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Abstract: Model Predictive Control (MPC) algorithms have an inherently time domain based
design. Design parameters are directly connected to the discrete time domain (sample time,
prediction horizon), or impact the discrete time state-space model (weight matrices). We
provide an analysis and design method for MPC systems in the frequency domain, including
the determination of robustness margins. Pre-designed MPC applications are analyzed for
their multi-dimensional gain and phase margin. An adjustment design method to improve
unsatisfactory results is given. This approach is shown in a simulation example.
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1. INTRODUCTION

Model Predictive Control (MPC) is a real-time, optimal
control method which notably allows for direct imple-
mentation of time domain constraints and disturbance
information. Due to these properties, MPC has become
increasingly popular in control applications since its intro-
duction.

Robustness is on the forefront of research on MPC. Early
approaches included large scale analysis or min-max de-
sign, methods which are often difficult to use. Tube-MPC
has been proposed as an alternative to these methods,
to provide robustness guarantees in MPC design while
simultaneously yielding an applicable controller (Bertsekas
and Rhodes, 1971). By employing positive invariant sets, it
has been shown in (Chisci et al., 2001; Mayne and Langson,
2001) that the uncertainty region around the nominal tra-
jectory shrinks in time, which was then developed further
into Tube-MPC applications (Langson et al., 2005). An-
other approach to control design in face of uncertainty is to
include these uncertainties directly in the control design,
proposed in Stochastic MPC (Goulart et al., 2006). Both
approaches regard the robustness issue from an external
disturbance view point.

A more complete analysis with examination of plant pa-
rameter variations is often desired in applications. A ro-
bust LQR design method is demonstrated in (Ward and
Ly, 1996), where additional non-linear parameter opti-
mization is utilized to improve the margins of a closed-loop
system. Additionally, in (Søgaard-Andersen et al., 1986)
the authors propose a method for parameter adjustment
of multi-dimensional controllers for robustness margins,
which the present work is based upon. More recent results
in (Koduri, 2017) show the applicability of robustness
margins to explicit MPC.

The goal of this work is to provide supplemental methods
for control design, specifically for linear MPC, that lever-

age robust analysis with the application of classical control
margins. In this direction, we aim to combine robustness
analysis of the return difference matrix yielding classical
margins with MPC. The purpose of these results is to
provide a robust analysis and design method for MPC
that can be used in practical applications such as flight
control. The robust margins gained in the design method
provide quantifiable robustness properties for the plant
and can be used in accordance with common certification
requirements.

The paper is structured as follows: first, §2 provides
background on MPC and frequency domain analysis tools
for multi-input, multi-output systems. Next, we present a
solution to the singular value decomposition for a closed-
loop MPC problem without constraints, and methods to
analyze and design for frequency domain properties in §3.
The results are exemplified with simulations in §4. A brief
conclusion with a look at future work is provided in §5.

Notation

We briefly provide an overview of the notation used. The
complex conjugate transpose of the complex-valued matrix
M is denoted as MH . The partial derivative of a matrix
inverse with respect to one of its parameters p can be
computed as,

∂M−1(p)

∂p
= −M−1 ∂M(p)

∂p
M−1.

Most subscripts on vectors are used as an abbreviation for
(time) parameters of that vector, e.g., aτ = a(τ), unless
otherwise noted. Following this notation, the parameter
of a vector with a subscript is added to the argument,
aτ (k) = a(τ + k).

2. PRELIMINARIES

Applications of MPC in settings such as flight control
require a discrete time model. By choosing an appropri-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7193



ate sampling time ∆t, the temporal dimension can be
discretized as,

t = τ ∆t , τ = 0, 1, 2, . . . ,

where t is the current absolute time and the non-negative
integer τ is the discrete time step. A finite-dimensional
linear time-invariant system can then be expressed in
discrete time as,

xτ+1 = Axτ +Buτ , (1)

yτ = Cxτ ,

where x ∈ Rn is the state vector, u ∈ Rm is the control
vector, y ∈ Rp is the output vector, and A ∈ Rn×n,
B ∈ Rn×m, and C ∈ Rp×n are system matrices.

2.1 Model Predictive Control

The discrete dynamic system is utilized in the basic MPC
setup. In its implicit form, MPC is a real-time optimal
control method, where open-loop control trajectories are
computed online and the first control element is imple-
mented on the plant. The control loop is closed in feedback
form by repeatedly applying this approach at each time
step with updated states.

This work is centered around one of the basic MPC
settings, a quadratic cost objective, constrained only by
linear dynamics. This results in a linear optimal control
problem, which can be extended to include additional
features, such as state and control constraints. These
features are not implemented in the presented work, but
future efforts will be focused on analyzing and designing
control systems with such features.

The goal of the control problem is to find the optimal
solution to the finite horizon cost function, J , with state,
control, and discrete time inputs,

J(x, u, τ) =

Hp−1∑
k=0

xτ (k + 1)>Qxτ (k + 1)

+ uτ (k)>Ruτ (k), (2)

where Hp is the prediction horizon, i.e., the number of
discrete time steps that are included in the optimization.
The matrices Q, assumed to be positive semi-definite, and
R, positive definite, are weights on the states and controls,
respectively. These can be time-varying weights in general,
but are assumed to be time-invariant for the problem at
hand.

Often, the terminal weight on the last state element of
the trajectory is selected via the Lyapunov analysis, to
guarantee certain stability properties (Rawlings et al.,
2017). The cost function in (2) is a generalization of this
approach and the methods introduced later in this work
serve a similar purpose to the role of terminal weights, in
giving some measure to the stability of the control system.

Given the cost in (2), the optimization problem V min-
imizes the cost with respect to the control input, con-
strained by the state dynamics,

V (x, τ) = min
u

1

2
J(x, u, τ), (3)

s.t. xτ (k + 1) = Axτ (k) +Buτ (k).

With the given cost and constraints, the optimization
problem V is a quadratic program. Without additional

constraints, the quadratic program can be solved ana-
lytically. Let x and u be stacked vectors of the state
and control trajectories, respectively, over the prediction
horizon,

x =
[
x>τ (1), x>τ (2), . . . , x>τ (Hp)

]>
,

u =
[
u>τ (0), u>τ (1), . . . , u>τ (Hp − 1)

]>
.

With these vectors, the state dynamics in (1) can be
expressed as,

x = Axτ + Bu. (4)

The matrices A and B are structured forms of the state
matrices given by,

A =


A
A2

...
AHp

 , B =


B 0 · · · 0

AB B 0
...

...
. . .

. . . 0
AHp−1B AHp−2B · · · B

 .
Similarly, the cost function J in (2) is restructured to
eliminate the sum,

J(x,u, τ) = x>Qx + u>Ru,

where Q and R are block-diagonal matrices of the appro-
priate dimensions with weight matrices Q and R on the
diagonal. Now, the state trajectory x can be replaced by
(4) in the optimal control problem V to eliminate the state
dynamic constraints and yield the unconstrained quadratic
program:

V(x̂, τ) = min
u

1

2
J

= min
u

1

2
u>Hu + c(xτ )>u,

with H = B>QB + R, and c(xτ ) = B>QAxτ .

The unconstrained quadratic program V is analytically
solvable by setting its partial derivative with respect to
the optimization variable u to zero,

∂V

∂u
= Hu + c(xτ ) = 0.

Taking the inverse of the optimization matrix yields the
optimal control trajectory,

u∗ = −H−1c(xτ ) = −Kx(τ).

Following the MPC methodology, the first element of
this trajectory is applied to the dynamical system as the
control input, giving the feedback control law,

u(τ) = −Kx(τ),

where K is the feedback matrix consisting of the first m-
rows of the optimal control gain K.

2.2 Frequency Domain Analysis

The block diagram in Fig. 1 represents a generic feed-
back loop, with the plant P (z) and the compensator, or
controller, C(z). The variable z describes the complex
argument of the plant and controller models in the discrete
frequency domain. While an estimator is usually required
for state feedback methods, it is assumed in the following
discussion that the plant output is equal to the states, i.e.,
the output matrix C in (1) is equal to identity.
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Fig. 1. Closed-loop feedback block diagram: plant P, con-
troller C, loop gain L.

The loop transfer function for this configuration is thus
given by,

L(z) = P (z)C(z).

This product of the plant and controller in series is a key
construct in classical control theory. An extension to this
expression is the return difference matrix, namely,

R(z) = I + L(z).

The return difference is often found in the analysis of prop-
erties related to the robustness of the closed loop system.
In classical single-input, single-output (SISO) analysis, the
return difference is complex-valued.

Research in the 1980’s led to a better understanding
of classical robustness results in the multi-input, multi-
output (MIMO) system case, see (Lehtomaki et al., 1981;
Safonov et al., 1981; Doyle and Stein, 1981; Shaked, 1986).
To employ powerful classical control tools, relevant scalar-
valued properties were needed for multi-dimensional sys-
tems. A primary result of the research was the discovery
of the connection of the system’s singular values to robust-
ness properties in the classical sense.

Singular values can be computed as the square root of the
respective eigenvalues of the matrix square,

σi(M) =
√
λi(MMH).

The main approach to determine all singular values of a
matrix is by using the singular value decomposition (SVD).
Let M be a generic matrix with some parameter argument
p. Then the SVD for M(p) is given by:

M(p) = V (p)Σ(p)Z(p)H , Σ(p) = diag(σi),

where V and Z are matrices containing the left and right
singular vectors, respectively, and Σ is a diagonal matrix,
with all singular values on its diagonal. The matrices V,Z
satisfy V V H = I and ZZH = I.

Robustness for MIMO systems in the classical sense can
be determined by singular values of loop transfer matrices.
For example, it has been shown that the smallest singular
value, σ(M), of the return difference matrix is closely tied
to the robustness of the system at a given loop breaking
point (Lehtomaki et al., 1981). Qualitatively, the larger
this smallest singular value is for the return difference over
a relevant frequency range, the more robust that closed-
loop system is over that range. Furthermore, if a lower
limit for the smallest singular value over a given frequency
range is found, then that limit can be used to determine
classic control margins of the MIMO system. As such, let,

inf
ω∈Ω

σ(I + L(iω∆t)) = α0, (5)

where ω is the frequency and the set Ω is defined as
a limiting frequency range, or bandwidth. In discrete
systems, the frequency is given per cycle and needs to be

multiplied by the sample time ∆t to yield the frequency
in Hertz. The following margins then hold for each loop in
the MIMO system.

Gain margin:

GM =
1

1± α0
. (6)

Phase margin:

PM = ± cos−1

(
1− α2

0

2

)
. (7)

From these equations it is evident that an increase of α0

will yield improved (i.e., larger) margins. The design goal
in the next section is therefore to maximize critical points
in the minimum singular value plot of the return difference
for a system that has been obtained from MPC.

Margins that are determined by SVD are valid for all
feedback-loops of the multi-dimensional system in ques-
tion. But for most separate loops within the system, these
values will be conservative. The main benefit of these
multi-dimensional margins is evident when cross-feed is
considered in MIMO systems. This can occur when inputs
from one loop affect the robustness of other, separate
loops. In this case, SISO margins will not yield relevant
values for the robustness of the system. The margins
determined by the singular value analysis of the return
difference, on the other hand, include such inter-loop ef-
fects and represent a whole picture of the robustness of
MIMO systems.

3. SINGULAR VALUE SENSITIVITIES IN MPC

Given the loop properties for robustness analysis presented
in the last section, an analysis and design method is
developed in this section for time domain based MPC
systems in their basic form. For the analysis step in this
process, a relevant expression for the minimum singular
value in the closed loop MPC system will be provided. The
design process following the analysis of the MPC system
is built upon the partial derivative of a singular value with
respect to some parameter p. This parameter is assumed
to be an argument of the original matrix M for which the
singular value is determined. This partial derivative is then
given by,

∂σi(p)

∂p
= Re

(
vHi

∂M(p)

∂p
zi

)
. (8)

Here, σi is the i-th singular value of the matrix M ,
dependent on some generic parameter argument p.

In order to examine the robustness of MIMO systems,
and MPC in particular, the smallest singular value of the
return difference is employed. For robustness analysis, let
the matrix M in (8) be the return difference matrix of
some pre-designed MPC system. It is assumed that Q and
R for this system have been designed with relevant time
domain requirements (or generic requirements of different
nature).

Since the return difference depends on the frequency with
which the system is excited, the first step is to choose
a relevant excitation bandwidth, with lower and upper
frequencies, ωl and ωu. The return difference is then
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analyzed within this bandwidth for the infimum of the
smallest singular value. The corresponding frequency at
the infimum is designated as the critical frequency, ωc,
which lies within the bandwidth, ωl ≤ ωc ≤ ωu.

As such, the critical frequency is used as the excitation
frequency, and the return difference is then,

M = I + L(iωc) = I +Kψ(iωc),

where ψ(iωc) = (iωcI−A)−1B. Here, the output matrix is
assumed to be identity. WithM being the return difference
and following (8), the partial derivative of the smallest
singular value of M can be expressed as,

∂σ

∂p
= Re

(
vH

∂(I + L(iωc))

∂p
z

)
.

In this work, the primary choice for the parameter p which
is to be adjusted for robustness properties are the weight
matrices Q and R. These matrices are arguments of the
MPC feedback gain K. When p is selected as some element
of the weight matrices, i.e., p = {qij ; rij}, the partial
derivative of the return difference can be reduced to,

∂(I + L(iωc))

∂p
=
∂K

∂p
ψ(iωc).

With K being the first m rows of the full quadratic
program solution, the derivative is given as,

∂K

∂p
=
∂
(
H−1B>QA

)
∂p

∣∣∣∣
1:m

= H−1 ∂
(
B>QA

)
∂p

+
∂H−1

∂p
B>QA

∣∣∣∣
1:m

,

for both relevant partial derivative parameters, qij and
rij , the element for derivation always appears linearly.
The dependence of the solution on the first m-rows will
subsequently be omitted where appropriate.

There are now two distinct cases for the partial derivative,
that depend on the selection of the derivation parameter
p. First, let p = qij , which results in the partial derivative,

∂K

∂qij
= H−1B>

∂Q

∂qij
A +

∂H−1

∂qij
B>QA,

= H−1B>
∂Q

∂qij
A−H−1 ∂H

∂qij
H−1B>QA,

= H−1B>
∂Q

∂qij
A−H−1 ∂B

>QB + R

∂qij
K,

= H−1B>
∂Q

∂qij
(A−BK)

∣∣∣∣
1:m

.

The complete partial derivative of the singular value for
the qij case is given as,

∂σ

∂qij
= Re

(
vH

∂K

∂qij
ψ(iωc)z

)
(9)

= Re

(
vH
(
H−1B>

∂Q

∂qij
(A−BK)

)
1:m

ψ(iωc)z

)
,

where only the first m-rows of the partial derivative of the
feedback gain are applied. The derivative of Q w.r.t. qij is
a sparse matrix with zeroes almost everywhere except for
entries of 1 at integer multiples of the entry at ij.

For the second case, let p = rij , to examine the sensitivity
of the solution to changes in the input weight matrix R.
The derivative is simplified as,

∂K

∂rij
=
∂H−1

∂rij
B>QA = −H−1 ∂H

∂rij
H−1B>QA

= −H−1 ∂B
>QB + R

∂rij
K

= −H−1 ∂R

∂rij
K

∣∣∣∣
1:m

.

Using this result in the full singular value derivative yields,

∂σ

∂rij
= Re

(
vH

∂K

∂rij
ψ(iωc)z

)
(10)

= Re

(
−vH

(
H−1 ∂R

∂rij
K

)
1:m

ψ(iωc)z

)
.

Next, these results are applied in design improvements to
the MPC system.

The relations provided above for the smallest singular
value allow for the analysis of a closed-loop MPC system.
The robustness of MPC, measured with gain and phase
margins, can be determined by applying the control gain
solution of the MPC optimal control problem, as given
in (3), to the return difference matrix and solving (5) -
(7). Should the robustness be deemed unsatisfactory, the
next question is how to adjust the MPC design to improve
robustness properties of the closed-loop system.

The goal for the design adjustment presented here is to
change one or more elements of the MPC weight matrices
Q and R, such that the changed closed loop system
exhibits improved robustness, with minimal impact on the
control performance.

While diagonal elements are the primary choice, with
good understanding of the dynamics and state or control
interactions, off-diagonal weighting elements can also be
selected to improve robustness on performance critical
actuators. This can lead to a lesser impact on the con-
trol performance compared to a change in the diagonal
elements of these variables. It is also possible to adjust
multiple weight elements at once by applying the partial
derivatives of the singular value in matrix differentiation
form.

Once the desired parameters for adjustment have been
chosen, they are to be re-selected by changing the original
parameters, qOij and rOij , as,

qij = qOij + εq
∂σ

∂qij
, (11)

rij = rOij + εr
∂σ

∂rij
, (12)

with εq,r ≥ 0. This parameter εq,r may be selected carefully
by the designer, thereby introducing an additional tuning
parameter within the design process. A more sound ap-
proach is to optimally select this parameter through con-
vex optimization algorithms. The optimization problem at
hand is given as,

max
qij ,rij

σ (I + L(iωc∆t, Q,R)) ,

with a concave objective function that is smooth al-
most everywhere (Lewis and Sendov, 2005; Alavian and
Rotkowitz, 2016).
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The sensitivity based design procedure is summarized as
follows, analogous to the procedure given in (Søgaard-
Andersen et al., 1986):

i) Design the initial MPC system in (3), tuning matrices
Q and R based on control performance requirements.

ii) Determine robustness properties based on singular
value analysis, see (5) to (7). Evaluate the robust
margins for their suitability. Should the robustness
properties be satisfactory, end the procedure here.

iii) Select frequencies at which the margins need to be
improved and parameter p for the design adjustment.
Calculate the gradients of the smallest singular value
with (9) or (10), respectively.

iv) Select updated parameters by applying the preferred
method, such as direct tuning or convex optimization.
Go to step 2.

This procedure is applied to a pre-designed MPC system
in an example in the next section.

4. EXAMPLE

The plant for the simulation example presented in this
section is based on data from a wind tunnel test article
used for gust load alleviation (GLA) experiments. The
dynamics, simulation model, and underlying test article
are presented in (Quenzer et al., 2019). The model consists
of a half wing aircraft with longitudinal dynamics and a
gust generator for vertical gust disturbance.

Four states are used for control design, which are the
angle of attack, x1 = α, where the subscript denotes the
enumeration of the element in the state vector, the pitch
rate, x2 = q, and two states for the first flexible wing
bending mode, x3 = η1 and x4 = η̇1. The controllable
inputs to the simulation model are the elevator, u1 = δE ,
and the two ailerons, outboard u2 = δOB and inboard u3 =
δIB . The output of the wing root strain measurement,
µWR, will be used for visualization purposes.

An MPC controller for GLA is designed for the given
model. The time parameters for MPC are selected as
0.04 s for the sampling time, equivalent to 25 Hz, and
a prediction horizon of 10 steps. The control performance
goal for the pre-designed MPC controller is to minimize
wing root strain due to an incoming gust disturbance.
With state feedback, this is achieved by penalizing the
first wing bending mode. The weighting matrices are then
selected as,

Q = diag(0, 0, 20, 0), R = diag(106, 1, 1),

where the position in the diagonal of the weighting matri-
ces corresponds to the respective state or control variable.

Figure 2 shows the time history of the wing root strain
measurement for a 1-cos shaped gust disturbance. The
1-cos gust is used for discrete gusts in certification doc-
uments. It is chosen with a 4◦ amplitude and 1.5 Hz
frequency, which corresponds to the first wing bending
frequency. The gust begins at 2 seconds simulation time.
In the plot, the dashed line is the open-loop response and
the full line is the closed-loop response. The closed-loop
controller suppresses wing root strain oscillation.

The minimum singular value of the return difference is
given in Figure 3. The sensors, and the system identifica-

Fig. 2. Wing root strain measurement of the open-loop and
initial MPC design.

Fig. 3. Robustness measure for the initial MPC design
(black line) and range of robustness for varying pre-
diction horizon (shaded gray).

Position 1,1 2,2 3,3 4,4

Q -1.1930·10−5 -0.0027 -0.0096 -1.1063
R -1.0967·10−12 0.0924 0.0990 -

Table 1. Minimal singular value gradients of
the initial MPC design, by parameter. Only

diagonal matrix position values are shown.

tion based on the sensor measurements, have high cohesion
between approximately 0.5 and 2.5 Hz. The upper and
lower frequency limits for analysis are therefore chosen
based on the sensor range.From Figure 3, the infimum of
the singular value is given as α0 = 0.52. This value yields
the following robustness margins,

GM =
1

1± α0
= {0.66, 2.08},

PM = ± cos−1

(
1− α2

0

2

)
= ±30.1◦.

While these parameters are acceptable for robustness
margins, in the last part of the example we improve on
these margins by utilizing the technique presented in the
last section.

The gradients for the diagonal entries in Q and R are
shown in Table 1. Reducing the elevator weight and
increasing the control action on the elevator will improve
the robustness properties of the closed-loop system. The
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Fig. 4. Robustness measure for the updated MPC system.

Fig. 5. Wing root strain measurement for the updated
MPC system.

graph in Figure 4 shows the minimum singular value plot
for an elevator weight of 50 (reduced from 106), while
all other parameters were kept constant. The minimum
singular value at 0.5 Hz increases from 0.52 to 0.54. The
new feedback gain matrix K now has non-zero entries in
the elevator row.

The wing root strain time history of the updated system is
given in Figure 5. Most notably, the peak load alleviation
has decreased slightly, which follows a general trend. This
trend is visible in the gradients, and shows that the
primary way to improve the robustness parameters is
to decrease control action on the wing strain. This can
be achieved in multiple ways, and the trade-off between
control performance in load alleviation and robustness
properties has to be carefully evaluated in the design
process.

5. CONCLUSION

We have provided an approach to MPC analysis and de-
sign, centered around classical robustness properties. The
presented method provides robustness margins without
requiring conditions on the terminal constraints. Relevant
elements for MPC systems, such as constraints and dis-
turbance preview, have not been included, and including
these elements is the focus of further work. Extending the
explicit MPC analysis for robustness margins in (Koduri,
2017) to involve control synthesis is another promising

research direction. Future research also includes experi-
mental validation of the synthesis method and robustness
measures in the wind tunnel.

Acknowledgements

The authors acknowledge their many useful discussions
with Profs. Kristi Morgansen and Eli Livne from the
University of Washington.

REFERENCES

Alavian, A. and Rotkowitz, M. (2016). Minimization
of a particular singular value. In Fifty-fourth Annual
Allerton Conference, 974–981.

Bertsekas, D.P. and Rhodes, I.B. (1971). On the minimax
reachability of target sets and target tubes. Automatica,
7, 233–247.

Chisci, L., Rossiter, J.A., and Zappa, G. (2001). Systems
with persistent disturbances: predictive control with
restricted constraint. Automatica, 37(7), 1019–1028.

Doyle, J.C. and Stein, G. (1981). Multivariable feedback
design: Concepts for a classica/modern synthesis. IEEE
Transactions on Automatic Control, 26(1), 4–16.

Goulart, P.J., Kerrigan, E.C., and Maciejowski, J.M.
(2006). Optimization over state feedback policies for
robust control with constraints. Automatica, 42(4), 523–
533.

Koduri, R. (2017). Robustness of Explicit Model Predictive
Control. Ph.D. thesis, Université Paris-Saclay.
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