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Abstract: The calculation of time derivatives has a state-space representation of the form of a
perturbed linear system. This description enables the application of the so-called robust filtering
differentiator, i.e. a non-linear state observer with extended state and homogeneous input
injection terms. Therefore, given the practical importance of having an accurate discretization of
such differentiator, this paper presents the design of two discrete-time implementation schemes.
The first discrete-time realization is explicit, while the second one is implicit. The implicit
allows reducing the numerical chattering phenomenon caused by the explicit discretization of
discontinuous terms. Numerical comparisons between the presented scheme and an existing
discrete-time representation show that the performance of the proposed explicit implementation
scheme is similar to the most recent results from the literature. Finally, the proposed implicit
discrete-time realization presents better accuracy, especially when considering large sampling
periods.

Keywords: Nonlinear observers and filter design, Sliding mode control, Observer design.

1. INTRODUCTION

The problems of filtering a noisy signal and differentiation
in real-time are crucial issues due to their practical
interest in signal processing and control engineering. These
problems have been addressed using various methods:
Kalman filter (Kalman, 1960), algebraic methods (Mboup
et al., 2009), non-linear observers (Chitour, 2002; Davila
et al., 2005) to name a few. Between those non-linear
approaches, sliding mode techniques are convenient to
design observers due to their exceptional robustness
properties (Utkin, 2013). For example, high-order sliding
mode homogeneous differentiators (Levant, 2003; Levant
and Livne, 2011) and robust filtering differentiators (Levant
and Livne, 2019) can estimate the n time derivatives of a
signal, showing good robustness properties in the presence
of noise and exact finite-time convergence in the absence
of noise. However, one of the main disadvantages of these
techniques is its numerical implementation, which can cause
numerical chattering, a decreased robustness and other
undesired effects.

In practice, observation algorithms are usually discretized
to be implemented in a digital environment. However,
the discrete-time approximations of the continuous-time
algorithms are far from being straightforward. Indeed, for
high-gain and sliding mode differentiators, an inadequate
discrete-time version of the algorithms may lead to
numerical chattering (Drakunov and Utkin, 1989; Utkin,
1994), i.e., high oscillations only due to the numerical

methods used in the discretization scheme. Several
algorithms have been proposed for the implementation
of discrete-time sliding mode controllers (Drakunov and
Utkin, 1989; Su et al., 2000; Nguyen et al., 2017; Abidi
et al., 2007). Concerning the homogeneous differentiator,
some explicit discretization algorithms have been derived
in (Livne and Levant, 2014; Koch and Reichhartinger,
2018; Koch et al., 2020; Barbot et al., 2020; Levant
and Livne, 2019) to preserve the estimation accuracy
properties. In (Livne and Levant, 2014), a discrete-
time realization of the homogeneous differentiator, which
preserves the computational simplicity of the one-step Euler
scheme, has been introduced. In (Koch and Reichhartinger,
2018), the proposed discrete algorithm is less sensitive to
gain overestimation. A discrete-time differentiator, which
includes nonlinear higher-order terms, has been derived in
(Koch et al., 2020) to preserve the asymptotic accuracy
properties known from the continuous-time differentiator
despite the presence of noise. The work in (Barbot
et al., 2020) extends the results from (Livne and Levant,
2014) while also considering non-homogeneous hybrid
differentiators.

Recently, some implicit discretization algorithms have been
investigated to ensure a smooth stabilization of the sliding
surface in discrete-time for the case without disturbance
(Acary et al., 2012; Brogliato et al., 2020; Huber et al.,
2016). Such algorithms remove the numerical chattering
effects due to the time discretization and allow the use
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of large sampling periods without reducing too much
the performances. However, implicit methods were only
applied to first-order sliding mode controllers (Acary et al.,
2012), twisting controllers (Huber et al., 2016) and super-
twisting controllers (Brogliato et al., 2020). Nevertheless, an
implicit discretization algorithm has been recently proposed
in (Carvajal-Rubio et al., 2019) for the homogeneous
differentiator.

This paper proposes two discretization algorithms, based
on the recent results presented in (Carvajal-Rubio et al.,
2019), for the robust filtering differentiator given in (Levant
and Livne, 2019). The first one is an explicit exact discrete-
time version of the filtering differentiator, while the second
one is an implicit discretization algorithm that removes the
numerical chattering effects. Some simulations are given to
compare the discrete-time algorithm presented in (Levant
and Livne, 2019) with the proposed ones (explicit and
implicit methods). It will be shown that the proposed
scheme provides estimates of the derivatives of a given
signal with good accuracy and robustness properties even
when a large sampling period is considered.

The rest of the paper is as follows. Section 2 introduces the
problem and recalls some preliminaries on the exact filtering
differentiator. In Section 3, two discretization algorithms
for the robust filtering differentiator are given (i.e., explicit
and implicit discrete-time algorithms). At last, in Section
4, some simulations are done to highlight the interest of
the proposed scheme when a significant sampling period is
considered.

Notation. For x ∈ R, the absolute value of x, represented
by |x|, is given as |x| = x if x ≥ 0 and |x| = −x if x < 0.
sign (x) is a set-valued function defined as sign (x) = 1 if
x > 0, sign (x) = −1 if x < 0, and sign (x) ∈ [−1, 1] if
x = 0. For c ≥ 0, the signed power c of x is defined as
bxec = |x|c sign (x).

2. PROBLEM STATEMENT AND PRELIMINARIES

2.1 Problem statement

The objective of a differentiator is to obtain online the
first n derivatives of a function even if there is noise in the
measurement. Here, it is represented as f0 (t), f0 : R→ R.
Moreover, f0(t) is assumed a function at least (n+ 1)− th
differentiable and its n+1 derivative is bounded by a known

real number L > 0, i.e., |f (n+1)
0 (t) | ≤ L. Furthermore,

f(t) = f0(t) + ∆ (t), where f(t) is the input of the
differentiator and ∆ (t) is the noise in the measurement.
It is also assumed that ∆ (t) is a Lebesgue-measurable
bounded noise with |∆(t)| ≤ δ for a real number δ > 0,
which can be unknown.

In order to compute the derivatives f
(1)
0 (t), f

(2)
0 (t),

· · · , f (n)0 (t), a state space representation is used. The

state variables are defined as xi(t) = f
(i)
0 (t) and x =

[ x0 x1 x2 · · · xn ]
T ∈ Rn+1. Therefore, one can obtain

the following representation for the differentiation problem
in the state space:

ẋ(t) = Ax(t) + en+1f
(n+1)
0 (t)

yo(t) = eT1 x(t) + ∆(t)
(1)

with the canonical vectors e1 = [ 1 0 · · · 0 0 ]
T

, en+1 =

[ 0 0 · · · 0 1 ]
T

and A = [0(n+1)×1 e1 e2 · · · en], which is
a nilpotent matrix of appropriate dimensions. Notice that
the successive time derivatives of f0 (t) can be obtained
through the design of a state observer.

2.2 Homogeneous high-order differentiator

In order to obtain the first n derivatives of f0 (t), a
continuous-time observer has been proposed in (Levant,
2003). For ∆(t) = 0, it can be represented in the non-
recursive form:

ż = Az + Bu (σ0) (2)

where u (σ0) = [Ψ0,n (σ0) Ψ1,n (σ0) · · · Ψn,n (σ0)]
T

,

Ψi,n (·) = −λn−iL
i+1
n+1 b·e

n−i
n+1 , B is the identity matrix

of appropriate dimensions, σ0 = z0 − x0 and z =

[ z0 z1 z2 . . . zn ]
T

is the finite-time estimate of the
state vector x using adequate parameters λi > 0 (see
(Reichhartinger et al., 2017; Levant, 2018) for instance).

Since the function bz0 − f (t)e0 is discontinuous at z0 = f ,
the solutions of system (2) are understood in the Filippov
sense (Filippov, 2013).

2.3 Finite-time-exact robust filtering differentiator (FTER)

Although, differentiator (2) offers good performance when
there exists a Lebesgue-measurable bounded noise ∆(t)
such that |∆(t)| ≤ δ with small in average δ, its
performance becomes significantly reduced when δ is large.
Due to this reason, in (Levant, 2018), a new finite-time
exact robust filtering differentiator has been proposed, with
the following structure:

ω̇if = −λm+1−ifL
if

m+1 bω1e
m+1−if

m+1 + ωif+1

ω̇nf
= −λn+1L

nf
m+1 bω1e

n+1
m+1 + z0 − g (t)

żid = −λn−idL
nf+1+id

m+1 bω1e
n−id
m+1 + zid+1

żn = −λ0L bω1e0

if = 1, 2, · · · , nf − 1. id = 0, 1, 2, · · · , n− 1.

(3)

where m = n + nf , nf ≥ 0, nf is the filtering order
and the parameters λi are selected as in (2). Moreover,
g(t) = f0 (t) + υ(t), where υ(t) is comprised of nf + 1
components, υ(t) = υ0(t) + υ1(t) + · · ·+ υnf

(t), υj(t) is a
signal of the global filtering order j and integral magnitude
εj ≥ 0 with j = 0, 1, · · · , nf . More details can be founded in
(Levant and Livne, 2019). In (Levant and Livne, 2019), it is
shown that differentiator (3) offers the following accuracy:

|zi−f (i)0 (t) | ≤ µiLρn+1−i, µi > 0, i = 0, 1, 2, · · · , n.

ρ = max

[(ε0
L

) 1
n+1

,
(ε1
L

) 1
n+2

, · · · ,
(εnf

L

) 1
m+1

]

2.4 Discretization (FTER-D)

In practice, the differentiation algorithms are usually
discretized in order to be implemented in a digital
environment. In (Levant, 2018), a discrete-time filtering
differentiator is presented as follows:
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ωif ,k+1 = ωif ,k + τ
(
ωif+1 + Ψif−1,m (ω1,k)

)
ωnf ,k+1 = ωnf ,k + τ

(
z0 − gk + Ψnf−1,m (ω1,k)

)
zid,k+1 = zid,k + τ

(
zid+1,k + Ψnf+id,m (ω1,k)

)
zn,k+1 = zn,k + τΨm,m (ω1,k)

if = 1, 2, · · · , nf − 1. id = 0, 1, 2, · · · , n− 1.

(4)

with τ = tk+1 − tk, wi,k = wi(τk), zi,k = zi(τk), g0,k =
g0(τk), k = 0, 1, 2, · · · . For differentiator (4), f0,k = f0(τk)
is assumed to be as in the continuous differentiator (3),
υk = υ(τk) is comprised of nf + 1 components, υk =
υ0,k + υ1,k + . . . + υnf ,k, where υi,k are of the global
sampling filtering order j and integral magnitude εj with
j = 0, 1, · · · , nf (Levant and Livne, 2019). Furthermore,
it is assumed that the set of admissible sampling-time
sequences contains sequences for any τ > 0. According to
(Levant and Livne, 2019), the discrete differentiator (4)
provides the following accuracy:

|σi,k| ≤ µiLρn+1−i, µi > 0, σi,k = zi,k − xi,k,

ρ = max

[
τ,
(ε0
L

) 1
n+1

,
(ε1
L

) 1
n+2

, · · · ,
(εnf

L

) 1
m+1

]
,

i = 0, 1, 2, · · · , n.

3. DISCRETIZATION OF ROBUST EXACT
FILTERING DIFFERENTIATOR

In this Section, two discrete-time realizations of the filtering
differentiator are proposed. The first one is an explicit one,
which is based on an exact discretization, while the second
one is an implicit algorithm.

3.1 Explicit Discretization of the robust exact filtering
differentiator

Applying the procedure presented in (Carvajal-Rubio et al.,
2019) to system (3), the following discrete-time realization
of the differentiator is obtained:

ωif ,k+1 =− τ (nf−if+1)

(nf − if + 1)!
gk +

nf∑
l=if

τ (l−if )

(l − if )!
wl,k . . .

+

n∑
l=0

τ (nf+l−if+1)

(nf + l − if + 1)!
zl,k . . .

+

m+1∑
l=if

τ (l−if+1)

(l − if + 1)!
Ψl−1,m (ω1,k)

zid,k+1 =

n∑
l=id

τ (l−id)

(l − id)!
zl,k +

τ (l−id+1)

(l − id + 1)!
Ψnf+l,m (ω1,k)

if =1, 2, · · · , nf . id = 0, 1, 2, · · · , n.
(5)

Using Taylor series expansion with Lagrange’s remainders
(see (Firey, 1960)) on system (1) the following discrete-time
system is obtained:

xid,k+1 =
τn−id+1

(n− id + 1)!
f
(n+1)
0 (ρid) +

n∑
l=id

τ (l−id)

(l − id)!
xl,k

id = 0, 1, 2, · · · , n.
(6)

ρid ∈ (tk, tk+1), xid,k = xid(τk), and |f (n+1)
0 (ρid) | ≤ L.

Then, the discrete form of the error system is given as:

ωif ,k+1 =
τ (nf−if+1)

(nf − if + 1)!
(σ0,k − υk) +

nf∑
l=if

τ (l−if )

(l − if )!
wl,k . . .

+

n∑
l=1

τ (nf+l−if+1)

(nf + l − if + 1)!
(σl,k + xl,k) . . .

+

m+1∑
l=if

τ (l−if+1)

(l − if + 1)!
Ψl−1,m (ω1,k)

σid,k+1 =
τn−id+1

(n− id + 1)!
f
(n+1)
0 (ρid) +

n∑
l=id

τ (l−id)

(l − id)!
σl,k . . .

+

n∑
l=id

τ (l−id+1)

(l − id + 1)!
Ψnf+l,m (ω1,k)

if =1, 2, · · · , nf . id = 0, 1, 2, · · · , n.
(7)

with σi,k = σi(τk). Due to the terms xi,k, differentiator
(5) does not guarantee convergence for functions with
unbounded first n derivatives. Therefore, in order to
avoid these terms on the error system (7), the following
discretization is proposed based on the structure of (5):

ωif ,k+1 =
τ (nf−if+1)

(nf − if + 1)!
(z0,k − gk) +

nf∑
l=if

τ (l−if )

(l − if )!
wl,k . . .

+

m+1∑
l=if

τ (l−if+1)

(l − if + 1)!
Ψl−1,m (ω1,k)

zid,k+1 =

n∑
l=id

τ (l−id)

(l − id)!
zl,k +

τ (l−id+1)

(l − id + 1)!
Ψnf+l,m (ω1,k)

if =1, 2, · · · , nf . id = 0, 1, 2, · · · , n.
(8)

Henceforth, the differentiator (8) is referenced as FTER-E.

3.2 Implicit Discretization of the robust exact filtering
differentiator

Now, consider the implicit discrete-time algorithm of the
robust filtering differentiator. By usign FTER-E with
ω1,k+1 instead of ω1,k, an implicit scheme is obtained.
However, to implement this discrete-time differentiator
ω1,k+1 needs to be calculated at time t = tk. Using the
difference equation for ω1,k+1, the following inclusion is
obtained:

w1,k+1 + am bω1,k+1e
m

m+1 + · · ·+ a1 bω1,k+1e
1

m+1 . . .

+ bk ∈ −a0sign (ω1,k+1)
(9)

where bk = − τ
nf

nf !
(z0,k − gk) −

∑nf

l=1
τ(l−1)

(l−1)!wl,k and al =

τm−l+1

(m−l+1)!λlL
m−l+1
m+1 , with ai ∈ R+ and bk ∈ R. As in

(Carvajal-Rubio et al., 2019; Brogliato et al., 2020), a
new support variable is introduced as ξk+1 ∈ sign (ω0,k+1).
Using a similar scheme that the one presented in (Carvajal-
Rubio et al., 2019), ω1,k+1 and ξk+1 are given as follows:

• Case 1: bk > a0. ξk+1 = −1 and ω1,k+1 = − (r0)
m+1

,
where r0 is the unique positive root of the polynomial:
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p (r) = rm+1 + amr
m + · · ·+ a1r + (−bk + a0) (10)

• Case 2: bk ∈ [−a0, a0]. ω1,k,+1 = 0 and ξk+1 = − bk
a0

.

• Case 3: bk < −a0. ξk+1 = 1 and ω1,k+1 = rm+1
0 ,

where r0 is the positive root of the polynomial:

p (r) = rm+1 + amr
m + · · ·+ a1r + (bk + a0) (11)

Furthermore, the pair ω1,k+1 ∈ R and ξk+1 ∈ [−1, 1]
is unique for each set of values of al and bk. With the
new variable ξk+1 the implicit discrete differentiator is
implemented as follows:

ωif ,k+1 =
τ (nf−if+1)

(nf − if + 1)!
(z0,k − gk) +

nf∑
l=if

τ (l−if )

(l − if )!
wl,k . . .

+

m+1∑
l=if

τ (l−if+1)

(l − if + 1)!
Ψ̃l−1,m (ω1,k+1)

zid,k+1 =

n∑
l=id

τ (l−id)

(l − id)!
zl,k +

τ (l−id+1)

(l − id + 1)!
Ψ̃nf+l,m (ω1,k+1)

if =1, 2, · · · , nf . id = 0, 1, 2, · · · , n.

Ψ̃i,m (ω1,k+1) = −λm−iL
i+1
m+1 |ω1,k+1|

m−i
m+1 ξk+1.

(12)

Hereafter, the differentiator (12) is referenced as FTER-I.

Remark 1. The variable ξk+1 is defined for any value of
ω1,k+1 and sign (0) ∈ [−1, 1], ξ1,k+1 is smoother than the
function sign (ω1,k+1).

Remark 2. To implement differentiator (12), r0 needs to
be computed when bk /∈ [−a0, a0]. Hence, a root finding
method is needed. Here, the Halley’s method is used
(Scavo and Thoo, 1995).

4. SIMULATION RESULTS

In order to analyze and compare the performance
of differentiators (4), (8) and (12), two indexes are
used: the mean square error of zi in the time interval
[tmin, tmax] (denoted Mi) and Yi, which is defined as
Yi = max {|σi,k| ∈ R | 10s ≤ tk ≤ tmax}. In the following
simulations, the filtering differentiator uses the following
parameters n = 3, nf = 2, λ0 = 1.1, λ1 = 6, 75, λ2 = 20.26,
λ3 = 32.24, λ4 = 23.72 and λ5 = 7. Notice that the
parameters λi are chosen as in (Levant, 2018). Finally,
the initial condition for the differentiators is ωi,0 = 0 and
zi,0 = 0. Then FTER-I has the following structure:

ω1,k+1 =ω1,k + τω2,k +
τ2

2!
(z0,k − gk) . . .

+

6∑
l=1

τ l

l!
Ψ̃l−1,5 (ω1,k+1)

ω2,k+1 =ω2,k + τ(z0,k − gk) +

6∑
l=2

τ l−1

(l − 1)!
Ψ̃l−1,5 (ω1,k+1)

z0,k+1 =z0,k + τz1,k +
τ2

2!
z2,k +

τ3

3!
z3,k . . .

+

3∑
l=0

τ l+1

(l + 1)!
Ψ̃l+2,5 (ω1,k+1)

z1,k+1 =z1,k + τz2,k +
τ2

2!
z3,k +

3∑
l=1

τ l

l!
Ψ̃l+2,5 (ω1,k+1)

z2,k+1 =z2,k + τz3,k +

3∑
l=2

τ (l−1)

(l − 1)!
Ψ̃l+2,5 (ω1,k+1)

z3,k+1 =z3,k + τΨ̃5,5 (ω1,k+1)
(13)

For the first scenario, f0(t) = t4 + sin(t), L = 25, τ = 0.1s,
tmin = 10s, tmax = 25s, υ(t) = 0, σ0,0 = 0, σ1,0 = −1,
σ2,0 = 0 and σ3,0 = 1. Figure 1 shows the corresponding
estimation errors using the three differentiators. Variables
Yi and the Mi are summarised in Table 1.

0 10 20

Time [s]

-6
-4
-2
0

0
,k

0 10 20

Time [s]

-20

-10

0

1
,k

0 10 20

Time [s]

-40

-20

0

2
,k

0 10 20

Time [s]

-40

-20

0

3
,k

Fig. 1. Estimation error for the first 3 derivatives of f0(t),
FTER-D in red, FTER-E in blue and FTER-I in
black.

For this scenario, the three differentiators converge in
finite-time in spite of the unbounded functions toward

f0(t), f
(1)
0 (t), f

(2)
0 (t) and f

(3)
0 (t). Moreover using the

differentiator FTER-I, one obtains the best results as it
can been noticed in Table 1 and Figure 1.

FTER-D FTER-E FTER-I

Y0 1.8347 6.9573 0.0736

Y1 8.7351 25.1874 0.5835

Y2 24.18 47.741 3.8547

Y3 35.7077 50.3692 15.4041

M0 1.1476 4.4312 0.0256

M1 5.9919 19.3807 0.212

M2 18.4511 39.9016 1.7431

M3 29.7708 43.9609 8.4592

Table 1. Yi and Mi for Scenario I.
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In the second scenario, g(t) = sin(3t)+cos(2t)−sin(t)+υ(t),
with υ(t) ∼ iidN (0, 0.12), L = 98, τ = 0.1s, tmin = 10s,
tmax = 25s, σ0,0 = −1, σ1,0 = −2, σ2,0 = 4 and σ3,0 = 26.
Figures 2-5 show the corresponding estimation errors using
the three differentiators. Variables Yi and the Mi are
summarised in Table 2.

0 5 10 15 20 25

Time [s]

-10

0

10

0
,k

FTER-D

FTER-E

FTER-I

Fig. 2. Estimation error for f0(t).

For this scenario, the best result for the first two
derivatives has been obtained using the proposed implicit
differentiator, i.e., FTER-I. For the last derivative, the
explicit differentiators, i.e., FTER-D and FTER-E, present
better indexes Y3 and M3 than the implicit one.

0 5 10 15 20 25

Time [s]

-20

0

20

40

1
,k

FTER-D

FTER-E

FTER-I

Fig. 3. Estimation error for the first derivative of f0(t).
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FTER-I

Fig. 4. Estimation error for the second derivative of f0(t).
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Fig. 5. Estimation error for the third derivative of f0(t).

FTER-D FTER-E FTER-I

Y0 6.322853 12.145781 0.274985

Y1 19.63017 28.059032 2.268494

Y2 33.374147 35.453408 12.964999

Y3 45.347208 45.279109 50.014388

M0 3.146707 7.543292 0.097569

M1 9.009185 15.711948 0.882423

M2 14.033387 17.492077 5.676374

M3 20.517656 20.648051 23.703817

Table 2. Yi and Mi for Scenario II.

For the last scenario, in order to test the differentiator
under noise and different sampling times, the indexes Yi are
given for different constant sampling times in the interval
τ ∈ [0.0001s, 1s] with a step of 0.0001s. Furthermore,
f0(t) = sin(3t) + cos(2t) − sin(t), L = 98, tmin = 10s,
tmax = 100s and the noise is selected as in (Levant
and Livne, 2019), υ(t) = cos(10000t + 0.7791) + εt, with
εt ∼ iidN (0, 0.52). The results are summarised in Figures
6-8.
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Fig. 6. Y0 for τ ∈ [0.0001s, 1s].
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Fig. 7. Y1 for τ ∈ [0.0001s, 1s].
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Fig. 8. Y2 for τ ∈ [0.0001s, 1s].

From Figures 6-8, one can see that the differentiator FTER-
I gives a better performance for the estimation of f0(t),

f
(1)
0 (t) and f

(2)
0 (t) or at least similar for the different
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sampling times. Although, these figures could indicate that
for low frequencies, the estimation of the second and third
derivatives of the signal is better for the FTER-D and
FTER-E compared with FTER-I.
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Fig. 9. Y3 for τ ∈ [0.0001s, 1s].

5. CONCLUSION

Two novel discretization algorithms have been presented
for the robust filtering differentiator. The first one, which
is based on an exact discretization of the continuous
differentiator, is explicit. In contrast, the second one
is an implicit algorithm which enables to remove the
numerical chattering phenomenon and to preserve the
estimation accuracy properties. Both algorithms have
shown a competitive performance in simulations for free-
noise input and when the first n derivatives are unbounded.
It is also shown a better performance for the current
proposal when compared to the discrete version given in
(Levant and Livne, 2019). Moreover, in simulations and
under noise, FTER-I presents a better estimation for f0(t),

f
(1)
0 (t), and f

(2)
0 (t) than the obtained results using FTER-

D and FTER-E. Future works will address convergence and
robustness proofs for the proposed discretization schemes.
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