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Abstract: Software rejuvenation has been proposed to guarantee safety of cyber-physical
systems (CPSs) against cyber-attacks. Recent work has demonstrated how this method can
be applied to more general control problems such as tracking control. Despite this progress,
there are still limitations in applying software rejuvenation to real situations where the presence
of persistent attacks and physical environment constraints exist. In this paper we address these
issues and propose a secure recovery algorithm that can be deployed not only for recovery
against persistent attacks but also in situations where physical environment constraints do not
allow the system to tolerate any attack. The effectiveness of the approach is illustrated with a
simulation of a quadrotor landing on the ground during recovery from a persistent attack.
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1. INTRODUCTION

Software rejuvenation is a typical procedure used in soft-
ware engineering to prevent potential software failures
within a system (Huang et al., 1995). This kind of ap-
proach has recently been proposed to guarantee safety
of cyber-physical systems (CPSs) against cyber-attacks
(Abdi et al., 2018b; Arroyo et al., 2019). The objective is
to periodically reboot the computer system by replacing
the possibly corrupted controller with a trusted copy of the
control software before the effects of an attack can cause
irreversible damage to the physical system. This approach
is a prevention mechanism that makes the system resilient
to attacks without implementing any attack detection al-
gorithm.

The disadvantage of periodically refreshing the system is
that it results in a reduction in the control performance.
For example, system resets can only be used if the system
is not tracking a trajectory but stations around a specific
equilibrium point, such as a rotorcraft UAV hovering at
a given position. A solution aimed at reducing this issue
has been proposed in Romagnoli et al. (2019a). There
are several advantages of this approach with respect to
other recent existing methods in the literature (Abdi et al.,
2018b,a). The first is that this is an off-line approach based
on positively invariant sets and reach set analysis which
are used to compute the period between two consecutive
software resets such that the worst case attack cannot
take the system out of a safety set. The main difference
with the Simplex method (Bak et al., 2014) is that when
an attack occurs, the information of the state can be

compromised. The worst case attack is defined according
to certain control constraints and actuator saturation
limits. Another difference with respect to other methods is
that this approach has been extended to a secure tracking
control algorithm (Romagnoli et al., 2019b) which ensures
that the system remains within the safety set while also
allowing trajectory tracking, or liveness. If the liveness
property is satisfied, the system is capable of reaching a
desired equilibrium point while periodically rejuvenating.

In this paper, we want to improve the proposed method
by making it be able to handle some critical aspects such
as the presence of persistent attacks and environmental
constraints. In previous work (Romagnoli et al., 2019b),
liveness is only guaranteed when no persistent attack is
acting on the CPS. However, safety is always guaranteed
through a secure control mode that is activated after
software refresh if an attack takes the system close to
the boundary of the safety set. During secure control the
system is driven back towards the current equilibrium
point while remaining disconnected from the network,
preventing any cyber-attacks from occurring. Despite the
fact that the system remains safe during secure control,
the lack of communication does not allow the system to
update the equilibrium point so that a reference input
can be tracked. As a result, it may be the case that the
reference trajectory cannot be updated under a persistent
attack, causing the liveness property to not be satisfied.

In such cases, a system operator may wish to change the
mission and drive the system to a safer place. However, the
system still requires communication while being driven to
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a safer place, such as when a drone needs to communicate
with the ground station. Consequently, this paper intro-
duces a secure recovery algorithm which guarantees that
the system can be driven to a safer place while still remain-
ing vulnerable when connected to the network. A similar
problem has been solved in Griffioen et al. (2019). Here the
secure recovery algorithm reboots the system before the
effects of a possible attack can affect or modify the control
input. Safety and liveness for the secure recovery algorithm
is guaranteed analyzing the dynamics of the system during
software refresh which is less conservative than the reach
set analysis approach.

In addition, previous work (Romagnoli et al., 2019a,b)
has not considered the presence of physical environment
constraints. When the system is close to environmental
constraints, an attack has the potential to push the system
outside of or against those constraints. This paper takes
these physical environment constraints into account during
both tracking control and during the secure recovery mode.

2. PROBLEM FORMULATION

We model the plant as a continuous time linear time
invariant (LTI) system given by the state equation

ẋ(t) = Ax(t) +Bu(t), (1)
where x ∈ Rn represents the state, u ∈ Rp denotes
the control input, and the system is centered about an
equilibrium point of 0. We design a stabilizing controller

u(t) = −Kx(t), (2)
so that the closed-loop dynamics are given by

ẋ(t) = Afx(t), (3)

where Af , A − BK is a Hurwitz matrix. Given a non-
zero equilibrium point xj ∈ Rn, we can do a coordinate
transformation and represent the closed-loop system as

ẋ(t) = Af (x(t)− xj) , (4)
which is asymptotically stable and converges to xj . Since
the system is asymptotically stable, we can find a sym-
metric positive definite matrix P � 0 such that ATf P +
PAf ≺ 0. Given a scalar ε > 0 we can define the following
Lyapunov level set

Ej(ε) ,
{
x|(x− xj)TP (x− xj) ≤ ε

}
, (5)

which is positively invariant for (4). Thus for any x(0) ∈
Ej(ε), x(t) ∈ Ej(ε) for all t ≥ 0.

For all possible equilibrium points xj we consider a set
of constraints on the state space, which defines the region
where the controller can stabilize the system

C(xj) =
{
cTi (x− xj) ≤ 1, i = 1, . . . , nc

}
, (6)

where ci ∈ Rn is the normal direction to the hyper-
plane representing the ith constraint. This is the set of
states where the controller can guarantee some fundamen-
tal properties of the controlled system. In general those
constraints do not match with the physical constraints due
to the environment,

E =
{
eTi x ≤ 1, i = 1, . . . , ne

}
, (7)

where ei ∈ Rn. We note that the origin of the state space
is contained in E. Then we have the following two possible
situations for each equilibrium point xj ∈ E:

a) C(xj) ⊆ E, or b) C(xj) 6⊆ E.

Condition a) suggests that around xj the control system
can operate safely without violating physical environment
constraints, and condition b) implies that physical environ-
ment constraints may be violated. Note that the control
constraints do not take the environmental constraints into
account, so the state x(t) may be inside C(xj) while also
lying outside E.

In the presence of attacks we want to guarantee safety of
the system using software rejuvenation (Romagnoli et al.,
2019a) where the controller is replaced with a trusted
copy of it before an attack can take the system out of
C(xj), and the protection during reboot is guaranteed
by disconnecting the system from the network. In this
scenario if the system is in condition a), then we can
implement the secure tracking control algorithm developed
in Romagnoli et al. (2019b). In condition b), software
rejuvenation cannot guarantee protection against physical
environment constraints because an attack can drive the
state of the system anywhere within C(xj). The reasons
we do not include physical environment constraints in
C(xj) are that to incorporate the environment constraints:
(i) C(xj) has to be computed on-line in protected mode,
and this can be difficult to implement due to possible
limitations of the system architecture with this kind of
modality; and (ii) software rejuvenation cannot admit an
admissible solution if the state of the system is too close
to the physical environment constraints.

To solve this problem, we want to design a safety algorithm
that implements software rejuvenation while considering
the physical environment constraints and at the same
time allowing the system to communicate through the
network to receive admissible recovery equilibrium points.
This algorithm can also be used to recover the system if
it is under persistent attack, which is not addressed in
Romagnoli et al. (2019b).

2.1 Attack Model

The CPS described by the controlled system (4) oper-
ates normally when connected to the network to provide
and receive information depending on the mission to be
accomplished. The equilibrium points xj are transmitted
over the network to the control system. When the system
is connected to the network it is vulnerable to attacks.
We assume that an attacker has knowledge of the system
model, can read the state and control inputs when the
system is connected to the network, and can arbitrarily
modify the control inputs and the controller such that
u(t) ∈ U ⊂ Rp, where U represents the control constraints
(see for example Johnson et al. (2017)).

The system is vulnerable only if it is connected to the
network. Suppose the system starts from an initial state
where it is not corrupted and is not connected to the
network. Once it connects to the network, it becomes
vulnerable to attacks, but the potential attack only begins
to take effect after T∆ > 0. Consequently, we can consider
the system to be working properly for that period of
time where the network connection is open. Implementing
software rejuvenation and considering the system clean
after each software refresh makes the above assumption
plausible as introduced in Griffioen et al. (2019) and Lucia
et al. (2016). The following assumptions are made on T∆:
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A1) T∆ > 0 is long enough to allow the system to receive
a new equilibrium point xj .

A2) During T∆ the communication is assumed to be
secure.

2.2 Software Rejuvenation

Software rejuvenation is a mechanism of protection based
on three operating modes of the system (Romagnoli et al.,
2019a). Mission Control (MC): the system is connected
to the network to perform tasks for which it has been
designed. In this mode it is also vulnerable to cyber-
attacks. Software Refresh (SR): the system is disconnected
from the network, and the current possibly corrupted
controller is replaced by a trusted copy of it. During this
mode, the system is running in an open loop, and we
assume that the control inputs are held constant at the
last control input provided before refreshing the controller.
Secure Control (SC): after software refresh the system may
remain disconnected from the network while the trusted
controller is used to recover the system to a specific region
before connecting it to the network. The timing diagram
that represents the switching between the several modes is
shown in Fig. 1. T jMC is a design parameter representing
the length of time the system can tolerate an attack before
SR. TSR is the time needed to refresh the controller. While
the time periods TSR and T jMC are fixed a priori, the time
in SC mode TSC is not fixed a priori, and the system
can only switch back to mission control when the state
of the system has been returned to the invariant region
associated with mission control. Note that we assume that
after SR, the state of the system is immediately available
from sensor measurements to check if the system can
switch back to mission control or if it needs to be recovered
in secure control mode.
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Fig. 1. Software rejuvenation control modes.

Remark 1. Ideally we want T jMC to be as large as possible
because the network is used not only for control purposes
but also for communicating other kinds of information
required for particular tasks. Keeping the system discon-
nected from the network can guarantee safety, but it may
drastically reduce system performance.
Remark 2. SC mode is a recovery procedure which is im-
plemented by disconnecting the system from the network.
This ensures safety during recovery against attacks, but
it also prevents any possible interaction if an unexpected
situation occurs. Despite the fact that TSC is finite, it is a
priori unknown, implying that once the system is in this
modality it cannot promptly address unexpected events.

3. SOFTWARE REJUVENATION BASED SECURE
TRACKING CONTROL

3.1 Invariant Safety Sets

Given an equilibrium point xj , we define the safe set as the
invariant ellipsoid (5) for system (4) centered at xj given
by

Ej(ε) s.t. Ej(ε) ⊆ C(xj), (8)
for some ε ∈ (0, 1]. The positive definite matrix P is
computed by finding the largest invariant ellipsoid Ej(1)
such that Ej(1) ⊆ C(xj), and this is completed by solving
a maximization problem as given in (Romagnoli et al.,
2019a) and (Boyd et al., 1994).

Part of the results proposed in this section come from
(Romagnoli et al., 2019a,b). However, we reformulate them
in this new context by considering E and T∆ > 0, which
is included as part of T jMC in Fig. 1. Given the time TMC

during which we want the system to be connected to the
network, we define the time period of unknown control
(UC) as

TUC , TMC − T∆ + TSR, (9)
which represents the time where the control input may be
corrupted and unpredictable. We assume that TMC ≥ T∆.

To ensure that the system can tolerate a worst case attack
and still be safely recovered after software refresh, we
define the invariant ellipsoid Ej(ε′), where ε′ ∈ (0, 1].
LettingR+(x(t0), T, CP ) denote an over-approximation of
the reachable set for all t ∈ [t0, t0 + T ] from initial state
x(t0) under control policy CP , Ej(ε′) represents the largest
ellipsoid such that

∀x(t) ∈ Ej(ε′), R+(x(t), TUC , UC) ⊆ Ej(1). (10)
This is associated with finding the largest value of ε′ such
that the reachable set over-approximation R+(x(t), TUC ,
UC) is a subset of Ej(1). One way to compute ε′ is
presented in Algorithm 1 where ε′ is iteratively increased
until the condition in (10) no longer holds.

Algorithm 1 Ellipsoid Computation Procedure
1: Initialize δ ∈ (0, 1)
2: Initialize ε′ ∈ (0, 1] s.t.R+(x(t), TUC , UC) ⊆ Ej(1) ∀x(t) ∈ Ej(ε′)
3: while R+(x(t), TUC , UC) ⊆ Ej(1) ∀x(t) ∈ Ej(ε′)
4: ε′ = ε′ + δ
5: end while
6: ε′ = ε′ − δ

While ε′ is computed in Algorithm 1 according to the
period of uncertain control TUC chosen by the system
operator, it may be necessary to decrease TUC in situations
where Ej(1) 6⊆ E. In these cases,the system executes
mission control for T jMC , T jUC + T∆ − TSR time instead
of TMC time. The value of T jMC that is transmitted over
the network with xj is obtained finding the maximum
T jUC ∈ [TSR, TUC ] such that

R+(x(t), T jUC , UC) ⊆ Ej(1) ∩ E ∀x(t) ∈ Ej(ε
′), (11)

ensuring that the physical environment constraints are not
violated.
Remark 3. The computation of T jUC using (11) can be
implemented online by the operator transmitting the equi-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4156



librium points. However, (11) can also be implemented off-
line for a finite number of pre-determined pairs {xj , T jUC}.

Recalling (5), we define the set E′ as

E′ , {xj |Ej(ε′) ⊆ E} . (12)
When xj ∈ E′ and x(t) ∈ Ej(ε), the state will never violate
the physical environment constraints E. Here we have let
ε ∈ [ε′, 1] so that Ej(ε) represents the smallest invariant set
such that

Ej(ε) ⊇ R+(x(t0), T
j
UC , UC) ∀x(t0) ∈ Ej(ε

′). (13)
For the rest of the paper we consider ε satisfying condition
(13).

We are going to design the secure tracking control algo-
rithm based on software rejuvenation for when xj ∈ E′.
The next section will introduce the recovery mode that
is activated when xj /∈ E′ or when the system is under
persistent attack.

Let the invariant ellipsoid Ej(ε′′) represent the set of states
from which mission control can drive the state into Ej(ε′)
during T∆, where ε′′ ∈ [ε′, 1]. In other words,

Ej(ε′′)=
{
x(t)

∣∣∣x(t)=(eAfT∆
)−1

x(t0), x(t0)∈Ej(ε′)
}
. (14)

This ellipsoid will be used to determine when the system
can reconnect to the network and switch from secure
control to mission control. There is no fixed time for secure
control as it is implemented until x(t) ∈ Ej(ε′′), but it is
possible to prove that TSC is finite.

3.2 Tracking

The notion of safety has to be extended to the case where
multiple equilibrium points are provided for reaching a
particular position. Assuming that for each xj the corre-
sponding Ej(ε) ⊆ C(xj), the goal is to ensure safety during
the transition between two consecutive equilibrium points.
Given εw ∈ (0, ε′], we introduce the ellipsoid Ej(εw) which
represents the set of states where the equilibrium point can
be updated. If x(t) ∈ Ej(εw) during the first T∆ period of
mission control, then the equilibrium point can be updated
to xj+1. Safety is guaranteed if the following condition
holds for all the equilibrium points

Ej(εw) ⊆ Ej+1(ε
′). (15)

In the tracking control problem, the software rejuvenation
scheme of protection remains the same other than the
fact that Ej(εw) is introduced for switching to the next
equilibrium point.

Another goal is ensuring that the state of the system
does not get stuck around a particular equilibrium point
unless it is the final one. This property is named liveness.
To guarantee this property, Ej(εw) has to be a set of
attraction (Brockman and Corless, 1998) for the system
subject to software rejuvenation. For more formal details
see Romagnoli et al. (2019b). Algorithm 2 presents the
software rejuvenation procedure for the tracking control
problem.

The main difference with respect to employing software
rejuvenation without tracking is that during the first T∆

period of mission control, the algorithm checks to see if
x(t) ∈ Ej(εw), and if so updates the equilibrium point

Algorithm 2 Software Rejuvenation Algorithm
1: while 1
2: t = 0 (initialize and begin timer)
3: while t < T j

MC
4: Mission Control
5: if x(t) ∈ Ej(εw) and t < T∆

6: Update Equilibrium Point (j = j + 1)
7: end if
8: end while
9: Software Refresh
10: if x(t) /∈ Ej(ε′′)
11: Close Network Connection
12: end if
13: while x(t) /∈ Ej(ε′′)
14: Secure Control
15: end while
16: Open Network Connection
17: end while

xj → xj+1. Note that from (15), the transmitted value
xj+1 can be verified by checking the conditions x(t) ∈
Ej+1(ε

′) and Ej+1(ε
′) ⊆ E. If these conditions do not

hold, the update is discarded and the system is still safe
around the previous equilibrium point. The attacker can
drive the system to any arbitrary place if the compromised
equilibrium points meet these conditions, but safety is
always guaranteed. The issue of the recovery from an
attack on the communication channel is still an open
problem that will be addressed in future research.

In this scenario if the system is under persistent attack,
it can be the case that the equilibrium point is never
updated because x(t) never lies in Ej(εw). This can occur
if the state is not driven into Ej(εw) during the first T∆

period of mission control and if the attacker drives the
state of the system out of Ej(ε′′) during every instance
of mission control. Forcing liveness using secure control
may drastically reduce the overall performance of the
system since it is isolated. Guaranteeing a minimum level
of communication makes it possible to also have remote
control of the mission during safety-critical tasks such as
recovery.

4. SOFTWARE REJUVENATION BASED SECURE
RECOVERY MODE

The previous section considered the tracking control algo-
rithm for equilibrium points xj ∈ E′. We now consider the
situation where xj /∈ E′ so that a possible attack can push
the system out of the physical environment constraints E.
In this case the effect of an attack cannot be tolerated, but
the system still needs to be able to communicate to guar-
antee some fundamental functionalities (e.g. equilibrium
points communication).

In order to avoid violating the physical environment con-
straints from a possible attack and at the same time
ensuring the system remains connected to the network,
we implement the software rejuvenation scheme using
T jMC = T∆. In this case the safe set has to take into
account the physical environment constraints. To do so
without changing the shape of the invariant set, we define
the safety set Ej(εr) according to (5) with εr ∈ (0, ε′] and
with the previously computed positive definite matrix P
which ensures that Ej(εr) ⊆ C(xj).
Definition 4. Considering any fixed equilibrium point xj ,
the set Ej(εr) is a recovery safe set for the system subject
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to periodic software refresh with T jMC = T∆ if
x(t) ∈ Ej(εr) ∀t ∈ [t0, t0 + T∆ + TSR], (16)

where t0 represents the time at the beginning of mission
control. The recovery safe set is a positively invariant set.

Using the physical environment constraints and the safety
set for an equilibrium point xj , we define the set of
recoverable equilibrium points as

Er , {xj |Ej(εr) ⊆ E} . (17)
During the recovery mode, equilibrium points will only be
transmitted over the network that lie inside of Er. In other
words, while it may be the case that xj /∈ E′, the system
will never be provided with equilibrium points xj /∈ E′ ∪
Er. During the recovery mode, εr can be increased or
decreased over time to either enlarge or shrink the recovery
safe set depending on how close the equilibrium point xj
is to the physical environment constraints E. For different
values of εr, different sets Er can be computed off-line. We
now define safety for the recovery mode.
Definition 5. (Safety). Given a finite sequence of equilib-
rium points xj ∈ Er with j = 1, . . . , s, the system is safe
if

x(t) ∈
s⋃
j=1

Ej(εr) ∀t ≥ 0. (18)

The system is safe if (18) is true because each ellipsoid
Ej(εr) lies within the control constraints C(xj) and the
physical environmental constraints E.

For the recovery mode, we redefine εw so that εw ∈ (0, εr],
and liveness is defined as follows.
Definition 6. (Liveness). The system is live if there exists
a sequence of times t1, . . . , ts where 0 ≤ t1 < · · · < ts <∞
such that

x(tj) ∈ Ej(εr), j = 1, . . . , s. (19)

The proposed recovery mode is described in Algorithm 3.

Algorithm 3 Software Rejuvenation Recovery Algorithm
1: Open Network Connection
2: while j < s
3: t = 0 (initialize and begin timer)
4: while t < T∆

5: Mission Control
6: if x(t) ∈ Ej(εw)
7: Update Equilibrium Point (j = j + 1)
8: end if
9: end while
10: Software Refresh
11: end while

Theorem 7. The recovery procedure presented in Algo-
rithm 3 guarantees safety and liveness if

i Ej(εr) is a recovery safe set ∀j = 1, . . . , s.
ii x(t1) ∈ E1(εr), where t1 is the time when the recovery

algorithm is initiated.
iii Ej(εw) ⊆ Ej+1(εr) ∀j = 1, . . . , s− 1.
iv For all x(t0) ∈ Ej(εr) \ Ej(εw), j = 1, . . . , s − 1,

there exists an ε′w ∈ [εw, εr) such that x(t0 + T∆ +
TSR) ∈ Ej(ε′w), where t0 represents the time immedi-
ately following software refresh.

Proof.

(1) Safety: Condition i) implies that Ej(εr) is a posi-
tively invariant set, so if x(τ) ∈ Ej(εr) for a fixed
equilibrium point xj , then x(t) ∈ Ej(εr) ∀t ≥ τ .
Condition iii) ensures that x(t) ∈ Ej(εr) ∩ Ej+1(εr)
when updating the equilibrium point from xj to xj+1.
These two conditions in conjunction imply that if
x(τ) ∈ Ej(εr) with equilibrium point xj , then ∀t ≥ τ ,
x(t) ∈ Ei(εr) with equilibrium point xi ∀i ≥ j.
This result combined with condition ii) implies that
x(t) ∈ Ej(εr) ∀t ≥ 0, j = 1, . . . , s, satisfying (18) and
guaranteeing the safety of the system.

(2) Liveness: Because conditions i), ii), and iii) imply
that (18) is satisfied and because the equilibrium
point is only updated when x(t) ∈ Ej(εw), liveness is
guaranteed if x(t)→ Ej(εw) in a finite amount of time
∀j = 1, . . . , s−1. Condition iv) ensures that this is the
case by stating that Ej(εw) is a region of attraction
for x(t). It states that after each software refresh,
x(t) will reside in an ellipsoid that is smaller than
the ellipsoid it resided in after the previous software
refresh until x(t) ∈ Ej(εw).

Let ti represent the time at the beginning of the ith

instance of mission control so that
x(ti + T∆)− xj = eAfT∆ (x(ti)− xj)

= A1(T∆) (x(ti)− xj) ,
(20)

x(ti+1 + T∆ + t)− xj = eAt (x(ti + T∆)− xj)

+

∫ t

0

eA(t−τ)Bdτ (−K (x(ti + T∆)− xj))

= A2(t) (x(ti + T∆)− xj) ∀t ∈ [0, TSR],

(21)

where A1(t) , eAf t and A2(t) , eAt −
∫ t

0
eA(t−τ)BKdτ .

We can now present the following proposition.
Proposition 8. Consider the dynamics of the closed-loop
system (4) subject to the recovery mode behavior around
a fixed equilibrium point xj . Conditions i) and iv) from
Theorem 7 hold if ∀t ∈ [0, TSR],

AT1 (T∆)AT2 (t)PA2(t)A1(T∆)− P ≺ 0. (22)

Proof. Assume that (22) holds ∀t ∈ [0, TSR]. Then

(x(ti)−xj)TAT1 (T∆)AT2 (t)PA2(t)A1(T∆)(x(ti)−xj)
−(x(ti)−xj)TP (x(ti)−xj)<0 ∀t∈[0,TSR].

(23)

Substituting (20) into (23) yields

(x(ti+T∆)−xj)T AT2 (t)PA2(t) (x(ti+T∆)−xj)<
< (x(ti)−xj)T P (x(ti)−xj) ∀t∈ [0, TSR].

(24)

Substituting (21) into (24) yields

(x(ti + T∆ + t)− xj)T P (x(ti + T∆ + t)− xj) <
< (x(ti)− xj)T P (x(ti)− xj) ∀t ∈ [0, TSR].

(25)

If x(ti) ∈ Ej(εr), then (25) implies that x(ti + T∆ + t) ∈
Ej(εr) ∀t ∈ [0, TSR]. Because the system is asymptotically
stable in the time period [ti, ti+T∆] during mission control,
x(ti + t) ∈ Ej(εr) ∀t ∈ [0, T∆]. Consequently, (16) is
satisfied if x(ti) ∈ Ej(εr), implying that Ej(εr) is a recovery
safe set and that condition i) holds. Furthermore, the
strict inequality in (25) implies that if x(ti) ∈ Ej(εr), then
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x(ti + T∆ + TSR) ∈ Ej(ε′w) for some ε′w < εr, satisfying
condition iv).
Remark 9. This proposition holds for any initial condi-
tions, and it only depends on T∆ and TSR. We do not
have any degrees of freedom if (22) is not satisfied, but we
can use secure control for a fixed amount of time before
opening the network connection to drive x(ti + T∆) closer
to xj . If this solution is adopted, it guarantees that the
secure control time interval TSC is known and fixed, in
contrast to normal software rejuvenation where we only
know that TSC is finite.

5. SIMULATION

We consider the quadrotor system used in (Romagnoli
et al., 2019b) to test the proposed algorithm. The dynam-
ics of the quadrotor are nonlinear, but it is a common
practice to use a linear model that describes the dynamics
around an equilibrium point. When the vehicle is hovering
at a certain position where the propellers provide the
force needed to counteract the g-force in that particular
position, the nonlinear equations can be approximated
by a linear model (1) (Beard, 2008). The simulations are
carried out using the jMAVSim simulator.

The mission objective is to achieve the position xp = 1 m,
yp = 1 m, zp = 4 m starting from xp = 1 m, yp = 0 m,
zp = 2 m, where the subscript p is used to indicate the
spatial coordinates. We simulate the effects of a persistent
attack which repeatedly takes over the control inputs with
the goal of crashing the quadrotor into the ground. Then
we activate the recovery algorithm for safe landing of the
vehicle. There are four control inputs: thrust F , and three
torques τφ, τθ, and τψ, where 0 N ≤ F ≤ 16 N and
−0.0033 Nm ≤ τφ,θ,ψ ≤ 0.0033 Nm. The angles φ, θ, and
ψ describe the attitude of the quadrotor and represent the
pitch, roll, and yaw angles respectively. The state space x
and physical environment E are defined as

x ,
[
ẋp xp ẏp yp żp zp φ̇ φ θ̇ θ ψ̇ ψ

]T
, (26)

E = {x ∈ Rn|zp ≥ 0} , (27)
where only the ground is considered as a physical environ-
ment constraint. The state space constraints are defined
around the equilibrium point xj = 0 and are given by

C(0) ,

x ∈ Rn

∣∣∣∣∣∣∣
−1 ≤ xp, yp ≤ −1
−2 ≤ zp, ẋp, ẏp ≤ −2
−5 ≤ żp, φ̇, θ̇, ψ̇ ≤ −5
−π/4 ≤ φ, θ, ψ ≤ π/4

 . (28)

For the software rejuvenation based secure tracking control
we find the maximum volume ellipsoid contained in (28) as
in Romagnoli et al. (2019a). Applying Algorithm 1 allows
us to obtain ε′ = 0.01 for a given TUC = 0.12 s, a given
software refresh period TSR = 0.05 s, and a given T∆ =
0.05 s. With these values, the condition in Proposition 8
is satisfied, implying that we can define safe recovery sets.
Moreover, these values also satisfy the liveness condition
needed to properly implement Algorithm 2. For the track-
ing control mode we consider Ej(εr) with εw = 0.005. In
order to update the equilibrium point during the recovery
procedure in Algorithm 3, Ej(εw) ⊆ Ej+1(εr). Fig. 2 shows
that this is the case for the three different recovery safe
sets used by the recovery algorithm in this simulation.

Fig. 2. The three different recovery safe sets (outer sets)
Ej+1(εr) used for landing. Each inner set Ej(εw) is
contained within the recovery safe set of the next
equilibrium point.

The goal of the safe recovery algorithm is to guarantee
a safe landing for the quadrotor, and therefore we want
to take it as close as possible to the ground. To do so,
we use three different safe recovery sets. One set is used
where εr = 0.01 and εw = 0.005, the same as that used for
tracking control, and this set is used for all the equilibrium
points xj where zp > 0.2 m. If xj is such that 0.11 m
< zp ≤ 0.2 m, we shrink the recovery safe set by using
εr = 0.005 and εw = 0.003. If xj is such that zp ≤ 0.11 m,
we again shrink the recovery safe set by using εr = 0.001
and εw = 0.0005. In this way the quadrotor can safely
descend to 0.06 m above the ground where it is able to
land using only the secure control mode.
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Fig. 3. Behavior of the system state and associated equi-
librium points projected on zp, and the timeline of the
control modes.

As Fig. 3 depicts, the system is running in SC mode
before the simulation begins, and the initial state of the
system belongs to E′. After that the mission starts and
the equilibrium points are updated since the liveness of
the system is preserved subject to software rejuvenation.
At t = 10 s a persistent attack is initiated, but safety
is guaranteed since Algorithm 2 activates SC after SR.
However, the equilibrium point cannot be updated under
this persistent attack. Because the equilibrium point is
unable to be updated, the secure recovery algorithm is
activated at t ≈ 22 s, and the quadrotor begins its descent
until it reaches 0.06 m above the ground. The behavior
of the Lyapunov function is reported in Fig. 4, where
the spikes are due to updating the equilibrium points.
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During the persistent attack, the state of the system is
continuously taken out of Ej(ε′′) despite the fact that SC
recovers it after each software refresh. When the system
is under attack, the state does not leave Ej(ε). During the
recovery mode, the initial recovery safe set is Ej(0.01) for
22 s ≤ t ≤ 47 s, Ej(0.005) for 47 s < t ≤ 52 s, and Ej(0.001)
for t > 52 s.
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Fig. 4. Behavior of the Lyapunov function and represen-
tation of the different level sets for different values of
εr and εw.

6. CONCLUSION

In this paper we have addressed the issues that can
arise when applying software rejuvenation in the presence
of persistent attacks and environmental constraints. By
rebooting the system before the effects of a possible attack
affect the control input, we have designed a secure recovery
algorithm that guarantees safety and liveness of the system
when it is vulnerable. This algorithm is also used for
situations where the system is in the proximity of physical
environment constraints so that the effects of any attack
cannot be tolerated. The effectiveness of this approach has
been illustrated with the simulation of a quadrotor under
persistent attack where the secure recovery algorithm
allows the quadrotor to land at a specific safe point.
Future developments will be devoted to studying the case
of attacks on the communication channel and on-board
equilibrium point generation.
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