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Abstract: The exergy-based fault detection method has not yet been applied to a complex
industrial system that adequately represents a dynamically changing process. One such system,
the Tennessee Eastman process, is commonly used as a benchmark for fault detection methods.
In this paper, an exergy-based fault detection approach is applied to the Tennessee Eastman
process. This is done to investigate the feasibility of using this approach when confronted with
noisy sensor data and control loops masking faulty behaviour. An exergy characterisation
was performed on stream data obtained from the Tennessee Eastman process. The exergy
characterisation included a new approach to calculate the standard chemical exergy of unknown
components. For fault detection, threshold limits were determined for the exergy characterisation
when normal operating conditions are assumed. The threshold limits were calculated following
the upper and lower control limit determination of the Shewhart control chart. The results
showed that this method could quantify both the physical state as well as the chemical features
of the process and that 17 out of the 20 considered faults could be detected. This shows that
the exergy-based method could be adequately applied to the Tennessee Eastman process.
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1. INTRODUCTION

In modern industrial processes, great importance is
placed on producing high-quality products, with minimal
process downtime while also maintaining the highest
standard of operational safety. Any malfunction of
process equipment or deviations from normal operating
conditions can significantly increase manufacturing costs
and influence product quality. Not to mention the risks
such deviations can pose to process safety and its impact
on the surrounding environment. Driven by the need to
prevent most, if not all, process malfunctions, process
monitoring and fault diagnosis have received significant
attention in recent years and continues to be a growing
field of interest (Ammiche et al., 2018; Chen et al., 2016;
Reis and Gins, 2017).

The difficulty with which fault diagnosis can be
performed depends considerably on the nature of the
fault. Total breakdown of a piece of equipment can be
relatively easy to detect, however by the time of
occurrence, irreparable damage could have already
occurred. Detection of incipient or latent failures can be
more problematic. Due to the interaction between
process components in complex systems, it has been
found to be very difficult to distinguish between the
faults’ causes and their inevitable effects. The complexity

of the process ensures that when a fault occurs in one
part of the system, it can propagate throughout the rest
of the system. Complex industrial processes therefore call
for interpretable fault detection and diagnosis methods
that can accurately detect and evaluate the type of fault
as well as ascertain its root cause (Ragab et al., 2018;
Wang et al., 2018).

Through the years a wide variety of methods and
approaches have been proposed, all of which varies in
their feasibility and effectiveness for fault detection and
diagnosis. All these methods can be classified as either
model-based or data-driven. (Bouamama et al., 2014;
Venkatasubramanian et al., 2003b). In model-based fault
detection, it is assumed that there is prior knowledge
about the model of the process and the model is
constructed using some fundamental knowledge of the
physics of the process. In contrast to this, data-driven
methods assume the availability of a great amount of
historical process data (Eslamloueyan, 2011;
Venkatasubramanian et al., 2003b). If possible, fault
detection should be quick and easy, however, due to the
presence of model uncertainties, process noise,
disturbances in the process and its environment, this task
can become difficult. This, in turn, could delay the
detection and isolation of faults as well as lead to
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incorrect diagnosis (Bouamama et al., 2014). Developing
a robust method that can accurately detect and diagnose
faults even in the presence of uncertainties and noise is
therefore of key importance.

In recent years, with the advancements in computer
control and artificial intelligence, data-driven methods
have become more popular, especially applied to those
complex processes where model-based methods are
almost impossible to construct (Ge et al., 2013; Guo and
Kang, 2015). Data-driven methods require a
pre-processing step that extracts valuable information
from the available data, so its performance is highly
reliant on the quantity and quality of the processed data.
As a result, any lack of suitable data can compromise its
diagnostic abilities (Bouamama et al., 2014; Tidriri et al.,
2018b). Unfortunately, it is still extremely challenging to
determine the root cause of a fault by using just
data-driven methods, especially when considering
complex industrial processes where recycle loops and
elaborate process control are prevalent (Ge et al., 2013;
Guo and Kang, 2015).

While both methods have their various advantages and
disadvantages, no single approach possesses all the
desirable characteristics for the ideal diagnostic system,
with their individual shortcomings being serious enough
to render these methods unsuitable for use within
complex industrial situations. However, if methods with
complementary features are combined to develop a
hybrid system, the limitations of individual methods can
be overcome (Amin et al., 2018; Venkatasubramanian
et al., 2003a). Subsequently, more studies are now
investigating the advantages of implementing hybrid
systems to bridge the gap between data-driven and
model-based methods (Amin et al., 2018; Guo and Kang,
2015; Liao and Köttig, 2016; Tidriri et al., 2018b).

Marais et al. (2019) first suggested that exergy-data could
be of value when used for fault diagnosis. They made use of
physical and chemical exergy to calculate the total exergy
of process streams present in a simulated auto-thermal
reformer. The calculated exergy could describe both the
physical state as well as the chemical features of the
process, enabling it to quantify both changes in physical
properties and chemical features. The study showed that
the exergy-based approach could effectively isolate faults
and it was suggested that the exergy-based method could
be useful in the development of a hybrid fault diagnosis
system for a complex industrial plant. This was further
investigated by Greyling et al. (2019), who applied an
exergy-based fault detection method to a gas-to-liquids
process simulated in Aspen HysysTM. Their results showed
complete detection and isolation of all considered process
faults, indicating that the exergy-based method could
be successfully used for a more complex system. Both
of these studies utilised a basic threshold function to
indicate whether the exergy values of the fault data
increased or decreased from the normal operating data.
The studies only considered one sample of steady-state
data when using this threshold function. A dynamically
changing environment would better represent a complex
industrial process, however this threshold function cannot
be adequately applied to dynamically changing data since

it is expected to change over a period of time, irrespective
of a fault being present or not.

The purpose of this study is to show if, and how, the
exergy-based fault detection method can be applied to a
more realistic representation of an industrial process, i.e.
a dynamically changing process that has noise and control
that masks any faults that occur. The contribution of this
work is to demonstrate the applicability of an exergy-based
approach to fault detection. This approach will be applied
to a widely used benchmark process for fault detection
and diagnosis, i.e. the Tennessee Eastman process (TEP),
which in turn will allow for future comparative studies. A
brief description of the TEP along with its implementation
is given in Section 2. How exergy is characterised and
calculated is detailed in Section 3. The proposed exergy-
based fault detection approach as applied to the TEP is
given in Section 4, and the discussion of the results are
provided in Section 5. Finally, concluding remarks are
presented in Section 6.

2. TENNESSEE EASTMAN PROCESS

The TEP consists of two simultaneous gas-liquid
exothermic irreversible reactions producing two products
and two additional reactions producing a by-product.
The process consists of five major unit operations, which
include a two-phase reactor, a product condenser, a
vapour-liquid separator, a recycle compressor and a
product stripper, as shown by the process diagram in
Fig. 1. The process has 12 manipulated variables and 41
measurements which can be used for monitoring and
control. Also specified for the process are four setpoint
changes, 20 different disturbances and several process
constraints primarily introduced for equipment
protection (Downs and Vogel, 1993).

Since its introduction, the TEP simulation has been
widely used as a benchmark problem for evaluating fault
detection and diagnosis methods. The results from these
publications showed limitations with the fault diagnosis
methods, which include the non-detectability of some
faults, the assumption that multiple faults do not occur
simultaneously, as well as uncertainties within the TEP
such as model errors and unidentified disturbances
(Maurya et al., 2007; Tidriri et al., 2018a; Yin et al.,
2012). With the advancements in computer control and
artificial intelligence, data-driven methods applied to the
TEP have become more popular. These recent studies
have shown higher detection rates as compared to other
methods in literature (Ragab et al., 2018; Wu and Zhao,
2018). Although these data driven methods have shown
improvements, more studies are now investigating the
advantages of implementing hybrid methods for even
better fault detection. Recent studies associated with
hybrid techniques implemented on the TEP, show better
diagnostic performance over its single method
counterparts (Amin et al., 2018; Tidriri et al., 2018b).
Investigating the applicability of exergy-based fault
detection methods on the TEP is therefore well justified,
especially as a starting point in developing an
exergy-based hybrid fault detection approach. .

For the purpose of this study, the TEP was simulated
using Simulink. The original FORTRAN code provided
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Fig. 1. Process diagram of the TEP (adapted from Downs and Vogel (1993) and Chiang et al. (2000)).

by Downs and Vogel (1993) was used to construct the
process in Simulink. The TEP is controlled with the
approach suggested by Lyman and Georgakis (1995),
which can be seen in Fig. 1, and the controller
parameters listed by Chiang et al. (2000). The sampling
interval was taken as 180 s, to account for imperfection
in the sensor measurements.

The TEP open-loop simulation was validated using data
obtained from the original FORTRAN source code of
Downs and Vogel (1993). The process measurements and
manipulated variables were compared with data obtained
from running the TEP Simulink model using steady-
state values as initial conditions. Further validation of the
Simulink model was conducted by comparing the results
obtained from the closed-loop simulation of the TEP in
Simulink to those found when simulating it with the
FORTRAN code provided by Chiang et al. (2000). Both
comparisons showed good correlation between the original
FORTRAN results and those obtained from the Simulink
model.

In the TEP there are 20 programmed faults. Faults 1 to 7
are related to step changes implemented in their respective
process variables. Faults 8 to 12 are related to random
variation in their respective process variables. Fault 13
is associated with the process reactions and imitates a
slow drift within the reaction kinetics. Faults 14 and 15
represent sticking valves. Faults 16 to 20 are unknown. For
further detail on these faults see Downs and Vogel (1993).

3. EXERGY CHARACTERISATION

Any industrial process plant can be described as a series
of matter and energy exchanges to attain the desired
product. These exchanges can transpire within any
physical domain which includes, but are not limited to

the chemical, thermal, electrical and mechanical domains.
Across all these physical domains, energy can be defined
as the unifying concept to portray the relevant
characteristics of the industrial process. From this, a
complex process plant can be characterised by a set of
energy parameters that hold structural relation to the
physical system. The advantage of using exergy is that it
provides a method with which to quantify the quality of
an energy stream. This is because exergy can simply be
defined as the amount of energy available for use
(Brockett, 2017).

The total exergy of a system can be determined by using

btot = bk + bp + bph + bch, (1)

where bk refers to the kinetic exergy, bp to the potential
exergy, bph to the physical exergy, and bch to the
chemical exergy. In most applications that involves
industrial processes, kinetic and potential exergy can be
neglected (Dincer and Rosen, 2013), simplifying (1) to

btot = bph + bch. (2)

The calculated exergy can therefore describe both the
physical state and the chemical features of the process.
Chemical features which the physical exergy cannot
adequately account for, i.e. a stream’s physical properties
may remain unchanged, however, a deviation in stream
composition can be present.

3.1 Physical Exergy

The physical exergy characterisation of a system
accounts for the mechanical exergy, which is associated
with deviations in pressure, and the thermal exergy,
which is associated with deviations in temperature
(Tsatsaronis, 2007). The physical exergy of any given
material stream present in a system is given by
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bph = (h− h0) − T0(s− s0), (3)

where h and s are the enthalpy and entropy values
respectively of the stream at its initial thermodynamic
state. h0 and s0 are the enthalpy and entropy values of
the stream present at the reference environment. T0 is
the temperature of the reference environment. The
enthalpy and entropy associated with the physical exergy
in (3) can be calculated by using (4) and (5) respectively:

(h− h0) =

∫ T

T0

Cp dT, (4)

(s− s0) =

∫ T

T0

Cp/T dT −R lnP/P0. (5)

Cp is the heat capacity of the stream under consideration,
R is the universal gas constant and P0 is the pressure of
the reference environment. The reference environment is
defined as T0 = 25 ◦C and P0 = 101.325 kPa (Querol
et al., 2012).

3.2 Chemical Exergy

Chemical exergy can be characterised into two parts,
namely reactive exergy and non-reactive exergy. Reactive
exergy is associated with any changes that arise because
of chemical reactions, whereas non-reactive exergy is
associated with any process which results in the change
of a systems chemical concentration such as mixing,
expansion, compression or separation (Tsatsaronis, 2007;
Rivero et al., 2006). Therefore, the chemical exergy of a
system plays a significant role whenever any chemical
reactions, mixing or phase changes occur in a process
(Dincer and Rosen, 2013). The most generic form used to
express the chemical exergy of a substance is given by

bch =
∑

x(i)b
0
ch(i), (6)

where x(i) is the mole fraction and b0ch(i) is the standard

molar chemical exergy of substance i (Querol et al., 2012).
The standard chemical exergy of a substance varies for
different phases. To take this into account, the total
chemical exergy is calculated by the sum of the vapour
and liquid phase exergy,

bch =
∑

x(i)vb
0
ch(i)v +

∑
x(i)lb

0
ch(i)l. (7)

If the phase is not present in the stream the corresponding
phase exergy is assumed to be zero.

For the accurate calculation of chemical exergy, the
standard chemical exergy of the substance under
consideration is required. Methods to calculate the
standard chemical exergy for various substances has been
extensively researched, computed and tabulated
throughout the years. These sources include Szargut
et al. (1988), Kotas (1995) and Rivero et al. (2006), to
name but a few. Unfortunately, when applied to the
components used in the TEP, the proposed methods or
tabulated values cannot be directly used due to the
unknown nature of these components. The only
information pertaining to the unknown components that
can be gained from the source code of the TEP are
certain physical and thermodynamic properties, which
include the components’ molecular weight, heat
capacities and liquid densities.

Research done by Gharagheizi and co-workers
(Gharagheizi and Mehrpooya, 2007; Gharagheizi et al.,
2014, 2018), indicated the possibility that a correlation
could be made between certain properties of a substance
and its standard chemical exergy. They developed two
models based on the chemical structure of pure
components and one based on the formation reaction of
an organic compound related to the enthalpy and
entropy of its constituent elements. Therefore, a study
was conducted to see if a correlation could be established
between the known physical and thermodynamic
properties, and standard chemical exergy.

First, the standard chemical exergy and properties (as
mentioned above), for known substances were gathered. As
mentioned previously, the chemical exergy of a substance
varies with regards to its phase, therefore the standard
chemical exergy of a substance in liquid and vapour phase
are considered separately. The tabulated values of 33
substances in the vapour phase and 59 substances in the
liquid phase were obtained from literature (these values are
given at the reference environment). Tabulated standard
chemical exergies were found in Kotas (1995) and the
physical properties from Yaws (1999)

For all TEP components in the vapour phase, their
molecular weight, MW(i), and vapour heat capacity,
Cpv(i), are available. Using the reference tabulated
values, a linear regression analysis was done to find any
correlation between these physical properties and the
standard chemical exergy. The analysis yielded (8).

b0ch(i)v = −510261 + 25667Cpv(i) + 13745MW(i) (8)

A comparison between the reference tabulated values and
values calculated using (8) yielded a correlation coefficient
ofR2 = 0.92, deeming it sufficient to calculate the standard
chemical exergy of a substance in their vapour phase. The
same procedure was followed for components in their liquid
phase. For all TEP components in the liquid phase, their
molecular weight, liquid heat capacity, Cpl(i), and liquid
density, ρ(i), are available. A linear regression analysis
between the standard chemical exergy and these physical
properties resulted in (9).

b0ch(i)l = 1537576 + 112.65Cpl(i)
+49487MW(i) − 2973515ρ(i)

(9)

A correlation coefficient of R2 = 0.97 was obtained when
comparing the reference tabulated values and values
estimated from (9), deeming it sufficient to calculate the
standard chemical exergy for a substance in their liquid
phase. For both these equations, the molecular weight is
in g/mol, the heat capacities are in J/mol·K, and the
liquid density in g/cm3.

Equations (8) and (9) represent a new approach to
calculating the standard chemical exergy of any
component of which the appropriate physical and
thermodynamic properties are known. Therefore, the
standard chemical exergies of the TEP components A to
G, for both the vapour and liquid phase, are calculated
using (8) and (9) respectively, as shown in Table 1.

4. EXERGY-BASED FAULT DETECTION

To Calculate the exergy of any process stream, certain
thermodynamic data should be available. These include
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Table 1. Standard molar chemical exergy for
the TEP components.

Component Vapour phase (J/mol) Liquid phase (J/mol)

A 254 278 -

B 948 838 -

C 625 079 -

D 1 822 034 2 118 895

E 1 979 455 2 331 760

F 2 321 416 2 492 349

G 1 491 254 2 279 927

H 1 822 996 2 994 129

physical properties of process streams, chemical
composition, as well as the enthalpy and entropy
associated with these streams. With regards to the TEP,
only data that could be directly extracted from the
process without using any extra equations (beyond those
already used for the exergy) or making any more
assumptions beyond what the TEP already assumes, are
used to show how exergy is applied. This data are not
limited to the 41 process measurements or 12
manipulated variables and include underlying data used
by the process simulation to calculate these measured
and manipulated variables. After a thorough examination
of the Simulink model of the TEP, seven streams were
identified where all needed information could be
obtained. The identified streams are indicated in Fig. 1.
Therefore, 14 exergy variables are determined for the
TEP, with physical and chemical exergy calculated for
each of the seven considered streams.

The fault detection method compares the exergy data of
the process under normal operating conditions with
exergy data when faulty operating conditions are
implemented. Initially the process was simulated at
normal operating conditions (therefore no faults are
present). The data obtained from the exergy
characterisation step were then used to determine
thresholds that will define the boundaries of faulty
operations for the exergy variables. These thresholds are
determined with a very simple yet effective method for
fault detection, i.e. the Shewhart control chart.

The purpose of the Shewhart control chart is to monitor
individual variables over a certain time period to
determine if the variable remains within its normal
boundaries. The boundaries used to monitor the
variables consists of upper and lower fault detection
control limits, which are computed from data associated
with normal operating conditions (Montgomery, 2007).
The upper and lower control limits for each exergy
variable are computed by

UCLj = µj + kσj , (10)

LCLj = µj − kσj , (11)

where UCLj and LCLj are the upper and lower control
limits of exergy variable j respectively. µj and σj is the
mean value and standard deviation of exergy variable j
respectively. k denotes the threshold distance from the
mean value and typically a k value of 3 is used since
this will account for almost 99.74% of all deviations in
the data. Sample data are used to construct these limits
and the k value is critical in minimizing false alarms as
well as missed detections. This value can therefore change
depending on the considered process (Chiang et al., 2000;
Montgomery, 2007). For the purpose of testing the exergy-

based fault detection method, k values of 1, 1.5, 2, 2.5 and
3 are investigated.

Quantifying the extent to which the faults are detectable
will be done by computing the fault detection metrics, i.e.
the false alarm rate (FAR) and the missed detection rate
(MDR). The false alarm rate, given by (12), quantifies the
number of normal samples identified as a fault,

FAR =
NN,F

NN
× 100. (12)

NN,F is the number of normal samples identified as faults
and NN the total number of fault free samples. The FAR
is determined from data associated with normal operating
conditions. The missed detection rate, given by (13),
quantifies the number of samples within a faulty dataset
that are wrongly identified as being within the control
limits,

MDRj =
NF,N

NF
× 100. (13)

NF,N is the number of faults samples identified as normal
and NF the total number of fault samples. The MDR is
only applied when a fault is considered.

5. RESULTS AND DISCUSSION

In this study, an exergy-based fault detection method is
tested on the TEP. The data used to test this method
consists of 21 datasets, one corresponds with the normal
operating condition (NOC) and the remaining 20
datasets correspond to the 20 programmed TEP faults.
All simulations started with no faults, with faults being
introduced 1 hour into the simulation time. Each run had
a simulation time of 25 hours. Each set contains 14
exergy variables and 500 samples. For the purpose of
fault detection, the exergy variables associated with the
20 faults are compared to the upper and lower control
limits determined for the corresponding exergy variable.
Although the programmed TEP consists of control loops
designed to return to normal operating conditions once a
fault occurs, some instance of abnormal behaviour will be
present after a fault is introduced and will persist for
some time depending on the control structure. The
exergy-based fault detection method will therefore be
effective if these induced faults produce abnormal
behaviour that violated the control limits. When two
consecutive samples of any exergy variable violate these
control limits, a fault is declared and therefore, deemed
detectable (Amin et al., 2019). However, if none of the
limits are violated and the exergy variables stay within
these boundaries the assumption is that no fault is
present.

Several faults can almost immediately be detected with
the threshold limits. Since some or all of the exergy
variables considered show a significant deviation from
the normal operating data. Making these faults easily
detectable by monitoring each exergy variable. An example
of this is shown in Fig.2, where an immediate deviation
from the normal operating data can be seen. Fig.2 shows
the chemical exergy variable calculated for the reactor
feed stream (stream 6) under NOC, when fault 2 occurs
and when fault 14 occurs. It can be seen that the exergy
variable starts to deviate when fault 2 is introduced and
not long after the threshold limit is violated. For a k value
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of 3, fault 2 has an MDR of 24%, decreasing to 9% and
6.5% for k values of 2 and 1 respectively.

0 100 200 300 400 500

NOC

Fault 2

Fault 14

9.35

9.4

9.45

9.5

9.55

9.6

C
h
e
m

ic
a
l 
E

xe
rg

y 
(J

/m
o
l)

UCL

LCL

6x10

k=3

k=2

k=1

k=3

k=2

k=1

Sample number

Fig. 2. The chemical exergy calculated for stream 6 under
normal operating conditions and when faults 2 and 14
occurs.

Unfortunately, concerning fault 14 shown in Fig.2, no
obvious deviation from normal data can be observed and
the exergy variable falls well within the boundaries of
the normal data. For a k value of 3, fault 14 has an
MDR of 100% since no samples violate this threshold
limit. This makes some faults hard to detect since no
observable change in the mean and standard deviation can
be observed. The MDR is slightly improved from 93% to
61% for k values of 2 and 1 respectively. However, as can be
seen from Fig.2, even though the MDR values of the lower
k values did improve, with these threshold limits normal
operating data would also be flagged as faulty behaviour.
This would not be ideal for the purpose of fault detection.

When investigating a fault detection method a trade-off is
made between the FAR and MDR. Inevitably a decrease in
one almost always results in the increase of the other. High
FARs and low MDRs are associated with tight threshold
limits, while if these threshold limits are too far apart it
will result in low FARs and high MDRs (Chiang et al.,
2000). This behaviour can clearly be seen in Table 2, where
the threshold limits increase with every value of k, the
FAR decreases and the MDR increases. The performance
of this threshold method is therefore highly dependent on
the selection of the k value.

Table 2. Fault detection metrices.

k = 1 k = 1.5 k = 2 k = 2.5 k = 3

Average FAR % 37.4 19.2 8.36 3.43 0.71

Average MDR % 36.5 49.6 59.3 66.5 71.3

Faults detected 20 20 20 17 15

For all values of k, the exergy variables showed a certain
deviation from the NOC. However, for the k value of 3,
some faults had a limited effect on the exergy variables.
Instances where the MDR value = 100% did occur,
indicating that the exergy variables were not greatly
affected by the considered fault. Because of this 5 faults
were very difficult to detect, all having an average MDR
value of above 96%. These were faults 4, 11, 14, 15 and

19. For a k value of 2.5, 17 of the 20 considered faults
could be detected. In this case it was just faults 4, 11 and
14 that had very high MDR values, making them very
difficult to detect. Therefore, from the data provided in
Table 2 it was conclude that the best threshold limit for
the exergy-based method was a k value of 2.5.

Table 3 shows the MDR values obtained for all exergy
variables when the threshold limit was determined from a
k value of 2.5. The smallest MDR value for all faults are
shown in bold.

For faults 4, 11 and 14 very little deviation from the normal
data could be observed. The lowest MDR values were
found for the chemical exergy of stream 11 in all three
fault cases. These faults all concerned some sort of change
in the reactor cooling water temperature. From this it is
seen that the exergy-based method had difficulty detecting
these type of faults. Fault 19 also presented several high
MDR values, with the lowest one being 69%. However
overall the deviations that did occur could be distinguished
from the NOC.
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Fig. 3. Physical exergy of stream 6 for NOC and fault 3.

Faults 3, 9 and 15 are more often than not considered to
be unobservable from the TEP data. Faults 3 and 9 are
associated with a change in the temperature of stream
2, which is the feed stream of component D. Fault 15
is associated with a fault occurring with the condenser
cooling water valve. Chiang et al. (2000), using a basic
principle component analysis, declared very high MDR
values for these faults and stated that no discernable
change could be observed when comparing the variables
associated with these faults with the NOC. Ammiche et al.
(2018) reported fault 3 non detectable because the fault
impact was very small.

In the case of the exergy-based method, the same trend
could be seen for most exergy variables concerning fault
3 and 9. For faults 3 and 9 most exergy variables had a
very high MDR value. However, every exergy variable is
looked at separately and the fault is deemed detectable
even if only one variable showed significant deviation.
This is seen in the case of fault 3, where all but one
exergy variable had fairly high MDR values. The variable
in question was bph,1, which had an MDR value of 30%.
When visually comparing the plots of the exergy variable
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Table 3. Missed detection rates for the considered faults.

TEP Stream 6 TEP Stream 7 TEP Stream 8 TEP Stream 9 TEP Stream 10 TEP Stream 5 TEP Stream 11

Fault bch,1 bph,1 bch,2 bph,2 bch,3 bph,3 bch,4 bph,4 bch,5 bph,5 bch,6 bph,6 bch,7 bph,7
1 56 46 57 65 57 84 57 84 53 70 16 2 50 13

2 15 37 15 8 46 44 46 44 27 25 58 15 54 12

3 94 30 94 94 94 99 94 99 93 96 98 90 84 90

4 91 99 91 97 92 99 92 99 86 97 99 96 77 95

5 65 79 64 77 64 88 64 88 68 81 94 74 80 72

6 5 3 6 2 6 5 6 5 1 5 14 4 2 10

7 45 62 45 53 45 86 45 86 51 67 81 51 69 43

8 28 44 27 19 28 67 28 67 39 48 69 26 43 26

9 84 48 85 90 84 97 84 97 88 94 97 90 66 89

10 89 84 87 96 88 96 88 96 85 95 98 54 79 62

11 96 94 96 96 96 97 96 97 86 95 98 95 75 95

12 26 21 27 25 25 23 25 23 26 19 66 23 59 25

13 36 37 35 12 35 43 35 43 19 28 55 19 17 22

14 95 96 96 89 96 97 96 97 93 97 97 96 87 98

15 91 96 90 94 91 99 91 99 84 95 98 89 76 90

16 88 90 88 96 89 98 89 98 93 97 99 62 90 73

17 81 79 79 86 81 89 81 89 78 85 98 88 78 92

18 15 19 15 25 15 41 15 41 17 22 36 22 23 25

19 92 95 93 98 93 97 93 97 84 97 98 96 69 99

20 80 61 79 94 80 49 80 49 86 59 98 88 98 94

with the NOC, all of the high MDR value variables showed
little to no observable change. However, as can be observed
in Fig.3, when the bph,1 of fault 3 is shown against the
corresponding NOC, a definite deviation can be seen. This
deviation in the exergy variable can be directly related to
the fault that occurred, i.e. a change in temperature that
would immediately influence the specific streams physical
exergy. The same can be seen for fault 9, where the bph,1
had an MDR value of 48%. From this it is concluded that
fault 3 and 9 could be detected with the exergy-based
method, showing improvement over previously reported
results.

For fault 15 on the other hand, the exergy-based method
had a little more difficulty in detecting the fault with its
lowest MDR value being 76%. However a deviation from
normal data could still be observed, indicating the faults
detectability with the exergy-based method.

Fault 6, which is associated with a loss in feed stream A,
had the lowest average MDR value of 5%. All the exergy
variables were greatly influenced by this fault. Such an
observation is typical when it comes to fault detection of
complex industrial processes since these processes usually
have recycle streams. When a big enough fault occurs
in such a process, the fault propagates throughout the
process as time progress. This increases the difficulty of
isolating the fault since no one variable can be isolated
as the root cause. For the rest of the faults several, or
in certain cases all, exergy variables were significantly
affected by the occurring fault. These exergy variables
showed significant deviations from normal data, making
all of them detectable.

6. CONCLUSION

The results of this study suggest that an exergy-based
fault detection method can be adequately applied to a
dynamic industrial system. The basic exergy-based
method presented here could detect 17 of the 20
considered faults. It could also detect faults 3 and 9,
which previous methods have shown to be difficult if not
impossible to detect. The exergy-based approach does

seem to have advantages in regards to its interpretability,
since the energy parameters can be directly correlated to
the process, as well as in terms of specificity (extent to
which faults are mistaken for normal behaviour or other
faults). This is due to the fact that the different faults
will influence and change the exergy variables in different
ways, which can make it very effective if considered for
fault isolation. This is significant for future studies,
especially when considered as the basis of a hybrid fault
detection technique. However in terms of its sensitivity
(the extent to which faults are actually detected) some
more work is required to improve this approach. Since
only faults that have a significant impact on the exergy
features show a satisfactory performance, future work
will also include a sensitivity analysis to show which
variables have the biggest effect on the exergy features.
These exergy features can then be combined with other
popular fault detection techniques to produce a hybrid
approach. This will be done to investigate whether such a
hybrid method could result in an overall better fault
detection technique which could detect all considered
faults. A direct comparison with other methods will also
be done in future studies to aid with the development of
a hybrid approach. A direct comparison can highlight
where one method outshines another which in turn can
assist with deciding which combination of methods will
result in the superior hybrid method.

ACKNOWLEDGEMENTS

This work is based on the research supported wholly /
in part by the National Research Foundation of South
Africa (Grant Number 127483). This work is based on the
research supported by Sasol (Pty) Ltd. Opinions expressed
and conclusions arrived at are those of the authors and are
not necessarily to be attributed to Sasol.

REFERENCES

Amin, M.T., Imtiaz, S., and Khan, F. (2018). Process
system fault detection and diagnosis using a hybrid
technique. Chemical Engineering Science, 189, 191–211.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13909



Amin, M.T., Khan, F., and Imtiaz, S. (2019). Fault
detection and pathway analysis using a dynamic
bayesian network. Chemical Engineering Science, 195,
777–790.

Ammiche, M., Kouadri, A., and Bakdi, A. (2018). A
combined monitoring scheme with fuzzy logic filter for
plant-wide Tennessee Eastman process fault detection.
Chemical Engineering Science, 187, 269–279.

Bouamama, B.O., Biswas, G., Loureiro, R., and Merzouki,
R. (2014). Graphical methods for diagnosis of dynamic
systems. Annual reviews in control, 38(2), 199–219.

Chen, Z., Zhang, K., Ding, S.X., Shardt, Y.A., and Hu, Z.
(2016). Improved canonical correlation analysis-based
fault detection methods for industrial processes. Journal
of Process Control, 41, 26–34.

Chiang, L.H., Russell, E.L., and Braatz, R.D. (2000). Fault
detection and diagnosis in industrial systems. Springer
Science & Business Media.

Dincer, I. and Rosen, M.A. (2013). Exergy: energy,
environment and sustainable development. Elsevier, 2nd
edition.

Downs, J.J. and Vogel, E.F. (1993). A plant-wide
industrial process control problem. Computers &
chemical engineering, 17(3), 245–255.

Eslamloueyan, R. (2011). Designing a hierarchical neural
network based on fuzzy clustering for fault diagnosis of
the Tennessee Eastman process. Applied soft computing,
11(1), 1407–1415.

Ge, Z., Song, Z., and Gao, F. (2013). Review of recent
research on data-based process monitoring. Industrial
& Engineering Chemistry Research, 52(10), 3543–3562.

Gharagheizi, F., Ilani-Kashkouli, P., and Hedden, R.C.
(2018). Standard molar chemical exergy: A new accurate
model. Energy, 158, 924–935.

Gharagheizi, F., Ilani-Kashkouli, P., Mohammadi, A.H.,
and Ramjugernath, D. (2014). A group contribution
method for determination of the standard molar
chemical exergy of organic compounds. Energy, 70, 288–
297.

Gharagheizi, F. and Mehrpooya, M. (2007). Prediction of
standard chemical exergy by a three descriptors QSPR
model. Energy Conversion and Management, 48(9),
2453–2460.

Greyling, S., Marais, H., van Schoor, G., and Uren, K.R.
(2019). Application of exergy-based fault detection in a
gas-to-liquids process plant. Entropy, 21(6), 565.

Guo, L. and Kang, J. (2015). A hybrid process monitoring
and fault diagnosis approach for chemical plants.
International Journal of Chemical Engineering, 2015.

Kotas, T. (1995). The Exergy Method of Thermal Plant
Analysis. Butterworth-Heinemann.
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