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Abstract: In this paper, the problem of detection and reconstruction of cyber-attacks in linear
cyber-physical systems is considered. The class of cyber-attacks described in this paper can
corrupt the states or the outputs of a cyber-physical system. An attack monitor based on High-
Order sliding mode is proposed to reconstruct the cyber-attack. A First Order Approximation
Filter is proposed to ensure global stability and convergence results. Using sliding mode
techniques, an attack compensation is developed for square plants, guarateeing finite time
convergence to the output tracking while rejecting the effects of the cyber-attack.
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1. INTRODUCTION

Cyber-physical Systems (CPS) can be found in the main
infrastructures of a society, such as power generation,
smart grids, and transportation networks. This class of
system integrates physical processes, communication ca-
pabilities and computational resources (Poovendran et al.,
2011). Although CPS improves efficiency, it becomes more
susceptible to attacks envolving the cyber-domain, as
known as Cyber-attacks (Sandberg et al., 2015). As pre-
sented in (Pasqualetti et al., 2013), great damages can
be led by cyber attacks on the communication and data
channels, e.g. power blackouts in Brazil (Conti, 2010), and
Stuxnet storm (Langner, 2011). These attacks proved that
the security mechanisms already used must be comple-
mented with control strategies capable of detecting and
rejecting this kind of attacks.

Some results have been published on the context of detec-
tion and reconstruction of Cyber-Attacks in recent years.
In (Nateghi et al., 2018), nonlinear systems are considered.
Using HOSM differentiators, cyber-attacks are approxi-
mated through an optimization problem. This technique,
however, considers that all states of the system are avail-
able. In (Huang et al., 2018), uncertain linear systems are
studied. Based on Integral Sliding Mode and adaptation
laws for the upper bound of the attack, the proposed con-
troller ensures quasi-optimal performance to the system.
However, this work considers that the system without
external disturbances and attacks is available before its
implementation.

Based on (Ao et al., 2016), an interesting sliding mode
strategy was proposed in (Corradini and Cristofaro, 2017)
to detect, reconstruct and compensate state attacks and
sensor attacks in linear Cyber-Physical Systems. To this
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end, an attack monitor and a state observer are proposed
to ensure that the estimation errors and the monitoring
errors are bounded by positive constants, while a compen-
sator based on First Order Sliding Mode is designed.

The following constraints and assumptions restrict the
application of the strategy proposed in (Corradini and
Cristofaro, 2017):

• The attack monitor may have limited performance
since it does not ensure the convergence of the moni-
toring error to zero. Furthermore, the proposed attack
estimation is not defined when the output estimation
error becomes lower than a predefined positive con-
stant.

• The attack detection/reconstruction in each state or
output channel requires one attack monitor and one
state observer. Therefore, monitoring many channels
becomes computationally expensive.

• The attack compensation scheme does not ensure the
tracking error convergence to zero.

• The attack and its time derivative are assumed to
have known upper bounds.

• Only local results of stability and convergence are
achieved since an upper bound for the non measurable
states is assumed.

Inspired by the strategy presented in (Corradini and
Cristofaro, 2017), this paper proposes an alternative slid-
ing mode-based strategy in order to overcome the previous
limitations discussed. Here, the following improvements
are achieved.

• The output estimation error converges to zero in finite
time and the attack reconstruction is fully defined.
Furthermore, in the absence of external disturbances,
the monitoring error tends exponentially to zero.
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• The attack vector is reconstructed using only one
attack monitor and one state observer.
• The proposed attack compensation ensures that the

tracking error converges to zero in finite time. Fur-
thermore, since a High Order Sliding Mode technique
is considered, the chattering effect is attenuated.
• The upper bound of the attack is no longer required.
• Global stability and convergence results are achieved

by using a First Order Approximation Filter to esti-
mate a norm bound for the non measurable states.

Note that the proposed strategy ensures better recon-
struction results under less restrictive assumptions that in
(Corradini and Cristofaro, 2017). Therefore, the approach
proposed in this paper can be applied to a broader class
of Cyber-Pysical Systems (CPS) with better performance
and global stability and convergence properties.

Preliminaries: The euclidean norm of a vector y and the
corresponding induced norm of a matrix A are denoted
by ||y|| and ||A||, respectively. In is the identity matrix
of Rn×n. Here, Fillipov’s definition for the solutions of
discontinuous differential equations is assumed (Filippov,
1964).

2. SLIDING MODE STRATEGIES APPLIED FOR
MONITORING AND COMPENSATION OF

CYBER-ATTACKS

This section presents the properties of the class of CPS and
cyber-attacks considered in this paper. The attack monitor
for deception and stealth attacks is presented in sequence.

2.1 System properties

Consider the following CPS:

ζ̇(t) = Āζ(t) + B̄uu(t) + B̄ff(ζ, t) + D̄dd(ζ, t)

y(t) = C̄ζ(t) + D̄uu(t) + D̄ff(ζ, t),
(1)

where ζ(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
input of the system and y(t) ∈ Rp is the output of the
system, with p ≥ m. The matrices Ā, B̄u, C̄ and D̄u have
compatible dimensions. The vector D̄dd(ζ, t) describes any
external disturbance or model uncertainty and the terms
B̄f f(ζ, t) and D̄f f(ζ, t) represent the state attack and the
sensor attack, respectively. Assuming that B̄f and D̄f are
known matrices, the attack monitor should detect and
reconstruct the attack vector f(ζ, t) ∈ Rq. As in (Corradini
and Cristofaro, 2017), the state vector ζ(t) is assumed to
include both physical and cyber variables, while u(t) and
y(t) are known signals.

Since the system is known, except for the uncertainty dis-
turbance vector, state and sensor attacks can be detected
and reconstructed by using a Luemberger-like estimator.
To this end, the class of CPS considered must respect the
following Assumptions, derived from (Ao et al., 2016):

Assumption 1:

1. The pair (Ā, C̄) is completely observable.
2. rank(C̄B̄f ) = rank(B̄f ), where B̄f is full column

rank.
3. The matrices B̄u and D̄f are full column rank.
4. The invariant zeros of (Ā, B̄u, C̄, D̄u) are stable.

5. Attacks are assumed detectable, i.e., the system
(Ā, B̄f , C̄, D̄f ) has no invariant zeros.

Assumption 1.1 is quite reasonable once an estimator
is proposed in this monitoring scheme. Assumption 1.2
implies that q ≤ p. Therefore, at most p attacks can be
detected/reconstructed at the same time. Assumption 1.3
is considered since that there are no reason to use unnec-
essary inputs in B̄u and both B̄f and D̄f are full rank
for observer design. Note that the CPS is a minimum
phase system, since Assumption 1.4 holds. Finally, As-
sumption 1.5 ensures that neither non-zero unstable unde-
tectable attacks nor non-zero stable undetectable attacks
can occur.

Note that the choice of B̄f and D̄f define in which channels
the attack detection occurs. In (Corradini and Cristofaro,
2017), these matrices are defined as column vectors, which
means that the attack f(t) is a scalar. Thus, to detect
p attacks simultaneously, p observers must be developed,
which is expensive from a computational point of view. In
this work, it is considered that the matrix B̄f ∈ Rn×p and
D̄f ∈ Rp×p, i.e., the attack monitor reconstructs an attack
vector, with p channels.

Remark 1: Note that if q < p, the p− q channels of attack
monitor in absence of non-zero attacks are zero, since B̄f
and D̄f are full column rank.

Assumption 1 implies that there exists a linear change of
coordinate x = Tζ, where

ẋ(t) = Ax(t) +Buu(t) +Bf f(t) +Ddd(t)

y(t) = Cx(t) +Duu(t) +Df f(t),
(2)

with

A =

[
A11 A12

A21 A22

]
Bu =

[
B1

B2

]
Bf =

[
0
B

]
(3)

C = [0 Ip] Dd =

[
D1

D2

]
D̄f = Df D̄u = Du (4)

where B ∈ Rp×p is a nonsingular matrix and A11 ∈
Rn−p×n−p is a Hurwitz matrix.

2.2 Class of attacks

The model of attacks considered in this paper are the De-
ception Attacks (Teixeira et al., 2010) and Stealth Attacks
(Ao et al., 2016).

Deception attacks affects the states of the system, which
can change the steady-state system behavior and its sta-
bility, as presented in (Teixeira et al., 2010; Ao et al.,
2016). Stealth attacks corrupts the measurements of the
system. This attack can be used to affect output-feedback
controllers (affecting indirectly the states of the system)
or to hide deception attacks. When these attacks are used
together, they are known as Coordinated Attacks.

Based on the previously arguments, it is noted that the de-
tection of coordinated attacks could be pratically unfeasi-
ble (Pasqualetti et al., 2015). Since by the Assumption 1.5,
the attacks are assumed detectable, a suficient condition
is given by Assumption 2.

Assumption 2: Coordinated attacks do not occur, i.e.,
||B̄f || · ||D̄f || = 0.
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Note that this assumption implies that Bf or Df is a zero
matrix. Therefore, the attack vector f(x, t) in (1) does
not occur simultaneously as deception and stealth attack.
Furthermore, the following assumption holds

Assumption 3: The time derivative of the attack vector
has a known upper bound:

||ḟ(x, t)|| ≤ ρ2(x, t) (5)

where ρ2(x, t) is a positive function.

2.3 Detection and reconstruction of deception attacks

Note that, according to Assumption 2, Df = 0. Rewriting
(2) it follows that:

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t) +D1d(x, t)

ẋ2(t)=A21x1(t)+A22x2(t)+B2u(t)+Bf(x, t)+D2d(x, t)

y(t) = x2(t) +Duu(t),

(6)

Since y(t) and Duu(t) are known signals, consider the
following estimator

˙̂x1(t) = A11x̂1(t) +B1u(t) +A12 (y(t)−Duu(t))

˙̂x2(t)=A21x̂1(t)+B2u(t)+Bf̂(x, t)+A22(y(t)−Duu(t))

ŷ(t) = x̂2(t) +Duu(t),

(7)

Defining the estimation errors as e1(t) = x1(t)− x̂1(t) and
e2(t) = x2(t)− x̂2(t), it follows that:

ė1(t) = A11e1(t) +D1d(x, t)

ė2(t) = A21e1(t) +B
(
f(x, t)− f̂(x, t)

)
+D2d(x, t),

(8)

where e2(t) is a measurable signal, since y(t) − ŷ(t) =
e2(t). Thus, the estimation error e2 can be applied in the
monitoring scheme. Since that A11 is a Hurwitz matrix,
e1(t) can be interpreted as a stable filter for the signal
d(x, t). In addition to this, the following assumption holds.

Assumption 4: The disturbance vector and its derivative
have known upper bounds:

||d(x, t)|| ≤ ρd(x, t) ||ḋ(x, t)|| ≤ ρ̄d(x, t) (9)

where ρd(x, t) and ρ̄d(x, t) are known bounded functions.

Based on the above results, it is known that for any
bounded initial condition of e1(0), e1(t) remains bounded
for all t ≥ 0, since that:

||e1(t)|| ≤ α1e
−γt||e1(0)||+α2

∫ t

0

e−γ(t−τ)||Dd||·||d(x, t)||dτ

≤ α1e
−γt||e1(0)||+α2||Dd||

∫ t

0

e−γ(t−τ)ρd(x, t)dτ≤ρ (10)

where α1, α2, ||e1(0)||, and ρ are bounded positive con-
stants. Note that the constant upper bound ρ is considered
known in (Corradini and Cristofaro, 2017). Since ||e1(0)||
is unknown, in this work, we consider that ρ is unknown.

Remark 2: Note from (8) that, although the exponentially
convergence of e1(t) is hindered by d(x, t), its boundedness
is ensured by Assumption 4.

Chosing f̂(x, t) = −B−1f̄(x, t), the estimation error e2 in
(8) can be written as

ė2(t) = f̄(x, t) + ∆(e1,x, t) (11)

with

∆(e1,x, t) = A21e1(t) +Bf(x, t) +D2d(x, t). (12)

From (12) and (8), it follows that:

∆̇(e1,x, t) = A21ė1(t) +Bḟ(x, t) +D2ḋ(x, t)

∆̇ = A21(A11e1(t)+D1d(x, t))+Bḟ(x, t)+D2ḋ(x, t)
(13)

Note that (13) can be upper bounded by

||∆̇||≤a1||e1(t)||+a2||d(x, t)||+a3||ḟ(x, t)||+a4||ḋ(x, t)||
(14)

where a1=||A21A11||,a2=||A21D1||, a3=||B||, and a4=||D2||.
As described in (10), the knowledge of an upper bound
for ||e1(t)|| is not considered, because this assumption
restricts the convergence and stability results to a local
result, since ||e1(0)|| ≤ µ, where µ ∈ R. To circumvent
this constraint, in this work we propose the application of
a First Order Approximation Filter (FOAF) (Cunha et al.,
2003; Hsu et al., 1997):

˙̂ηe(t) = −λf η̂e(t) + cf ||d(x, t)|| (15)

where, η̂e(t) + |π(t)| > ||e1(t)|| and

|π(t)| = cη||eη(t0)||e−λη(t−t0) (16)

for some cη,λη > 0 and eη(t) = [eT1 η̂e]
T . Thus, it can be

noted that after some finite time t1, η̂e(t) > ||e1(t)||,∀t > t1

Based on (8) the parameters of (15) can be defined as:

λf = min
j
{−Re(λj)} cf = ||D1||

where {λj} are the eigenvalues of A11.

Therefore, from (15) and Assumptions 3 and 4, after some
finite time, (14) can be further upper bounded by

∆?(t) := a1η̂e(t)+a2ρd(x, t)+a3ρ2(x, t)+a4ρ̄d(x, t) (17)

where ∆?(t) is a known upper bound for ||∆̇(t)||, with a1,
a2, a3, and a4 given by (14).

Finally, note that (11) is a first order system with a
perturbation term whose time-derivative has a known
upper bound. For this class of system there is a wide range
of controllers that can reject the disturbance term and
drive the sliding variable to the origin. In this work, a well-
known sliding-mode strategy is considered, the Variable-
Gain Super Twisting Algorithm.

2.4 Deception attack reconstruction using Multivariable
Global Variable Gains Super-Twisting Algorithm

Super-Twisting algorithm is a second-order sliding mode
technique that ensures finite time convergence for the
sliding variable and its derivative. This algorithm became
popular since the time derivative of the sliding variable
is not required. Furthermore, as a High Order Sliding
Mode technique, the Super Twisting can attenuate the
chattering effect present in First Order Sliding Mode
techniques.

In this work, the Variable Gains Super-Twisting Algorithm
(VGSTA) for MIMO systems proposed in Vidal et al.
(2017), is considered. The algorithm is given by:

f̄(x, t)=−k1(x, η̂e, t)φ1(e2)−
∫ t

t0

k2(x, η̂e, t)φ2(e2)dt (18)

where

φ1(e2) =
e2

||e2||
1
2

+ k3e2

φ2(e2) =
1

2

e2

||e2||
+

3k3
2

e2

||e2||
1
2

+ k23e2

, k3 > 0 (19)
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From the control law given by (18) and the disturbance
term (12), the closed-loop system dynamics is given by:

˙̂ηe(t) = −λf η̂e(t) + cf ||d(x, t)||
ė1(t) = A11e1(t) +D1d(x, t)

ė2(t) = −k1(x, η̂e, t)φ1(e2) + z(t) + |π1(t)|φ1(e2)

ż(t)=−k2(x, η̂e, t)φ2(e2)+∆̇(e1,x, t)+|π2(t)|φ2(e2)

(20)

where the terms |π1(t)|φ1(e2) and |π2(t)|φ2(e2) are used
to account for the presence of the FOAF in the closed-loop
system, with |π1(t)| and |π2(t)| defined similarly as in (16).

Note that, for e2(t) 6= 0, one has that:

||∆̇|| = 2||∆̇|| · 1

2

∣∣∣∣∣∣∣∣ e2

||e2||

∣∣∣∣∣∣∣∣ ≤ %2(e1,x, t)||φ2(e2)|| (21)

where, from (17), %2(e1,x, t) can be defined as 2∆?(t).
From (20), it follows that:∣∣∣∣∣∣∆̇+|π2(t)|φ2(e2)

∣∣∣∣∣∣≤(%2(e1,x, t)+|π2(t)|)||φ2(e2)|| (22)

Therefore, if the variable gains in (18) are defined as

k1(x, η̂e, t) = δ +
1

β

(
%22
4ε

+ 2ε%2 + ε+ 8ε3 + 2εβ

)
k2(x, η̂e, t) = β + 4ε2 + 2εk1(x, η̂e, t)

(23)

where δ, β, and ε are arbritrary positive constants, then a
second order sliding mode e2 = ė2 = 0 is reached in finite
time (Vidal et al., 2017, Theorem 1).

Note that when the sliding mode takes place, it follows
from (20) that z(t) = 0. Then, after a finite time, it

follows from (11) and (12) that f̂(x, t) = B−1∆(e1,x, t).
Furthermore, from (12), one has that:

f̂(x, t)− f(x, t) = B−1 (A21e1(t) +D2d(x, t))∣∣∣∣∣∣f̂(x, t)− f(x, t)
∣∣∣∣∣∣ ≤ b1||e1(t)||+ b2||d(x, t)||

(24)

where b1 = ||B−1|| · ||A21|| and b2 = ||B−1|| · ||D2||.
From (10) and Assumption 4, d(x, t) and e1(t) are
bounded signals. Thus, it follows that the monitoring error∣∣∣∣∣∣f̂(x, t)− f(x, t)

∣∣∣∣∣∣ is bounded. Furthermore, if d(x, t) ≡ 0,

it follows from (8) that f̂(x, t) converges to f(x, t) exponen-
tially. Hence, the attack function f(x, t) is reconstructed
exponentially.

Most of the existing cyber-attacks and fault scenarios
can be modeled by unknown additive inputs affecting the
state and the measurements. Besides reflecting the genuine
failure of system components, these disturbances model
the effect of attacks against the cyberphysical system
(Pasqualetti et al., 2015). Thus, our approach can be
applied to both fault-tolerant and cyber-physical systems.

2.5 Deception attack reconstruction using Predefined Layer
Algorithm

The attack monitor proposed in (Corradini and Cristofaro,
2017) is considered in this paper for comparison purposes.
This method imposes that

d2
(
||e2(t)||2

)
dt2

< 0 if ||e2(t)|| > ε (25)

with the following attack monitor:

˙̂
f(t) =

γk
(
α(x, t)||e2||+β(x, t)2+κ(x, t)+η

)
keT2 B − εsign(eT2 B)

, if |eT2 B|>ε

α(x, t) := a1ρ+ a2ρd(t) + a3ρ2(x, t) + a4ρ̄d(t)

β(x, t) := ||A21||ρ+ ||B||ρ1(x, t) + ||D2||ρd(t)

κ(x, t) := ||B||
(
||B||f̂(t)2 + 2β(x, t)|f̂(t)|

)
where γ, k, ε and η are positive constants, ρ1(x, t) is an
upper-bound for ||f(x, t)|| and ρ, ρ2(x, t), ρd(t), and ρ̄d(t)
are given by (10), (5), and (9), respectively.

The imposed condition (25) ensures that, in finite time, the
norm of e2(t) decreases until that the layer ||e2(t)|| < ε is
reached. From now on in this paper, this method is referred

by Method 2. Note that the authors did not specify f̂(x, t)
inside the predefined layer. In the present work, we have

assumed that f̂(x, t) was kept constant inside such layer.
The simulation results of (Corradini and Cristofaro, 2017)
and the ones presented here are similar.

2.6 Detection and reconstruction of stealth attacks

Invoking Assumption 2, it is known that during a stealth
attack, there is no deception attack (Bf = 0). Rewriting
(1), it follows that:

ζ̇(t) = Āζ(t) + B̄uu(t) + D̄dd(ζ, t)

y(t) = C̄ζ(t) + D̄uu(t) + D̄f f(ζ, t),
(26)

Consider the following low-pass filter to the output of (26)
proposed in (Ao et al., 2016).

ẋf (t) = Afxf (t) + y(t)

yf (t) = xf (t)
(27)

where Af ∈ Rp×p is a designed Hurwitz matrix. Note
that with this “new state” xf (t) the following augmented
system is obtained:

ω̇1(t) = Āω1(t) + B̄uu(t) + D̄dd(x, t)

ω̇2(t) = C̄ω1(t) +Afω2(t) + D̄uu(t) + D̄f f(x, t)

yf (t) = ω2(t)

(28)

where ω1(t) = ζ(t) and ω2(t) = xf (t). For this augmented
system the following observer is proposed:

˙̂ω1(t) = Āω̂1(t) + B̄uu(t)

˙̂ω2(t) = C̄ω̂1(t) +Afyf (t) + D̄uu(t) + D̄f f̂(x, t)

ŷf (t) = ω̂2(t),

(29)

Thus, defining the estimation errors as eω1
(t) = ω1(t) −

ω̂1(t) and eω2
(t) = ω2(t)− ω̂2(t), it follows that:

ėω1
(t) = Āeω1

(t) + D̄dd(x, t)

ėω2
(t) = C̄eω1

(t) + D̄f

(
f(x, t)− f̂(x, t)

) (30)

where eω2 is a measurable error, since yf (t) − ŷf (t) =
eω2(t). Comparing (30) to (8), since, from Assumption 4,
d(x, t) is a bounded signal, the boundedness of eω1(t)
depends on Ā. Therefore, for Stealth attacks the following
assumption is considered

Assumption 5: The matrix Ā presented in (1) is Hurwitz.

Remark 3: Note that with this assumption, a deduction
similar to that made in (10) ensures that eω1(t) is a
bounded signal. Furthermore, if d(x, t) ≡ 0, eω1(t) con-
verges exponentially to zero.
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Comparing the dynamics of eω2
(t) in (30) and (11), it is

noted that the application of the VGSTA algorithm pre-
sented in this paper to stealth attacks is straightforward.

2.7 Compensation of deception attacks

Once the cyber-attack is detected and reconstructed, the
estimated attack can be used to ensure that the effect
of the cyber-attack is rejected and the system output
converges to some desired trajectory yd(t). Thus, the
objective is to ensure that the tracking error et(t) =
y(t)− yd(t) becomes zero after some finite time.

Note that the sliding-mode strategies presented here can
be applied to systems with, at least, relative degree one.
Therefore, here we consider that Du = 0. It is notewor-
thing that the same condition is required in Method 2.

Remark 4: It is worth noting that this condition is only
required to the attack compensation. Therefore, the pro-
posed attack reconstruction does not require this condi-
tion.

Defining the control law as in (Corradini and Cristofaro,

2017), with Ψ(t)=A21x̂1(t)+Bf̂(x, t)+A22y(t)− ẏd(t) and

u(t) = (GB2)−1 (ū−GΨ(t)) (31)

when the sliding mode (e2 = ė2 = 0) takes place, the
variable σc(t) = Gεt(t) presents the following dynamics:

σ̇c(t) = ū(t). (32)

where εt(t) = ŷ(t)− yd(t) and G ∈ Rm×p is defined such
that GB2 is a square full rank matrix (for more details,
see Corradini and Cristofaro (2017)).

Comparing (32) and (11) it is known that finite time
convergence for the sliding variable σc(t) can be achieved
using the VGSTA technique presented in this paper. Note
that if G is full rank, in the square case, εt also converges
to zero in finite time. Thus, the finite time convergence for
the tracking error is achieved.

2.8 Example of state attack monitoring and compensation:
the IEEE 39 bus power system

Consider the IEEE 39 bus power system presented in (Mei
et al., 2011; Zimmerman et al., 2010) with ten generators.
A linear state-space representation can be achieved using
the strategy described in (Dorfler and Bullo, 2012), known
as Kron-reduction. In this simulation example, the same
additional simplifications and numerical values of (Corra-
dini and Cristofaro, 2017, Section 5.1) have been adopted.

Furthermore, the matrix B̄f is defined as [010×10 I10]
T

A deception attack of the form f(t) = 1
2sin(0.2πt) ×

(|x11(t)|+1) has been considered to corrupt the first output
of (6), starting from t = 2 s. The control objective is the

tracking of the reference output yd = [1 1 2 01×7]
T

. Note
that, for this case, B2 is square and full rank. Therefore,
from (32), the matrix G was defined as the identity matrix.

Two techniques have been used as attack monitor: VGSTA
and Method 2. In this simulation example, the upper
bounds required for the Method 2 are defined as ρ =
2.5, ρ1(x, t) = 1.75, and ρ2(x, t) = 2. Note that the
implementation of the VGSTA algorithm only requires

the knowledge of ρ2(x, t). The initial condition of the
plant (2) and the estimator (7) are selected as x(0) =

[−0.5 · 11×5 0.25 · 11×5]
T

and x̂(0) = 010×1.

The parameters used in the VGSTA are tuned as δ = 1,
ε = 0.3 and β = 0.1, while the parameters for Method 2 are
k = 1.1, γ = 1.1, η = 0.2 and ε = 0.1, as in (Corradini and
Cristofaro, 2017). The results are reported in the following
Figures.
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Fig. 1. (a) Observation error norm ||e2(t)|| and (b) True

f(t) versus estimated f̂(t) state attack.

It is noted in Fig. 1 that the sliding mode is achieved
in finite time using the VGSTA strategy adopted in this
work. Furthermore, when the sliding mode is reached, the
state attack reconstruction converges exponentially to the
sinusoidal attack.

In the context of compensation of attacks, no signal must
be reconstructed, since the attack was already estimated

by the attack monitor f̂(x, t). Therefore, other techniques
based on sliding mode can be used in (32).

In this simulation example, the attack reconstructed by
the VGSTA is compensated by a control law also based on
VGSTA. The controller is given by (33).

ū(σc, t)=−k1(x,η̂e,t)φ1(σc)−
∫ t

t0

k2(x, η̂e, t)φ2(σc)dt, (33)

where φ1(σc) and φ2(σc) are defined as in (19), with
k3 = 1 and the variable gains k1(x,η̂e,t) and k2(x, η̂e, t) as
in (23), with the arbitrary constants tuned as δ = β = 0.5
and ε = 0.25. For comparison purposes, the controller for
Method 2, ū(σc, t) = −ηc σc

||σc|| was designed with ηc = 1.

The results are reported in the following Figures.

From Fig. 2, it is noted that the FOSM-based controller
lead to a discontinuous control and is more prone to
present the chattering phenomena, restricting their appli-
cation in physical systems. In turn, note that the control
signal is continuous using a High Order Sliding Mode
technique, keeping important features of FOSM, as dis-
turbance rejection, finite time convergence and avoiding
the appearance of chattering.

Finally, it can be observed from Fig. 3 that although the
controller of Method 2 ensures that εt(t) converges to zero
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Fig. 2. Control signal components of u(t).
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Fig. 3. Tracking error norm.

in finite time, it follows that et(t) may not converge to the
origin, since Method 2 only ensures the boundedness of
e2(t). In turn, the technique proposed here ensures finite
time convergence for both errors. Also note that proposed
monitor can be combined with a FOSM controller to
achieve a smoother transient at cost of a discontinuous
control law.

3. CONCLUSION

In this paper, a strategy for the state/sensor attack moni-
tor design is proposed, which allows that the attacks to be
reconstructed using a single multivariable estimator. More-
over, a sliding mode technique is used to guarantee finite
time convergence of the sliding variables and exponential
reconstruction of the attacks, in the absence of external
disturbances. It should be emphasized that, by means of a
First Order Approximation Filter, the knowledge of an up-
per bound for the non-measurable states is circumvented
making the stability and convergence properties global.
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