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Abstract: Fertilizers are an important tool for agriculture to correct the nutrients of the soil.
Several analyses are made to guarantee the quality of this product. The particle size analysis
indicates how well the fertilizer will penetrate in the soil by the size. The idea is to estimate the
size of the grain during the production process. The production of fertilizers is a very complex
production involving meters of pipes and conveyor belts where the grains are composed and
transformed into the final product. The classic method to estimate the size is the mechanical
sieving, an invasive and time-consuming method. A non-invasive and cost-effective method is
the digital image processing (DIP) technique applied online in the production flow. In this
case, a camera can be localized in the top of a conveyor belt capturing grain images directly
during their composition. However, due to the number of grains (tons of grains) present on the
image, this method depends on particle separation to avoid the particle segregation and grain
overlapping on sampled images. In this work, we investigate how a digital image processing
algorithm for particle size analysis of fertilizers is affected by the segregation and overlapping
issues. We propose a grain surface simulator to create different scenarios of particle dispersion,
a useful tool to speed up the process of creation of data-sets about fertilizers. The results show
how the overlapping and segregation of grains influences in the particle size analysis by DIP,
and how these interferences in extreme situations could generate biased results.
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1. INTRODUCTION

In the past years, food production became a worldwide
concern. The world population keeps growing, while the
number of farmable lands has been decreasing. The use of
fertilizers per hectare of cropland has increased around the
world to change this fact (FAO Statistical (2018)).

Analysis has to be performed to avoid the segregation
of the grains to assure the quality of fertilizers to soil
application. The size of the product must be uniform,
otherwise, the results of the application in the soil will
be erratic (Worsfold et al. (2019)). The particle size
analysis by mechanical sieving is performed to assure the
uniformity. However, this method is intrusive and time-
consuming, especially when several analyses are needed
(Kwan et al. (1999)).

The agriculture industries have demanded accurate and
fast analyses of fields that handle with granular materials.
To do this, it is possible to use computer vision to perform
these analyses (Igathinathane et al. (2009)). An image
containing several grains is captured using a calibrated

camera, then an algorithm processes the image to segment
the grains and analyses each particle to infer its size and
mass. The methodology of digital image processing (DIP)
has advantages when compared with mechanical sieving,
allowing automated product analysis and non-destructive
approach.

A method to determine the particle size distribution of
fertilizers by digital image processing are proposed in
Mendonça et al. (2019), using a watershed transform to
digitally separate the edges of the particles. However, to
simplify the method, the image of grains are dispersed
and non-overlapping, which is not a realistic scenario. In
the fertilizer industry, after the granulation process, the
product is put in a conveyor belt where is possible to
see tons of overlapping grains. The overlapping problem is
inherent to the application of image analysis which uses a
top-vision camera on conveyor belts as shown in Yen et al.
(1998). The challenge is to estimate the granulometry of
the set of grains given one superior image of the scene.

It is possible to model different dispersion patterns as an
overlapping effect in layers of grains in a planar image of
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the sample. In this context, the main contributions of this
work are a grain surface simulator to help create a data-
set of virtual images of different situations of dispersion
scenarios. Also, digital image processing techniques are
applied to investigate how well the algorithm handles the
overlapping and segregation problem.

2. LITERATURE REVIEW

The quality of the product has been a priority necessity in
the industry, making necessary the research of new meth-
ods that are more efficient, and economically valuable. In
the industry of grains, this is not different. To evaluate the
quality of the product, the particle size analysis is required
to estimate the distribution of the size of the grains. For
this matter, it is used mechanical sieving, which is invasive
and time-consuming. On the other way, a computer vision
method turns this process non-invasive and cost-effective.
Furthermore, this process can be used even in hostile
environments (Hundal et al. (1997)).

When particles are not overlapped, computer vision meth-
ods can be used to determine the size of each particle and
classify them, resulting in the particle size of a sample
(Mendonça et al. (2019)). In this work, digital image
process techniques are used to enhance the captured im-
ages of fertilizers, and to extract geometrical features for
data analysis. However, the situation becomes significantly
more complex when particles are overlapped because of the
segregation phenomenon.

2.1 Overlapping and the consequences in DIP

Particle overlap and segregation problems are inherent
in particle size measurements using image-based methods
in real-world cases. Particle size distributions measured
from the exposed layer of a packed particle bed can be
seriously biased by these problems, because the top layer
may not represent the whole population properly (Yen
et al. (1998)).

The overlapping grain is a problem that is present in the
major particle size analyzes that use the digital image
processing methodology, but it’s often bypassed. In Zhang
(2016) is proposed an interval statistical method to es-
timate the probability of overlapping particles on image
analysis approaches. The results show that the absolute
error is reduced when their proposed models are used.

Correction functions were developed by Yen et al. (1998),
Cheung and Ord (1990) and Chavez et al. (1996) to trans-
fer measured size data of the top layer of particles to the
size data of total sample, but this kind of adjustment
requires knowledge of specific features, like the average
particle size and a measure of the variation of the size
distribution. Besides being limited to a single particle’s
distribution model and only one segregation model. There-
fore, they do not apply to real-world sensing problems
where method adaptation to different samples is required.

The work of Hamzeloo et al. (2014) brings techniques of
machine vision combined with neural networks to estimate
the particle size distribution of coarse rocks. A consistent
number of on-site images are captured and processed to
the extraction of several geometrical features of the rocks.

But, to avoid the error caused by overlapping grains, the
authors have to use particle separation at the conveyor
belts, which makes the methodology invasive.

In real problems of particle size analysis, attention has
to be given to the fact that a system containing particles
of different properties tends to show segregation, particles
with the same property grouping together in some part of
the particle mass. Differences in size, density, shape, and
resilience between particles are the factors that lead to
segregation in a mixture of particles. But the difference in
particle size is the most important in particle size analysis.
(Williams (1976)).

2.2 Segregation models

There are four segregation models according to (Williams
(1976)). The first one, and the most important is the
percolation of fine particles. This model is based on the
fact of small particles can easily penetrate the gaps formed
by larger ones and reach lower equilibrium positions (Jha
and Puri (2010)) and Tang and Puri (2005)).

Besides, the second model, the particle migration, is the
rise of larger particles. This effect occurs because a larger
particle causes an increase in pressure in the region below
it which compacts the material and stops the particle from
moving downwards. Any upward movement allows fines to
run in under the coarse particle, and these, in turn, are
locked in the position (Krishnan et al. (1996) and Dolgunin
et al. (1998)).

Regarding of trajectory segregation, the third model of
segregation, it is usually significant when particles are
moving in a uid media, when segregation will occurs due
to the fact that the large particles tend to travel further
(Alexander et al. (2003) and Baumann et al. (1994)).

In the last model, free surface segregation occurs during
bed formation in a moving conveyor. Large particles on
the surface have greater momentum and roll to the sides
of the particle bed (Drahun and Bridgwater (1983) and
Gray and Thornton (2005)).

3. METHODOLOGY

In order to analyze the levels and models of segregation
and overlapping grains in the particle size analysis by
digital image processing, a grain surface simulator is
developed. With this simulator, it is possible to create
images that represent different scenarios. Such images are
processed by the DIP algorithm shown below, and their
performance is analyzed.

3.1 Grain Surface Simulator

The idea is to have a simulated data-set that represents a
planar superior of a set of grains in a conveyor belt.

Each image is an overlapping composition of a big number
of small samples of individual grain particle images. The
first step to build the Grain Surface Simulator was the
acquisition of images and data about a group of fertilizer
grains. All grains in this is study is a mix of the fertilizer
NPK 05-32-04, with 5 parts of N , 32 parts of P2O5, and 4
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parts K2O5. The sample was obtained from the conveyor
belt after the granulation process, which means they are
not colored by oil coating.

For 40 grains, we measure the mass of each one using a
high-precision scale. We also measure the dimensions of
each particle with an electronic caliper. Using a Nikon
P500 high-resolution camera, we took pictures for each
isolated grain.

With all the collected data, the algorithm begins with a
pre-processing step. The background of each image was
removed, and the foreground object is centralized with
the center of the image. So the grain is adjusted to
be compatible with the real measure of the diameters
obtained by the caliper The image of some pre-processed
grains is shown in Fig 1.

Fig. 1. Image of pre-processed grains.

Using the image processing software ImageJ (Ferreira and
Rasband (2012)), we obtained the measure of the max-
imum and minimum Feret’s, measured in pixels. Feret’s
diameter is defined as the longest dimension of the parti-
cle, independent of its rotation at the moment the image
was captured. This measure is also known as the caliper
diameter.

After this, the images were resized until the ratio between
the Feret’s diameters matches the ratio of the real measure
with the caliper.

The data of each grain is classified based on the real minor
diameter measure, which corresponds to the sieve opening
size where the grain passes in the sieving method. To
categorize the grains between eight sieve-based categories,
we use the U.S Mesh sieve size. This convention is used
based on industrial applications. The mesh sieve size
corresponds to:

• #4: Sieve with screen opening of 4.76 mm
• #5: Sieve with screen opening of 4.00 mm
• #6: Sieve with screen opening of 3.36 mm
• #7: Sieve with screen opening of 2.80 mm
• #8: Sieve with screen opening of 2.36 mm
• #10: Sieve with screen opening of 2.00 mm
• #12: Sieve with screen opening of 1.70 mm
• #18: Sieve with screen opening of 1.00 mm

With this classification, the grains are selected following a
pre-determined logic based on segregation scenarios, and
their center is put in a random position in the virtual
image. Before the grains are placed in the image, they
are rotated at a random angle and put in the ratio
pixel/cm as previously determined. The virtual image has
the dimensions of 3000x3000 pixels2, corresponding to a
10x10 cm2 of real area. After this, all the grains present in
the image are readjusted to the ratio of 300 pixels/cm.

3.2 Overlapping Analysis

Taking in count that the place in the image where each
grain is placed is defined by a random function, the
overlapping is a consequence of the number of grains
placed in the virtual image. For this study, images with
50, 100, 200, 300, 400, 500, 800, 1000, 1500, 2500, 5000,
7500 and 10000 grains are made. For all images, each class
of particle size analysis has a probability to appear in the
virtual image.

3.3 Segregation Analysis

There are four types of pre-determined order to the grain
selection, based in the segregation models:

(1) Without any segregation model, representing an ideal
mix of grains. The eight classes have the same proba-
bility to have a grain of his class placed in the image.

(2) Free Surface Segregation, with equal probability of
each class, but the larger size grains are placed on
the corners of the image and the smaller size grains
stay placed in the middle.

(3) Middle Particle Migration and Percolation, where the
surface has larger size grains, with a probability of
65% of larger size grains and 35% of smaller size
grains.

(4) Larger Particle Migration and Percolation, where the
surface has much larger size grains, with a probability
of 80% of larger size grains and 20% of smaller size
grains.

3.4 Digital Image Processing Algorithm

The second stage is to process the simulated images. The
image processing was done with the software called ImageJ
(Ferreira and Rasband (2012)), which is a tool with several
functions for editing, processing, and analyzing images.
This software allows the register and the visualization of
each step of the image transformations, to create a macro
to automatize the process.

With the images stored in the computer, the software runs
the digital image processing algorithm as shown in Fig. 2.

Fig. 2. Diagram of the DIP algorithm.

The Sharpen operation is a convolution filter that increases
the contrast of the image and also accentuates the details,
like the edges. After this, we applied an operation of
edge detection that is made using the combination of the
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two versions (vertical and horizontal) of the Sobel Edge
detector.

Conversion to one grayscale channel from the three RGB
channels image is made to continue further with the image
processing

To segmentation, the grains, the threshold Isodata method
is utilized to transform a gray-scale image to a binary
image. With this, the morphological operators are applied
to correct the artifacts in the image. Finally, the watershed
transform is used to separate the touching grains.

To configure the feature extraction, a scale is created with
the ratio pixel/mm. To do the particle analyzes, a limit of
the area is chosen to separate the particles of the artifacts.
The data analysis is made using a Python algorithm that
classifies the extract features relative to the size of the
particle, and classifies according to the mechanical sieving
method Mendonça et al. (2019).

4. RESULTS AND DISCUSSIONS

4.1 Overlapping Analysis

The result of some virtual images made in the grain surface
simulator is shown in Fig. 3. The shown images are from
the left to right, in the number of grains shown in the
image: 100, 500, 1000, 1500, 2500, 5000, and 10000.

Fig. 3. Some of the scenarios of overlapping grains.

The graph in Fig. 4 shows the consequent error of the
overlapping in the counting of grains. Given that the DIP
algorithm can analyze just the surface layer when the cases
of overlapping occur, the interference can see it in the
quantity of the grains that the algorithm can count.

Fig. 4. Influence of Overlapping on grain count using line
interpolation.

In the situations where there are a few grains, and so
on less overlapping, the DIP can count almost all grains.
As shown in the images with less than 500 grains, the
presented algorithm can identify more than 70% of the
placed grains in the image.

From the 500 counted grains, the overlapping intensifies
and affects more the counting of the DIP algorithm,
identify only 6% of the grains in the most extreme case,
the simulate images with 10000 grains.

In order of exemplifying the results of each step, we will
give highlights to the case with fewer segregation. As
shown in Fig. 4, in the image of 200 grains the DIP
algorithm counted 162 grains, more than 80% of all. Their
classification and groundtruths are shown in Tab. 1.

Table 1. Grains classified by Mesh sieve size in
200 grains image.

Sieve DIP Simulator

#4 20 27

#5 18 25

#6 17 22

#7 20 24

#8 22 26

#10 25 28

#12 21 25

#18 19 23

Total 162 200

The following equation calculates the percentage of re-
tained grains in each sieve with values of Tab. 1.

%RetainedSieve =
No grains retainedSieve

Total No of grains
∗ 100 (1)

The retained percentage of each sieve calculated by the
DIP algorithm and by the simulator, which is the ground
truth, is shown in Fig. 5. For the simulator, the results of
the retained percentage of each sieve are approximately
12.5% because of the ideal mix scenario choose in the
simulator, where the grains for all the sieves have the same
probability to appear.

Fig. 5. % Retained of the 200 grains image.

With a difference between the %RetainedSieve of DIP and
simulator as an error in percentage points, the mean error
and standard deviation were calculated. To the image of
200 grains, the mean error was infimal with 0,65 ± 0,78.

Figure 6 shows the results of each particle size analysis.
The evolution of the mean error between the %Retained
and their respective standard deviation as vertical bars

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12210



Fig. 6. Mean Error and standard deviation for the particle
size analysis with DIP algorithm.

are shown as the number of grains and overlapping was
occurring.

The comparison of Fig.4 and Fig.6 shows the relationship
that the more grains in the images and consequently more
overlapping, greater is the error in the grain count which
leads to a higher mean error and standard deviation in the
granulometric analysis by DIP.

4.2 Segregation Analysis

The result of the grain surface simulator to the four
scenarios of dispersion, ideal mix and free surface, middle
percolation and larger percolation is shown in Fig. 7.

(a) (b)

(c) (d)

Fig. 7. The results for the scenarios of dispersion are shown
as follows: (a) the first scenario of an ideal mix of
grains, (b) free surface segregation, (c) the middle
particle migration and percolation grain surface and
(d) the larger particle migration and percolation grain
surface.

With these images, the algorithm proposed in the method-
ology has applied the result are shown in Fig. 8 for the four
scenarios following the description above.

The results for the particle size analysis for the four cases
of the analysis of segregation are presented in the Tab. 2

(a) (b)

(c) (d)

Fig. 8. The four scenarios of dispersion after the DIP
algorithm.

Table 2. Results of particle size analysis in
segregation scenarios.

Counted Grains Mean Error Std. Dev.

Ideal mix 591 6.00% 9.14

Free Surface 1016 7.77% 11.05

Middle Particle 422 6.70% 9.34
Migration and Percolation

Larger Particle 323 10.18% 12.73
Migration and Percolation

The first point to be considered is the comparison of
the cases ideal mix and free surface segregation. In both
images are 10000 grains, and 1250 in each sieve class. The
only difference between them is the grain arrangement. In
the case of the free surface segregation the larger grains
are accumulated in the extremities of the image, and
the smaller ones in the middle. However, this scenario,
because not mix large and small grains, shows two kinds
of situations: First, this scenario does not show larger size
grains covering the smaller ones, which enables a better
view of the small grains in the surface layer. The output
of this interference in small grains causes the grain count
to increase relative to the Ideal mix.

The second situation refers to the tendency of clustered
larger size grains overlap more easily than small grains.
This causes the availability of large grains on the surface
to fall, decreasing the large grains contained in the image.

These two factors made that images of the free surface
segregation scenario be well represented in a relation of the
smaller size grains, but less representative with the larger
size class. Thus, the corresponding particle size analysis
responds to a high proportion of small grains in a mixture
that is equally divided. This justifies the increase in the
mean error and standard deviation on the granulometry,
even though more grains were accounted for.

With the explanation of the concentration of larger size
grains is a factor that influences directly in the exponential
increase of grain overlap, a decrease of counted grains,
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increase of error and standard deviation, it is justified
the particle migration and percolation segregation scenario
because they are mixtures with higher concentrations of
larger size class.

5. CONCLUSION AND FUTURE WORKS

In this work a methodology to investigate how far the
digital image processing algorithm handles the overlapping
problem in grain dispersion patterns is proposed. A grain
surface simulator is produced to create different scenarios
of overlapping and segregation interferences in the fertil-
izer industry.

The results have shown that for the most critical overlap-
ping and segregation scenarios, the DIP algorithm shows
a mean error of 10.8%± 12.73% concerning the ground
truth, the simulator retained percentage. And the error
was less than 2% for images of less than 500 grains.

The results of the overlapping analysis show that when
the virtual image has a fewer number of grains, the DIP
algorithm can identify the majority of grains, consequently
with less error in the particle size analysis. And for the
segregation analysis, it is seen that the larger grains are
shown to flaw the results of particle size analysis because
it easily overlaps the smaller grains.

However, as the analyzes in this study match the reality
showing the consequences, tendencies, and errors of the
overlapping and segregation of grains. Showing that the
power and capacity of the simulator to create data-sets of
images of surface grains surface.

The next step in the project will be to perform a more
intense and careful analysis of the grains mixtures present
in the different points on the industry. To further valida-
tion of the approach proposed in this paper, noises will be
added to the simulator to approximate the images with
the reality in the industry. With the recently presented
grain surface simulator, this kind of scenario seen in the
industry will be simulated to create a massive dataset.

As the images of the created data-set will follow the
proportions found in the industries, it is expected that
it can assist in training a convolutional neural network,
with relatively high prediction accuracy. Different models
of classification of machine learning techniques will be
trained looking for the one with the industrially acceptable
and highest accuracy to be used.

After obtained the results of the neural network, this
methodology will be adapted to be applied in the industry,
trying to reach the same results that have tested in a
controlled environment, in the hostile environment of the
industry.
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