, we 

will develop a mathematical or state-space model for 

extrinsic and intrinsic muscles for more accurate analysis, as 

described in Freeman.C (2015).  

The angular position and velocity acquired from the ‘Data 

Glove’, worn by the subject, can be further processed. As 

mentioned in the controller actuation part, the angular 

positions and velocities are given as feedback to the 

respective controller for error correction. An EMG 

acquisition system is further used to record the muscles’ 

excitation levels. These EMG signals, along with the motion 

data, have been used as feedback to the controller and can re-

compute the desired stimulations parameters. The system can 

thus operate in a closed-loop manner for stabilized and 

smooth grasping. Based on the muscle model and its 

response, we will develop and fine-tune the control strategies 

before actually implementing for a real subject. This work 

mainly considers healthy subjects with no plasticity in their 

muscles, while, for SCI patients, we will consider subjects 

having partial or less muscles spasticity. The theoretical basis 

of the grasping classifications and trajectories generation 

block are explained in the subsequent section. 

3. GENERATION OF TRAJECTORIES THROUGH 

GRASPING CLASSIFICATION 

The objective of the proposed work is the restoration of 

voluntary movement in upper limb paralyzed patients by 

using a closed-loop control system and strategy as proposed 

in Fig.1. This section focuses on the generation of the 

trajectories (highlighted or the dotted block) which follows 

the grasping classifications step for the intended grasp, which 

is inferred from EEG. These generated dynamic trajectories 

of position and speed serve as reference profiles having upper 

and lower bounds for the purpose of generation of 

appropriate stimulation parameters by the final controller for 

actuating the FES and ensure stable grasping. 

3.1 Classification of Grasping: 

Humans have the ability to grasp different objects having 

various shapes, sizes and dimensions. This includes objects 

that are cylindrical, spherical, pen, disk, card and other 

shapes and have large/small dimensions or diameters. Feix et 

al. (2009) incorporated 33 types of different standard tasks, 

and the same has been considered for this work. Thirty 

healthy right-handed subjects (15 males and 15 females, the 

average age of 25 years) participated with written consent 

(Feix et al., 2009). The ‘CyberGlove’ embedded 16 sensors 

placed on each finger joints (j = 1…16) that are namely 

MCP, PIP, DIP for four fingers (index (I), middle (M), ring 

(R) and little (L)), as well as CMC, MCP, inter-phalangeal 

IP, abduction ABD for the thumb. Samples of time-stamped 

angular positions (in Degrees) were collected during each 

grasping activity. As depicted in the system description, 

when an upper limb paralyzed person intends to grasp an 

object, it is essential to know the type of object, so that each 

finger will move accordingly to make a stable grasp. From 

the referenced data (Feix et al., 2009), a scheme for 

implementing the generation of a supervised predictive 

classification model of grasping types along with their 

validation has been illustrated in Fig.2. The raw data taken 

for implementing the classified predictive model is 

represented by the “Raw Data” block of Fig.2. As 30 subjects 

had participated in the experiment, duration of grasping time 

for each individual subject is found to be different for 

grasping the same type of object. In order to get a normalized 

time for all subjects, the raw data was pre-processed (shown 

by “Data pre-processing” block in the figure) by using an 

interpolation method. The instantaneous angular positions of 

each finger joints varying with time have been chosen as 

features for principal component analysis (PCA). The main 

goal of the PCA algorithm is extracting meaningful 

information by re-expressing noisy data (Paul et al., 2013). 

All the values of input variables chosen for feature extraction 

are centered by subtracting the mean from each input 

variables (Paul et al., 2013). Therefore, it can be ensured that 

the resulting components (during PCA) will use the variances 

within the dataset rather than capturing the overall mean of 

the dataset as essential variables. By using this centered data 

set or adjusted data set (denoted as A), a covariance matrix is 

formed to get the largest eigenvalues and eigenvectors. From 

the eigenvalues and eigenvectors, the purpose of reducing 

dimensionality is achieved, while, the eigenvector that forms 

the highest eigenvalues is considered to be the principal 

component (Paul et al., 2013). 

A successful and stable grasp of any object requires the 

combined and simultaneous actions of at least two or three 

fingers, such as thumb, index and middle (Santello et al., 

2002) in a well-coordinated manner. Among the 16 finger 

joints belonging to the 5 fingers, 10 finger joints are 

considered for correlation with each other for characterizing 

the grasp, because of their high variances. These joints are 

CMC, ABD, MCP and IP of thumb (finger joints number = 

1,2,3,4), MCP, PIP and DIP (finger joints number = 

5,6,7,8,9,10) of both finger index and middle and have been 

chosen for PCA. So, to get the final data set, we have chosen 

10 principal components out of 16 angular position values 

during grasping of a particular object. Therefore, the feature 

vector can be formed as in (1) Paul et al. (2013). 

The final data set has been generated with the extracted 

feature vector (Paul et al., 2013) and expressed in (2).  

]10x,...,2x,1[xXVector  Feature   (1) 

Final Data Set = Row Feature Vector × Adjusted Data 

C
T

A
T

X   (2) 
Where, Row Feature Vector matrix has been formed by 

transposing the columns of the eigenvectors so that the most 

significant eigenvector is on the top, and the centred data set   
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(A) is transposed to get the adjusted data set. The final data 

set (C) has been distributed between predictive model 

training (80 %) and testing (20 %) as shown in the Fig.2. The 

model has been trained with 80 % data set along with the 33 

types of grasping or labels such as large diameter, small 

diameter along with others, for generating the predictive 

classification model. The generated predictive model with the 

highest accuracy can be used for further validation. When a 

new subject will intend to grasp an object, shown in the 

subsequent block (new subjects grasping), a corresponding 

new set of angular joints’ position will be generated. The raw 

data comprising the angular positions can be pre-processed 

for feature extraction, as explained earlier in the generation of 

the predictive model. These features extracted vectored data 

can further be used as inputs to the generated predictive 

classification model to get the corresponding grasping type as 

intended by the subject.  

3.2 Generation of reference trajectories of angular positions 

and velocities 

The final angular positions of each finger joint play the most 

important role for the intended smooth and stable grasping. 

Based on the classified grasping type, explained as per Fig. 2, 

the proposed system generates the reference trajectories of 

angular positions and their velocities for each joint from the 

initiation of grasp to the final successful contact of the object 

being grasped. These trajectories of angular positions from 

beginning till the last angular position will help the controller  

 
Fig.2: Predictive classification model generation and 

validation. 

to decide the stimulation parameters. During the grasping, the 

velocities of each finger joints are also important to be 

characterized, since, as the velocities increase or decrease 

they will affect the stability of the grasping. So, the angular 

velocities have been calculated as in (3). 

 
   

1ntnt

t
1n

θtnθ
tnω






   (3) 

Where, ωn(t), n(t) and tn are the present angular velocity, 

position and time instant. A set of successive iterations of 

velocities, ω1(t), ω2(t),… ωn(t), along the entire grasping 

duration will generate a continuous reference path for each 

finger joints. This continuous path can be used as a reference 

velocity trajectory to achieve the final stable angular position 

for smooth or natural grasping. The criteria for generating the 

trajectories is the correlation of each finger joints as well as 

average value of the minimum and maximum angular 

positions of all the finger joints for each type of grasping, 

being considered. 

The trajectories are generated using curve fitting techniques 

with different functions such as polynomials (up to 8th), sum 

of sines, smoothing spline functions and others which result 

in conceiving performance metrics such as the sum of square 

error (SSE), root mean square error (RMSE), R-square value 

and adjusted R-square value. Fig.3 (a) and (c) show the 

typical nature of trajectories of angular position and 

velocities along with their envelopes of lower and upper 

bounds of the Carpometacarpal joint of the thumb (T_CMC). 

The corresponding residual (the difference between response 

value and the predictor value) plots shown in Fig. 3 (b) and 

3(d) during grasping a large diameter object. This trajectory 

is to be followed by the finger joints for stable grasping. The 

trajectory for the angular position and velocity with time can 

be generated up to nth order (can go up to 8) polynomials. 

Fig.3 (a) shows a typical trajectory for the angular position 

with a time of 4th order polynomial expressed in equation (4) 

of thumb’s CMC joint. 









5N

1i

iN
t*iPθ(t)  (4) 

Where (N-1=n) represents the order of the polynomial and Pi 

is the constant coefficient. In the trajectory plot, this 

polynomial is fitted with the value of actual mean angular 

position with time and generates performance metrics such as 

SSE, RMSE, R-square and adjusted R-square. When, the 

values SSE and RMSE are closer to 0 indicates that the 

model has smaller random error, further signifying that the 

predicted model will be more accurate. If the values of R-

square and adjusted R-square are close to 1, they are 

considered to be the best fitted curve. The residual’s data 

point closer to zero lines signifies better curve fitting. It is to 

be noted that the trajectories have been generated by 

considering zero initial velocity and the time. Fig.3(c) shows 

the trajectory generation of velocity with time of 4th order for 

thumb’s CMC and the corresponding polynomial is 

represented by equation (5) and Fig.3 (d) shows the 

corresponding residual plot. 









5N

1k

kN
t*iBω(t)  (5) 

Where, (N-1 = n) is the order of the polynomial and Bi 

represent the constant coefficient of polynomial. The 

generated trajectories have the confidence bound of 95% with 

upper and lower bound. The generated trajectory should be 

within the envelope created by lower and upper bound so that 

it can reach to the final grasping angular position in a more 

stable way. A set of generated trajectories (instantaneous 

angular position and velocity) is made for 33 types of 

grasping averaged over 30 subjects and for each of their 

corresponding 16 finger joints. To characterize the trajectory 

of the angular position and velocity simultaneously with time, 

a typical 3D plot is shown in Fig. 4. 
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Fig. 3: Trajectory of (a) Angular position plot and (c) velocity 

with time of thumb’s CMC, (b) and (d) are corresponding 

residual plots. 

 

Fig.4: (a) Trajectory of angular position and velocity shown 

simultaneously with time, and (b) corresponding residual 

plot. 

4. RESULTS AND ANALYSIS 

The generation of trajectories are based on the classification 

of grasping types such as large diameter, small diameter and 

other types of objects using machine learning algorithms. The 

predicted model has been generated using appropriate 

supervised classification algorithms such as quadratic support 

vector machine (SVM), cubic SVM and SVM with radial 

basis function (RBF) kernel, random forest classification 

algorithm (RF) by removing constant, quasi features RF 

algorithm with only correlated features and recursive feature 

elimination (RFE) method in RF algorithm. 

Table 1.  Classification Reports using RFE 

Grasping Object 

Names 

Precision 

 

Recall 

 

F1-

score 

Support 

 

01. Large 

Diameter 
1.00 0.98 0.99 54 

02. Small 

Diameter 
0.88 0.86 0.87 50 

03. Medium Wrap 0.81 0.87 0.84 54 

04. Adducted 

Thumb 
0.86 1.00 0.92 54 

05. Light Tool 0.88 0.93 0.90 54 

06. Prismatic 4 

Finger 
0.91 0.94 0.93 53 

07. Prismatic 3 

Finger 
0.96 0.83 0.89 53 

08. Prismatic 2 

Finger 
0.94 0.96 0.95 53 

09. Palmar Pinch 0.96 0.88 0.92 50 

10. Power Disk 0.81 0.94 0.87 54 

11. Power Sphere 0.82 0.83 0.83 54 

12. Precision Disk 0.89 0.89 0.89 54 

13. Precision 

Sphere 
0.83 0.96 0.89 54 

14. Tripod 0.86 0.89 0.87 54 

15. Fixed Hook 0.90 0.88 0.89 50 

16. Lateral 0.90 0.92 0.91 50 

17. Index Finger 

Extension 
0.93 0.94 0.94 54 

18. Extension 

Type 
0.82 0.77 0.79 52 

19. Distal Type 0.79 0.49 0.60 53 

20. Writing 

Tripod 
0.71 0.75 0.73 53 

21. Tripod 

Variation 
0.76 0.84 0.80 50 

22. Parallel 

Extension 
0.91 1.00 0.95 50 

23. Adduction 

Grip 
0.89 0.81 0.85 52 

24.Tip Pinch 0.86 0.81 0.83 52 

25. Lateral Tripod 0.83 0.81 0.82 54 

26. Sphere 4 

Finger 
0.86 0.75 0.80 51 

27. Quadpod 0.87 0.87 0.87 53 

28. Sphere 3 

Finger 
0.89 0.77 0.83 53 

29. Stick 0.83 0.94 0.88 51 

30. Palmar 1.00 0.90 0.95 50 

31. Ring 0.93 0.98 0.95 51 

32. Ventral 0.96 0.96 0.96 50 

33. Inferior Pincer 1.00 1.00 1.00 50 
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Using these algorithms, the respective average classification 

accuracy obtained from them are 32%, 47%, 60%, 70%, 

77%, 77% and 88%. Table I shows the classification reports 

by the generated predictive model using RFE since it has 

88% average accuracy. The ‘precision’ metric is the 

correctness of the predictive model, where it is the ratio of 

correctly predicted positive class (true positive or TP) to the 

total positive predictive classes. Similarly, the ‘recall’ metric 

represents the fraction of positive prediction correctly 

classified. Here, high ‘F1-score’ metric signifies the 

harmonic mean between precision and recall value and 

‘support’ metric is the number of actual occurrences. All 

these metrics computed (Hossin et al., 2015) for Table I, do 

not change among different models so that it can be used in 

the evaluation process under various conditions. The metrics 

considered for classification reports shown in Table 1 are 

dimensionless as they represent the ratio of  successful and 

unsuccessful grasping of a particular object. 

 

 

 

 

 

 

Fig. 5: (a) to (d) depict the SSE, RMSE, R-square and 

adjusted R-square values respectively for the trajectories of 

angular postions with time and (e) to (h) illustrate the SSE, 

RMSE, R-square and adjusted R-square values respectively 

for the trajectories of velocities with time.  

The error metrics such as SSE, RMSE, R-Square and 

adjusted R-square presented in Fig.5 should maintain their 

specified thresholds to have proper extension and flexion of 

each fingers’ joints. Fig.5 (a) and (e) illustrate the SSE for 

angular positions and velocities, which express the deviation 

between respective generated tractories and the actual angular 

positions and velocities. These SSE values of angular 

position trajectories are closer to the one when grasping 

sphere with 3 fingers, stick, palmar, ring or ventral type 

objects of all finger joints. Similarly, SSE for velocity 

trajectories is more than the expected (closer to 0). The 

average threshold of SSE to grasp all types of objects for 

angular positions is 0.34 whereas it is 1.0026 for angular 

velocities. So it is difficult to generate appropriate trajectories 

of velocities for all types of grasping. As shown in Fig. 5(b) 
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and 5(f), the RMSE represents the standard deviation of the 

random data point of angular positions and velocities. The 

average threshold of RMSE of angular positions and 

velocities being 0.11 and 0.20 respectively illustrate the small 

randomness in both angular positions and velocities. From 

Fig.5(c), (d), (g) and (h) the average threshold for R-square 

and adjusted R-square of angular positions and velocities are 

0.88, 0.85, 0.94 and 0.86 respectively. Hence, the correlation 

between actual angular positions and velocities with their 

generated respective trajectories is more considerable for 

angular positions as compared to angular velocities. 

5. CONCLUSION 

This study describes a new control system architecture and 

approach for generating and controlling the stimulation 

parameters in closed-loop, meant to be applied to the healthy 

or partially weakened forearm muscles of a paralyzed patient 

for achieving stable grasping. This is possible to be achieved 

when the generated stimulation parameters can actuate the 

muscles in such way that the movement of each finger joints 

follow the reference trajectories of position and angular 

velocities, without exceeding their dynamic upper and lower 

bounds. These reference trajectories of all finger joints to be 

followed have been successfully generated (and their 

accuracy suitably characterized through certain metrics) by 

incorporating and learning from the information of 33 types 

of objects’ stable grasp, after classifying their grasping types. 

However, very few numbers of generated trajectories 

(especially for velocities) had difficulties following the upper 

and lower bounds. So, appropriate measure has to be taken 

for controlling these trajectories, otherwise uncontrolled 

stimulation on the muscles may cause early muscle fatigue, 

restricting the movement of the upper limb. These challenges 

have to be taken care for ensuring successful and smooth 

grasping control strategy development. The future work can 

be that of implementing a data-driven model or a 

mathematical model of extrinsic or intrinsic muscles for 

considering the closed-loop strategy control and will be 

tested for a real object to achieve stable grasping in a clinical 

environment.  
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