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Abstract: Trajectory sensitivity analysis is useful for analyzing the dynamic behaviour
of differential-algebraic equation (DAE) systems under uncertain initial conditions and/or
parameters. However, the approximate trajectories obtained using trajectory sensitivities are
not accompanied by explicit error bounds. In this paper, we provide an efficient method to
obtain a numerical error bound for the first-order trajectory approximation. This approach
uses second-order trajectory sensitivities. A theoretical result quantifying the excursion of
trajectories induced by uncertain initial conditions and external disturbances is derived based
on the logarithmic norm, and is extended to DAE systems. Although this result itself provides
a guaranteed over-approximation of the reach-set of nonlinear DAE systems, by combining this
result with the efficient bound obtained from trajectory sensitivities, we are able to provide a
much less conservative reach-set estimate for systems under uncertain initial conditions and/or
parameters, and external disturbances.
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Error estimation, Electric power systems.

1. INTRODUCTION

The concept of reach-set refers to the union of all possible
states that can be visited by system trajectories originat-
ing from a set of uncertain initial conditions, under the
influence of admissible parameter uncertainties and exter-
nal disturbances. Given the reach-set, safety specifications
can be checked by verifying there is no intersection of
the reach-set and any unsafe region. This is important for
safety-critical applications such as power systems (Kundu
et al., 2019). However, in general it is hard to compute the
exact reach-set for a nonlinear system.

Much research has been devoted to computing over-
approximations of the reach-set. A Taylor flowpipe model
is used in Chen et al. (2012) to over-approximate the reach-
set of hybrid systems for a set of initial conditions. Other
approaches to reach-set computation include abstraction-
based methods (Henzinger et al., 1998), level-set meth-
ods (Mitchell et al., 2005), and differential inequalities
(Scott and Barton, 2013). Reachability analysis of nonlin-
ear differential-algebraic systems is studied in Althoff and
Krogh (2013) using a conservative linearization method,
where zonotopes are used to represent the reach-set. A
common issue across all these methods is conservativeness,
which is partially because of the accumulation of error over
time, i.e., the wrapping effect. Computational burden is
another issue when considering high-dimensional applica-
tions.

This paper explores reach-set approximation in the context
of trajectory sensitivity analysis. Trajectory sensitivities
can be used to approximate perturbed trajectories asso-
ciated with uncertain initial conditions and/or parameter
sets, thus avoiding repeated simulations (Hiskens and Pai,
2000; Geng and Hiskens, 2019, 2018). It is shown in Xue
et al. (2017) that with sign-stable sensitivity matrices, only
a small subset of the boundary of the initial set is required

to be evaluated. However, sign-stability is a strong require-
ment. Meyer et al. (2018) provide an extension that only
requires bounded sensitivity. However, the bound itself
needs to be estimated through sampling and falsification.
In Donzé and Maler (2007), sensitivity analysis has been
used for verification through simulation of continuous and
hybrid systems. However, there is no guarantee that the
computed approximation is an enclosure of the true reach-
set, since there is no explicit theoretical guarantee for the
accuracy of such approximations. The same applies for
Choi et al. (2017), where a semidefinite program is solved
to search for the outermost trajectories.

In this paper, we analytically quantify the error inherent
in trajectory approximation using the second-order tra-
jectory sensitivity (Geng and Hiskens, 2019). We exploit
results on multivariate Taylor’s theorem and higher-order
remainders to give a theoretical error bound for the first-
order trajectory approximation. Sampled-data approaches
(Meyer et al., 2018) can be used to estimate the bound.
To ease computational effort, we also provide practical
solutions for computing an error bound estimate. With an
explicit numerical error bound available, we can provide a
sufficiently accurate estimation of the reach-set by locating
worst-case vertices of the uncertainty set (Hiskens and
Alseddiqui, 2006).

The effect of external disturbances on differential-algebraic
equation (DAE) systems is also investigated in this paper.
We first extend to DAE systems a Lipschitz-based result
from nonlinear systems theory that quantifies the effects
of initial conditions and bounded external disturbances.
Then we improve the result by exploiting properties of
the logarithmic norm. The logarithmic norm, or matrix
measure, is a useful tool for quantifying bounds on the
divergence of adjacent trajectories, hence is useful for pro-
viding error bounds on linear approximation of nonlinear
systems (Dahlquist, 1958), and for analyzing contractive
systems (Sontag, 2010). In Maidens and Arcak (2014),
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the logarithmic norm has been used to compute over-
approximation of the reach-set for switched nonlinear sys-
tems with uncertain initial conditions. In this paper, we
also quantify the effects of external disturbances on system
dynamics.

The contributions of this paper are as follows. Firstly, we
provide an explicit theoretical error bound for trajectory
sensitivity analysis, using second-order trajectory sensi-
tivities. This theoretical bound is then estimated using
efficient trajectory-based approach. Secondly, a theoretical
result on quantifying the effects of external disturbances
on nonlinear DAE systems is derived, using the mathe-
matical tool of logarithmic norm. Thirdly, we provide an
efficient approach to compute an accurate estimation of
the reach-set of nonlinear DAE systems, under uncertain
initial conditions and/or parameters, and external distur-
bances. This is achieved by combining the results on error
bound for trajectory sensitivity analysis and the results on
bounding the effects of external disturbances.

This paper is organized as follows: Section 2 presents
system model and provides an overview of trajectory sen-
sitivity analysis and logarithmic norm. The error bounds
for trajectory approximation are derived in Section 3.
Section 4 establishes theoretical results on quantifying the
propagation of external disturbances. Reach-set compu-
tation with Minkowski sum formulation is described in
Section 5. Simulation results are given in Section 6 and
conclusions are drawn in Section 7.

2. PRELIMINARIES

In this paper, we adopt a DAE model to describe the
dynamic behavior of the system,

ẋ(t) = f(x(t), y(t)) + w(t), (1a)

0 = g(x(t), y(t)), (1b)

where x(t) ∈ Dx ⊂ Rn are the dynamic states at time t,
y(t) ∈ Dy ⊂ Rm are the algebraic states at time t, f :
Dx ×Dy → Rn is the vector field, and g : Dx ×Dy → Rm
describes the algebraic manifold. Nonlinear functions f
and g are assumed to be Lipschitz in their arguments
and of class C2. A bounded time-varying unknown external
disturbance w(t) is added to the differential equation. This
disturbance term will not be considered until Section 4.
Several technical assumptions are required for subsequent
analysis:

Assumption 1. The solution of (1) exists for initial condi-
tions and disturbances of interest, and is unique.

Assumption 2. The Jacobian ∂g/∂y is nonsingular along
system trajectories.

For given initial conditions x(t0) = x0, y(t0) = y0, where
g(x0, y0) = 0, the corresponding system trajectory (or
flow) can be expressed as,

x(t) = φ(x0, t), (2a)

y(t) = ψ(x0, t). (2b)

Uncertainty in initial conditions x0 will be considered, with
y0 implicitly dependent upon x0. To take into account
uncertain parameters λ, the dynamic states x can be
augmented with λ and trivial differential equations λ̇ = 0
added. This way, uncertain parameters are incorporated
into the expanded initial conditions x0.

2.1 Trajectory Sensitivity and Trajectory Approximation

Trajectory sensitivities describe the change in the system
flow resulting from a change in initial conditions x0.

Forming the Taylor series expansion of the flow (2) with
respect to x0 along the nominal trajectory yields,

φi(x0 + ∆x0, t) = φi(x0, t) +
∂φi(x0, t)

∂x0
∆x0

+
1

2
∆xᵀ0

∂2φi(x0, t)

∂x2
0

∆x0 + εφi

2 (x0,∆x0, t), (3a)

ψj(x0 + ∆x0, t) = ψj(x0, t) +
∂ψj(x0, t)

∂x0
∆x0

+
1

2
∆xᵀ0

∂2ψj(x0, t)

∂x2
0

∆x0 + ε
ψj

2 (x0,∆x0, t), (3b)

∀i = 1, ...n, ∀j = 1, ...m,

where the terms ∂φi(x0,t)
∂x0

∈ R1×n and
∂ψj(x0,t)
∂x0

∈ R1×n

are first-order trajectory sensitivities and ∂2φi(x0,t)
∂x2

0
∈

Rn×n and
∂2ψj(x0,t)

∂x2
0

∈ Rn×n are second-order trajectory

sensitivities. The terms εφi

2 (x0,∆x0, t) and ε
ψj

2 (x0,∆x0, t)
capture the higher-order terms beyond the second.

The DAE variational equations describing first- and
second-order trajectory sensitivities are given in Hiskens
and Pai (2000) and Geng and Hiskens (2019), respectively.
Due to the space limit, we only summarize the DAE
model for the first-order trajectory sensitivity. Taking the
derivatives of (1) with respect to x0 yields,

ẋx0 = fx(t)xx0 + fy(t)yx0 , (4a)

0 = gx(t)xx0 + gy(t)yx0 , (4b)

where xx0
and yx0

denote the first-order trajectory sen-
sitivities. We use fx, fy, gx, gy to denote ∂f/∂x, ∂f/∂y,
∂g/∂x, ∂g/∂y respectively, which are time-varying matri-
ces evaluated along the nominal trajectory. Initial condi-
tions are given by xx0

(t0) = I, the identity matrix, and
yx0

(t0) = −(gy(t0))−1gx(t0).

From (3), we have the first-order approximation,

φ̂(x0 + ∆x0, t) = φ(x0, t) +
∂φ(x0, t)

∂x0
∆x0, (5a)

ψ̂(x0 + ∆x0, t) = ψ(x0, t) +
∂ψ(x0, t)

∂x0
∆x0. (5b)

Since higher-order terms are neglected, there are discrep-
ancies between the approximated trajectory (5) and the
true perturbed trajectory (3). Define the error in the first-
order approximation by,

εφ1 (x0,∆x0, t) , φ(x0 + ∆x0, t)− φ̂(x0 + ∆x0, t), (6a)

εψ1 (x0,∆x0, t) , ψ(x0 + ∆x0, t)− ψ̂(x0 + ∆x0, t). (6b)

From classic perturbation theory (Khalil, 2002), we know
that the first-order approximation errors are of order
O(‖∆x0‖2). That is, there exists positive constants kφ, kψ

and c, such that ‖εφ1 (x0,∆x0, t)‖ ≤ kφ ‖∆x0‖2 and

‖εψ1 (x0,∆x0, t)‖ ≤ kψ ‖∆x0‖2, for all ‖∆x0‖ < c. However,
the magnitudes of kφ and kψ are not known. Therefore, the
big-O notation cannot be translated into a useful numer-
ical error bound. This problem is investigated further in
Section 3.

2.2 Logarithmic Norm

For any vector norm ‖·‖ on Rn, and its induced matrix
norm ‖·‖ on Rn×n, the logarithmic norm of a matrix
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A ∈ Rn×n is a real-valued functional µ : Rn×n → R,
defined by (Dahlquist, 1958),

µ(A) = lim
s→0+

‖I + sA‖ − 1

s
. (7)

Explicit expressions exist for common vector norms such
as the l1, l2 and l∞-norms (Afanasiev et al., 2013). The
logarithmic norm has a number of important properties
(Maidens and Arcak, 2014),

(1) For any eigenvalue λi(A) of A, we know,
−‖A‖ ≤ −µ(−A) ≤ <(λi(A)) ≤ µ(A) ≤ ‖A‖.

(2) µ(cA) = cµ(A),∀c ≥ 0.
(3) µ(A+B) ≤ µ(A) + µ(B).

Fundamental results that connect the logarithmic norm to
dynamical systems are summarized in Söderlind (2006) for
linear systems and Sontag (2010) for nonlinear systems.

3. ERROR BOUND FOR TRAJECTORY
APPROXIMATION

We are interested in deriving an explicit numerical bound
for the error in the first-order trajectory approximation.
Such an error bound provides theoretical guarantees for
the accuracy of trajectory approximations and justifies
their application to safety-critical scenarios such as dy-
namic security assessment (Kerin et al., 2014). In this
section, we exploit multivariate Taylor’s theorem and La-
grange’s remainder, and derive an error bound for trajec-
tory approximation by formulating an optimization prob-
lem. To ease the computational effort of solving the global
optimization, we then propose an efficient approach to
practically estimating the error bound.

3.1 Multivariate Taylor’s Theorem and Remainder

Multi-index notation (Folland, 2005) is adopted to simplify
the presentation of the following results.
Theorem 3. (Lee, 2012) Suppose f : Rn → R is of class
Cκ+1 on an open convex set S. If a ∈ S and a + h ∈ S
then,

f(a + h) =
∑
|α|≤κ

∂αf(a)
hα

α!
+Rκ(a,h), (8)

where the remainder is given in Lagrange’s form by,

Rκ(a,h) =
∑

|α|=κ+1

∂αf(a+ch)
hα

α!
, for some c ∈ (0, 1). (9)

Based on (9), an estimate for the remainder term is given
by the following corollary.

Corollary 4. If f is of class Cκ+1 on S and |∂αf(x)| ≤M
for x ∈ S and |α| = κ+ 1, then

|Rκ(a,h)| ≤ M

(κ+ 1)!
‖h‖κ+1

1 , (10)

where ‖h‖1 = |h1|+ |h2|+ ...+ |hn|.

3.2 Error Bound by Second-Order Trajectory Sensitivity

Assigning time t to be any fixed time instant τ in (3),
we obtain a regular Taylor expansion of φi(x̃0, τ) and
ψj(x̃0, τ), where x0−∆x0 ≤ x̃0 ≤ x0+∆x0 with the vector
inequality interpreted element-wise. Truncating all higher-
order terms and applying Taylor’s Inequality (10) gives
remainders of the first-order approximations bounded as,

|Rφi

1 (x0,∆x0, τ)| ≤ Mφi(x0,∆x0, τ)

2
‖∆x0‖21 , (11a)

|Rψj

1 (x0,∆x0, τ)| ≤ Mψj (x0,∆x0, τ)

2
‖∆x0‖21 , (11b)

∀i = 1, . . . , n and ∀j = 1, . . . ,m, where,

Mφi(x0,∆x0, τ) ≥ max
x0−∆x0≤x̃0≤x0+∆x0

1≤k≤l≤n

∣∣∣{∂2φi(x̃0, τ)

∂x2
0

}
k,l

∣∣∣
(12a)

Mψj (x0,∆x0, τ) ≥ max
x0−∆x0≤x̃0≤x0+∆x0

1≤k≤l≤n

∣∣∣{∂2ψj(x̃0, τ)

∂x2
0

}
k,l

∣∣∣
(12b)

where the scalars k, l are indices for the entries of the
symmetric second-order trajectory sensitivity matrices
∂2φi(x̃0,τ)

∂x2
0

,
∂2ψj(x̃0,τ)

∂x2
0

whose expressions are given in Geng

and Hiskens (2019).

Allowing τ to vary is equivalent to replacing τ with
t in (11) and (12). Also, larger ∆x0 implies larger
Mφi(x0,∆x0, t) and Mψj (x0,∆x0, t), since the maximum
is taken over a larger set.

3.3 Optimization Problem for the Error Bound

The question of finding a numerical error bound for the
first-order trajectory approximation (relative to the true
perturbed trajectory), or equivalently of quantifying the
higher-order remainder of the first-order approximation,
reduces to finding the entry-wise maximum absolute value
for second-order trajectory sensitivities (at each time in-
stant) corresponding to all possible trajectories originating
from the initial condition set X0 := {x̃0 ∈ Rn

∣∣x0 −
∆x0 ≤ x̃0 ≤ x0 + ∆x0}. This problem can be written
explicitly as the following optimization,

(P1) Mφi(t) = max
x̃0∈X0

1≤k≤l≤n

∣∣∣{∂2φi(x̃0, t)

∂x2
0

}
k,l

∣∣∣
Mψj (t) = max

x̃0∈X0
1≤k≤l≤n

∣∣∣{∂2ψj(x̃0, t)

∂x2
0

}
k,l

∣∣∣
∀i = 1, . . . , n, ∀j = 1, . . . ,m.

Although this establishes a theoretical form for the er-
ror bound, the global optimal solution to (P1) is hard
to obtain. Firstly, the second-order trajectory sensitivity
information is obtained by numerically integrating a DAE
model, as given in Geng and Hiskens (2019). Hence, no
analytical form of the function is available. Secondly, at
each time instant t, for each of the n dynamic states and
each of the m algebraic states, we need to solve n(n +
1)/2 global optimization problems. Such computational
difficulty is to be expected, since in general it is hard to
quantify the error resulting from a linear approximation
of its nonlinear counterpart. Existing methods in Yu et al.
(2013) and the recent development of Li et al. (2019) for
formally solving this problem involve enforcing global con-
ditions on a Lipschitz constant of the vector field or on the
logarithmic norm of the Jacobian matrix, and finding the
global maximum of a non-convex optimization problem.
The resulting error bounds from such methods also tend
to be overly conservative.

To solve the non-convex problem (P1), we can use
sampling-falsification methods such as described in Meyer
et al. (2018). Firstly, we can select a few samples in the
space of initial conditions, and evaluate their second-order
trajectory sensitivities, resulting in an initial estimate for
the bound. Secondly, the previously estimated bounds are
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iteratively enlarged by searching for other initial condi-
tions to falsify the prior bounds. However, numerical test
cases show that computing only the nominal trajectory
together with the trajectories for the extreme vertices
(which can be viewed as the coarsest grid for the uncertain
set X0) suffices to provide an accurate estimate for the
error bound. In practice, if k out of n states have uncertain
initial conditions, we can simply evaluate 2k+1 trajectories
(2k vertex cases and one nominal case) and find the max-
imum second-order trajectory sensitivities at each time
instant. This serves as an efficiently estimated error bound
for the first-order trajectory approximation. Following this
idea, the optimization program (P1) is reduced to the
tractable problem,

(P2) M̂φi(t) = max
x̃0∈(Vert(X0)∪x0)

1≤k≤l≤n

∣∣∣{∂2φi(x̃0, t)

∂x2
0

}
k,l

∣∣∣
M̂ψj (t) = max

x̃0∈(Vert(X0)∪x0)
1≤k≤l≤n

∣∣∣{∂2ψj(x̃0, t)

∂x2
0

}
k,l

∣∣∣
∀i = 1, ...n, ∀j = 1, ...m,

where the notation Vert(X0) denotes the operation of
extracting the finite set of vertices of the polytope X0.

4. QUANTIFY EXTERNAL DISTURBANCES

We wish to quantify the flow excursion caused by a
bounded time-varying disturbance, relative to the noise-
free nominal trajectory. A well-known result for ordinary
differential equation (ODE) systems is based on knowl-
edge of the Lipschitz constant of the vector field, see for
example, Theorem 3.4 in Khalil (2002). We first generalize
this result to DAE systems and then establish an improved
result based on the logarithmic norm.

Referring to (1), by the Implicit Function Theorem (IFT)
and Assumption 2, there exists (locally) a unique function
ϕ such that y = ϕ(x). Furthermore, we make the following
assumption.

Assumption 5. There exists a function ϕ : Dx → Dy,
where Dx ⊂ Rn and Dy ⊂ Rm, such that g(x, ϕ(x)) = 0,
and ϕ is Lipschitz with constant Lϕ.

The existence of such a “global” implicit function holds
under various conditions (Krantz and Parks, 2012; Rhein-
boldt, 1969), for example, if Dx is simply connected to-
gether with some technical conditions as discussed in
Theorem 4.2 of Rheinboldt (1969). Inserting this implicit

function into (1a) yields ẋ = f(x, y) = f(x, ϕ(x)) , h(x).

We derive the following Corollary for DAE systems.

Corollary 6. Let f(x, y) be Lipschitz in x and y on Dx×Dy
with Lipschitz constants Lx and Ly, where Dx×Dy ⊂ Rn×
Rm is an open connected set. Let (x(t), yx(t)) be the
solution of ẋ = f(x, y), 0 = g(x, y), x(t0) = x0, and
(z(t), yz(t)) be the solution of ż = f(z, y) + w(t), 0 =
g(z, y), z(t0) = z0, such that (x(t), yx(t)) ∈ Dx × Dy,
(z(t), yz(t)) ∈ Dx × Dy for all t ∈ [t0, t1]. Suppose
that ‖w(t)‖ ≤ w, ∀t ∈ [t0, t1] for some w > 0. Based
on Assumption 5, we further assume that yx = ϕ(x),
and yz = ϕ(z). Let Lh = Lx + LyLϕ, where Lϕ is
the Lipschitz constant of the implicit function ϕ. Then,
‖x(t)− z(t)‖ ≤ ‖x0 − z0‖ exp[Lh(t− t0)] + w

Lh

(
exp[Lh(t−

t0)] − 1
)

and ‖yx(t)− yz(t)‖ ≤ Lϕ ‖x0 − z0‖ exp[Lh(t −
t0)] + Lϕ

w
Lh

(
exp[Lh(t− t0)]− 1

)
.

Proof. Using the implicit function ϕ in the differential
equations gives ẋ = f(x, y) = f(x, ϕ(x)) , h(x), ż =

f(z, y) +w(t) = f(z, ϕ(z)) +w(t) , h(z) +w(t). Since the
implicit function ϕ and the vector field f(·, ·) are Lipschitz,
the composite function h is also Lipschitz. For any two
points x1, x2 ∈ Dx,

h(x1)− h(x2)
x1 − x2

=
f(x1, ϕ(x1))− f(x2, ϕ(x2))

x1 − x2

=

(
f(x1, ϕ(x1))−f(x2, ϕ(x1))

)
+
(
f(x2, ϕ(x1))−f(x2, ϕ(x2))

)
x1 − x2

≤ Lx +
f(x2, ϕ(x1))− f(x2, ϕ(x2))

ϕ(x1)− ϕ(x2)
·
ϕ(x1)− ϕ(x2)

x1 − x2
≤ Lx + LyLϕ. (13)

Therefore, the Lipschitz constant Lh for the composite
function h is upper bounded by Lx + LyLϕ. Apply The-
orem 3.4 in Khalil (2002) and the results follow. Further-
more, we have ‖yx(t)− yz(t)‖ = ‖ϕ(x(t))− ϕ(z(t))‖ ≤
Lϕ ‖x(t)− z(t)‖ . �

Next, we improve Theorem 3.4 in Khalil (2002) and Corol-
lary 6 by deriving a tighter bound, using the logarith-
mic norm instead of Lipschitz constants. Property 1 in
Section 2.2 indicates that the logarithmic norm of the
Jacobian matrix is guaranteed to be upper-bounded by
the Lipschitz constant of the vector field. Consequently,
we obtain the following improved result.

Theorem 7. Let the Jacobian matrix fx satisfy µ(fx(x)) ≤
c, ∀x ∈ D, where D ⊂ Rn is an open convex set. Let
x(t) be the solution of ẋ = f(x), x(t0) = x0, and
z(t) be the solution of ż = f(z) + w(t), z(t0) = z0,
such that x(t), z(t) ∈ D for all t ∈ [t0, t1]. Suppose
that ‖w(t)‖ ≤ w, ∀t ∈ [t0, t1] for some w > 0. Then,
‖x(t)−z(t)‖≤‖x0−z0‖ exp[c(t−t0)]+ w

c

(
exp[c(t−t0)]−1

)
.

Proof. Based on the fundamental theorem of calculus,

ẋ− ż = f(x)− f(z)− w(t)

=

∫ 1

0

fx(z + s(x− z))(x− z)ds− w(t)

=

∫ 1

0

fx(z + s(x− z))ds · (x− z)− w(t). (14)

Let x − z = e so that ė =
∫ 1

0
fx(z + se)ds · e − w(t).

By convexity of D and s ∈ [0, 1], we have (z + s(x −
z)) ∈ D,∀t ∈ [t0, t1]. Since µ(fx(x)) ≤ c, ∀x ∈ D, apply
Proposition 1 of Li et al. (2019) and the subadditivity
property of the logarithmic norm to give D+

t ‖e‖ ≤ c ‖e‖+
‖w‖ ≤ c ‖e‖+w. The notation D+

t is the upper right-hand
Dini derivative with respect to time t. Based on Duhamel’s
formula and comparison lemma, we obtain,

‖e(t)‖ ≤ ‖e(t0)‖ exp[c(t− t0)] +

∫ t

t0

exp[c(t− τ)] · wdτ

= ‖e(t0)‖ exp[c(t− t0)] +
w

c

(
exp[c(t− t0)]− 1

)
, (15)

where e(t0) = x0− z0. �

Theorem 7 can be generalized to DAE systems.

Corollary 8. Let the Jacobian matrix ∂h
∂x (x, y) = ∂f

∂x +
∂f
∂y

∂y
∂x satisfy µ(∂h∂x (x, y)) ≤ ch, ∀(x, y) ∈ Dx × Dy, where

Dx×Dy ⊂ Rn×Rm is an open convex set. Let (x(t), yx(t))
be the solution of ẋ = f(x, y), 0 = g(x, y), x(t0) = x0,
and (z(t), yz(t)) be the solution of ż = f(z, y) +w(t), 0 =
g(z, y), z(t0) = z0, such that (x(t), yx(t)) ∈ Dx × Dy,
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(z(t), yz(y)) ∈ Dx × Dy for all t ∈ [t0, t1]. Suppose
that ‖w(t)‖ ≤ w, ∀(t) ∈ [t0, t1] for some w > 0. Based
on Assumption 5, we further assume that yx = ϕ(x),
and yz = ϕ(z). Let Lh = Lx + LyLϕ, where Lϕ is
the Lipschitz constant of the implicit function ϕ. Then,
‖x(t)− z(t)‖ ≤ ‖x0 − z0‖ exp[ch(t − t0)] + w

ch

(
exp[ch(t −

t0)] − 1
)

and ‖yx(t)− yz(t)‖ ≤ Lϕ ‖x0 − z0‖ exp[ch(t −
t0)] + Lϕ

w
ch

(
exp[ch(t− t0)]− 1

)
.

Proof. Use similar techniques as in the proof for Corol-
lary 6 and Theorem 7. �

Note that in using these results, we require the global
information Lx, Ly, Lϕ (Corollary 6), c (Theorem 7), and
ch(Corollary 8). Furthermore, the terms Lϕ and ch require
special treatment because they involve the implicit func-
tion ϕ. Differentiating the algebraic equation (1b) with

respect to x yields ∂g
∂x + ∂g

∂y
∂y
∂x = 0, which gives,

∂y

∂x
= −

(∂g
∂y

)−1 ∂g

∂x
. (16)

For implementation, these terms can be computed off-line
and stored for later use. However, global optimizations
need to be solved. For example, computing ch requires
solving the non-convex problem,

(P3) ch = max
(x,y)∈Dx×Dy

µ
(∂h
∂x

(x, y)
)
.

We can either resort to global optimization solvers or
estimate the value by sample-based methods.

5. REACH-SET COMPUTATION

Designing tractable algorithms for computing reach-sets
for nonlinear systems is a challenging problem. In this
section, we use results from Sections 3 and 4 to propose
an efficient method for computing a sufficiently accurate
reach-set estimate for nonlinear DAE systems with uncer-
tain initial conditions and external disturbances.

5.1 Reach-Set With Uncertain Initial Conditions

The orthotope X0 = {x̃0 ∈ Rn
∣∣x0 − ∆x0 ≤ x̃0 ≤ x0 +

∆x0} of all possible initial conditions can be equivalently
characterized as X0 := x0 ⊕ B, where x0 is the nominal
initial point and B := {∆x̃0 ∈ Rn : −∆x0 ≤ ∆x̃0 ≤
∆x0}. In Hiskens and Alseddiqui (2006), it is shown
that trajectory sensitivities can be used to approximate
the reach-set efficiently, by locating worst-case vertices of
the uncertainty set. Under the affine transformations (5),
the orthotope B is shifted and distorted to form time-
dependent parallelotopes:

Pφ(t) = φ(x0, t) +
∂φ(x0, t)

∂x0
B, (17a)

Pψ(t) = ψ(x0, t) +
∂ψ(x0, t)

∂x0
B. (17b)

Since the orthotope B is convex, the affine transformation
(5) maintains its convexity. Moreover, the vertices of B are
mapped to the vertices of Pφ(t) and Pψ(t), which define
the approximated boundaries of the reach-set. However,
there is no guarantee that such approximated boundaries
will cover the true reach-set since the first-order trajectory
approximations possess error. By taking advantage of
the established error bounds, we can compute an over-
approximation of the reach-set. In practice, the error

bound is estimated from the simplified problem (P2),
which increases the confidence of covering the true reach-
set.

It follows that we only need to bound approximation error
for the extreme vertex cases of Pφ(t), Pψ(t). Define the
time-dependent error bound tubes as,

Eφ(t) , {ẽ(t) ∈ Rn
∣∣|ẽi(t)| ≤ Mφi(t)

2
‖∆x0‖21}, (18a)

Eψ(t) , {ẽ(t) ∈ Rm
∣∣|ẽj(t)| ≤ Mψj (t)

2
‖∆x0‖21}, (18b)

∀i = 1, . . . , n, ∀j = 1, . . . ,m,

where ∆x0 denotes the maximum deviations from the
nominal initial point x0, i.e. the vertices of X0. Theoret-
ically, the terms Mφi and Mψi are computed from (P1).

In practice, we instead use the M̂φi and M̂ψi from (P2).

Consider uncertain initial conditions x̃0 within the set
X0, and define the reach-set of all perturbed trajectories
x(t) = φ(x̃0, t), y(t) = ψ(x̃0, t) originating from X0 to be,[

X (t)
Yx(t)

]
=

[
φ(X0, t)
ψ(X0, t)

]
,
{
x(t) ∈ Rn
y(t) ∈ Rm

∣∣∣ ẋ(t) = f(x(t), y(t))
0 = g(x(t), y(t)), x(t0) ∈ X0

}
. (19)

Based on the previous reasoning, we have the following
over-approximation of the reach-set X (t), Yx(t),

X (t) ⊂ Pφ(t)⊕ Eφ(t), (20a)

Yx(t) ⊂ Pψ(t)⊕ Eψ(t), (20b)

where ⊕ denotes Minkowski sum. Since Pφ(t), Pψ(t),
Eφ(t), and Eψ(t) are polytopes represented by vertices,
their Minkowski sum can be converted to taking combi-
nations of vertices and computing their convex hull, which
is relatively tractable.

5.2 Reach-Set With External Disturbances

By using results from Section 4, we are also able to quan-
tify the effects of external disturbances. By Corollary 8, we
know that for every initial point x0 ∈ X0, the trajectory
(x(t), yx(t)), x(t0) = x0 and (z(t), yz(t)), z(t0) = x0 have
the relationship,

‖x(t)− z(t)‖ ≤ w

ch

(
exp[ch(t− t0)]− 1

)
, (21a)

‖yx(t)− yz(t)‖ ≤ Lϕ
w

ch

(
exp[ch(t− t0)]− 1

)
, (21b)

which implies the trajectories z(t), yz(t) must lie within
the tubes of time-varying radius w

ch

(
exp[ch(t − t0)] − 1

)
,

Lϕ
w
ch

(
exp[ch(t − t0)] − 1

)
around the disturbance-free

trajectories x(t), yx(t), respectively. Define the tubes as:

T φ(t),
{
ξ̃(t)∈Rn

∣∣ ∥∥ξ̃(t)∥∥ ≤ w

ch

(
exp[ch(t− t0)]−1

)}
, (22a)

T ψ(t),
{
ξ̃(t)∈Rm

∣∣ ∥∥ξ̃(t)∥∥ ≤ Lϕ w

ch

(
exp[ch(t− t0)]−1

)}
, (22b)

where the vector norm is the same as the one used for
defining the logarithmic norm.

Next consider all initial points in the set X0. In (19) we’ve
defined the reach-set of all disturbance-free trajectories
originating from X0 to be X (t), Yx(t). Similarly, define
Z(t), Yz(t) to be the reach-set for system with distur-
bances,[
Z(t)
Yz(t)

]
,

{
z(t) ∈ Rn
y(t) ∈ Rm

∣∣∣∣ ż(t) = f(z(t), y(t)) + w(t)
0 = g(z(t), y(t)), z(t0) ∈ X0

}
. (23)
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Fig. 1. Single machine infinite bus power system.

From (21), we know that the set of noisy trajectories Z(t),
Yz(t) is over-bounded by the Minkowski sum,

Z(t) ⊂ X (t)⊕ T φ(t), (24a)

Yz(t) ⊂ Yx(t)⊕ T ψ(t). (24b)

Together with (20), we obtain the final expression for an
estimated over-approximation of the reach-set,

Z(t) ⊂ Pφ(t)⊕ Eφ(t)⊕ T φ(t), (25a)

Yz(t) ⊂ Pψ(t)⊕ Eψ(t)⊕ T ψ(t), (25b)

where Pφ(t), Pψ(t) are defined in (17), Eφ(t), Eψ(t) are
defined in (18), and T φ(t), T ψ(t) are defined in (22).

6. SIMULATION RESULTS

We demonstrate the proposed reach-set computation ap-
proach through a single machine infinite bus (SMIB) power
system, as shown in Fig. 1. The DAE model for the SMIB
system is given by:

d

dt

[
x1
x2

]
=

{
x2

1

M

(
Pm−

V∞Vt
X

sin(x1)−Dx2

)
+ w(t)

(26a)

0 =
(V∞Vt

X
sin(x1)

)2

+
(V 2

t

X
− y
)2

− V 2
∞V

2
t

X2
. (26b)

The dynamic states are x = [x1, x2]ᵀ = [δ, ω]ᵀ, where
δ is the rotor angle and ω is the angular velocity. The
algebraic state is y = Q, the reactive power generation.
V∞ is the constant voltage magnitude of the infinite
bus, Vt is the voltage magnitude of the generator bus,
M is the inertia constant, Pm is the mechanical power,
X is the line reactance, and D is the damping. An
unknown external disturbance term w(t) is added to the
second differential equation. It is modeled as a uniformly
distributed random variable, with a bound of ‖w(t)‖ ≤
w = 0.005. The vector norm is defined as ‖·‖ =

√
(·)ᵀP (·),

where P solves the Lyapunov equation AᵀP + PA +
Q = 0, where Q = I, and A is the Jacobian matrix
evaluated at the stable equilibrium. With this vector norm,
the logarithmic norm is defined accordingly as, µ(J) =

λmax
( (P 1/2JP−1/2)+(P 1/2JP−1/2)ᵀ

2

)
, where λmax represents

the largest eigenvalue.

The system parameters are set to V∞ = 1 pu, Vt =
1 pu, M = 7.3784 pu, Pm = 3.1831 pu, X = 1/6 pu,
and D = 1 pu. For the nominal case, initial conditions
are x0 = [0.55, 0.15]ᵀ, giving y0 = 0.8849. The implicit
trapezoidal method was adopted to numerically integrate
the DAE models describing the dynamics of states, the
first- and second-order sensitivities. When including the
stochastic disturbance, the trapezoidal integration method
was modified as described in Hansen and Penland (2006) to
approximate the integration of the stochastic differential
equation. We assume that the initial condition for rotor
angle δ is uncertain and lies within the range [0.5, 0.6].
The logarithmic norm is estimated off-line as µ(J(x, y)) ≤
ch = −0.0104, over the operating range.

Figure 2 shows the reach-set when there are only initial
condition uncertainties but no external disturbance. The

red solid lines indicate the reach-set estimated using the
trajectory sensitivity method. The blue dash-dot lines
give the theoretical bound derived using the logarithmic
norm. The green dashed lines are eleven true trajectories
with their initial conditions uniformly distributed over the
initial condition set. It can be observed that all trajectories
are contained within the estimated and theoretical bounds.
Moreover, the reach-set estimation given by the trajectory
sensitivity method is much tighter than the theoretical
bound, while still encompassing all the true trajectories.
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Fig. 2. Reach-set estimates based on the trajectory sen-
sitivity and logarithmic norm methods for uncertain
initial conditions.
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Fig. 3. Reach-set estimate based on the logarithmic norm
method under external disturbances.

Figure 3 presents the case when there are only external
disturbances but no initial condition uncertainty. The
bound provided by the logarithmic norm is shown by blue
lines. The green dashed lines are 30 randomly generated
trajectories.

Finally, we consider the case when there are both uncertain
initial conditions and external disturbances. The reach-
set estimated by the trajectory sensitivity plus logarithmic
norm (TS+LN) method and by the logarithmic norm only
are presented in Fig. 4. The red solid lines refer to the
bound given by the TS+LN method and the blue dash-dot
lines refer to the bound given by the logarithmic norm.
The green dashed lines are 55 randomly generated true
trajectories emanating from the initial condition set and
subjected to external disturbances. It can be observed that
the reach-set estimation given by the TS+LN method is
able to cover all realizations without being overly conser-
vative, especially when the simulation horizon was quite
short. The theoretical bound provided by the logarithmic
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Fig. 4. Reach-set estimates based on the TS+LN and loga-
rithmic norm methods for uncertain initial conditions
and external disturbances.

norm is guaranteed to enclose all the realizations but is
more conservative.

7. CONCLUSION

The paper has proposed an efficient approach to con-
structing a sufficiently accurate estimation of the reach-
set of nonlinear DAE systems, under uncertain initial
conditions and/or parameters, and external disturbances.
This approach is based on establishing an error bound
for the trajectory sensitivity method, as well as char-
acterizing the effects of external disturbances using the
logarithmic norm. Although the bound derived from the
logarithmic norm is guaranteed to enclose the true reach-
set, the trajectory sensitivity method provides a much less
conservative reach-set estimation. For future work, we plan
to extend the method to hybrid systems where continuous
dynamics and discrete events interact.
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