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Abstract: This paper investigates a switching control strategy for a fixed-wing flight vehicle
subject to a dramatic change in dynamics. When a system-altering fault occurs, the vehicle
switches from a fixed-gain, model-based controller to an adaptive control strategy that uses
recorded data to identify the current system online. The adaptive controller employs a data-
driven integral concurrent learning scheme to estimate the mass properties, as well as lift and
drag coefficients online in an effort to match the faulted system as closely as possible with
cataloged flight conditions. Stability is proven to be preserved even through failed attempts to
switch from the adaptive controller back to a model-based controller, as long as the developed
dwell-time and finite excitation conditions for the adaptive subsystem are satisfied.
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1. INTRODUCTION

Autonomous control of fixed-wing aircraft systems have
been relevant to various applications for many years,
including those in commercial and military settings. Now,
with modern computing power on the rise, research in
this area is more prevalent than ever. Among the many
methods used in the stabilization of aircraft systems,
various direct and indirect adaptive control methods have
been thoroughly investigated and successfully flown on
flight vehicles as seen in An et al. (2017); Fiorentini et al.
(2009a,b); Gregory et al. (2009); Wise et al. (2008); Xu
et al. (2014). Furthermore, with the recent resurgence of
neural network (NN) estimation techniques, a number of
results that leverage them have emerged as well (Lee and
Kim (2001); Li et al. (2019); Nivison and Khargonekar
(2017, 2018); Xu et al. (2011, 2013, 2016, 2018)).

A number of results employ an estimation strategy to
determine the aerodynamic coefficients needed by the
controller. The authors in Wise et al. (2008) employ an L1

adaptive control-based strategy to demonstrate stability
for two common flight control applications. The result in
Gregory et al. (2009) uses L1 adaptive control as well in a
NASA flight test study. In Fiorentini et al. (2009a,b); Xu
et al. (2014), the authors prove stability using traditional
adaptive control to estimate the uncertainties in linearly
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parameterized form. The result in An et al. (2017) employs
a similar strategy using a barrier Lyapunov function-based
approach and assuming a small angle approximation on
flight path angle.

The authors in Lee and Kim (2001) use a back-stepping
strategy with NN estimators to stabilize a 6-DoF (degree
of freedom) aircraft model under the assumption that it
is held at a constant velocity. In Xu et al. (2011, 2013),
the authors utilize NN estimates of the aerodynamics
functions in a discrete-time controller to stabilize 3-DoF
aircraft systems. Similar to this paper, the results in Xu
et al. (2016, 2018) use NNs to estimate faulted system
dynamics and prove stability via the small-gain theorem
(Xu et al. (2016)) and using a barrier Lyapunov function-
based strategy (Xu et al. (2018)). A fuzzy-approximation-
based approach is used in Li et al. (2019) to guarantee
stability and robustness of an air-breathing aircraft system
with input constraints.

Additionally, the authors in Nivison and Khargonekar
(2017, 2018) developed a sparse neural network (SNN)
framework in adaptive control which focuses on encour-
aging local learning and reducing computational complex-
ity through intelligent switching and segmentation of the
state-space. The sparsification techniques enable local ap-
proximations across the segments which efficiently char-
acterize regions of the state-space with significant varying
dynamics and creates a global result.

Some results rely on high-gain or high-frequency robust
control strategies to deal with the uncertainties in a
nonlinear aircraft system, in lieu of estimation methods.
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In Wilcox et al. (2010), the authors utilize high-frequency
control to compensate for bounded disturbances, yielding
exponential stability of an aircraft system considering
aerothermoelastic effects. The authors in MacKunis et al.
(2008) employ a a controller that leverages a robust
integral of the signum of the error (RISE) term along with
adaptive dynamic inversion techniques to show asymptotic
stability for the aircraft system.

In this paper, the longitudinal dynamics of a fixed-wing
aircraft are assumed to be stabilized initially via a model-
based (nominal) controller that relies on look-up tables
to find the fixed-gains of an optimal controller for specific
flight conditions (see Lavretsky and Wise (2013)). Optimal
control is often preferred for flight applications, as many
trajectory-following guidance approaches rely on energy
efficient and preserving solutions, traits that adaptive
methods usually can’t offer. It is further assumed that
a fault occurs at some point in time, causing the sys-
tem to become unstable, and prompting the switch to an
adaptive controller, which is developed in this paper using
neural network estimators to approximate the unknown
coefficients online in situations where lookup tables may
become unreliable or inaccurate. The weights of the NNs
are updated in real time using an integral-based concurrent
learning (ICL) (see Parikh et al. (2019)) scheme that is
designed to improve parameter estimation and facilitate
the switched systems analysis. The ICL strategy only
requires a finite excitation (FE) condition to be met to en-
sure weight parameter convergence, which can be verified
online, in contrast with the persistence of excitation (PE)
condition often associated with adaptive control, which
can be difficult to satisfy and cannot generally be verified.

The main contribution of this paper is in the use of a
switching system to help facilitate the stabilization of a
faulted aircraft system, as well as in the implementation
of the ICL scheme which is shown to improve the per-
formance of the NN estimators. The stability analysis in
Section 5 establishes an exponentially decaying bound on
the Lyapunov function (a function of squared system error
signals) facilitated by the ICL-based weight update laws.
This bound is used along with similar bounds that are
assumed for the nominally controlled (stable) system and
a faulted (unstable) system to determine an overall stable
error bound on the switching system.

2. PROBLEM FORMULATION

Consider a fixed-wing aircraft that may experience a
physical fault while tracking a prescribed trajectory. This
fault could be caused by partial mechanical failures as well
as physical changes to the air frame. The now faulted
aircraft system, initially stabilized by a given nominal
controller (which will not be detailed in this paper), may
begin to go unstable.

Once this fault occurs and the system states begin to go
unstable, the nominal controller is rendered ineffective 1

and an alternative policy is necessary to re-stabilize the
aircraft. The main objective of this paper is to design a

1 If an aircraft controller is designed to utilize look-up tables
for aerodynamic data, it will likely fail when the data no longer
accurately represents the physical system.

simultaneous learning and control strategy that approxi-
mates the aerodynamic coefficients online and re-stabilizes
the system. Once the system is re-stabilized and the un-
certain coefficients are sufficiently learned, the adaptive
model may be fed back into the nominal controller to again
yield improved performance. This idea motivates the use
of a switched systems analysis to ensure overall system sta-
bility through physical changes (faults) and policy changes
(adaptation to the faults).

2.1 Aircraft Control Model

The longitudinal 3-DoF equations of motion for a fixed-
wing flight vehicle are given by Stevens and Lewis (2003);
Bolender and Doman (2007); Dickinson et al. (2015) as

V̇T =
1

m
(T cos (α)−D)− g sin (θ − α) (1)

α̇ =
1

mVT
(−T sin (α)− L) + q +

g

VT
cos (θ − α) (2)

θ̇ = q (3)

q̇ =
M

IY Y
(4)

ḣ = VT sin (θ − α) , (5)

where m is the mass of the vehicle, IY Y is the moment
of inertia, T is the thrust, and D, L, and M are the drag
force, lift force, and moment that act upon the aircraft.
The measurable state vector, x ∈ R5, is defined as

x , [VT α θ q h] ,

where VT ∈ R+ is the true airspeed, α ∈ R is the angle of
attack (AOA), θ ∈ R is the pitch angle, q ∈ R is the pitch
rate, and h ∈ R+ is the altitude. The aerodynamic forces
and moment in (1)-(5) are approximated in terms of their
aerodynamic coefficients as (see Stevens and Lewis (2003);
Dickinson et al. (2015))

T ≈ q̄SDCT
D ≈ q̄SCD
L ≈ q̄SCL
M ≈ q̄ScrefCM ,

where q̄ ∈ R+ is dynamic pressure, defined as q̄ ,
1
2ρV

2
T , ρ ∈ R+ is the measurable air density, cref ∈

R+ is the mean aerodynamic chord, and S ∈ R and
SD ∈ R are known geometric properties of the aircraft.
The coefficients themselves are written in terms of the
individual contributions from each force or moment from
each state, and are defined as

CT = CT0 (α,Ma) + CTVT (α,Ma) + CTδT (α,Ma) δT

CD = CD0
(α,Ma) + CDα (α,Ma)

+ CDVT (α,Ma) + CDδe (α,Ma)

CL = CL0
(α,Ma) + CLα (α,Ma)

+ CLVT (α,Ma) + CLδe (α,Ma)

CM = CM0
(α,Ma) + CMα

(α,Ma)

+ CMVT
(α,Ma) + CMδe

(α,Ma) δe, (6)

where Ma ∈ R+ is the Mach number, and the control
inputs δT ∈ R and δe ∈ R are assumed to have the linear
relationship shown with their respective coefficients. Let

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14960



FC ,

{
T0, TVT , TδT , D0, Dα, DVT , Dδe , ...

L0, Lα, LVT , Lδe ,M0,Mα,MVT ,Mδe

}
(7)

define a set containing all of the coefficient subscripts in
(6).

Assumption 1. The aircraft system in 1-5 experiences and
automatically detects 2 a system change (i.e., a fault) that
causes the look-up tables used by the nominal controller
to become unreliable.

2.2 Switched Systems Notation

Let tf0 ∈ R+ represent the first time that a fault occurs.
Because the proposed control strategy involves the given
system switching between stable and unstable subsystems,
a switched systems analysis will be carried out to ensure
that the subsequent control strategy can be shown to
successfully stabilize the system in (1)-(5), even if the
system switches multiple times. The key to ensuring overall
system stability is to ensure that the switches occur
such that the subsequently developed sufficient dwell-time
conditions are satisfied. To facilitate this, let tak ∈ R+,

tsk ∈ R+, and tfk ∈ R+ denote the kth instance in time that
the system is switched to the adaptive (controller designed
in this paper), nominal (assumed stable controller), and
faulted (unstable) mode, respectively, where k ∈ N. The
contiguous dwell-times in the kth activation of the system
operating in the adaptive, nominal, and faulted mode are

denoted by ∆tak ∈ R+, ∆tsk ∈ R+, and ∆tfk ∈ R+, and

defined as ∆tak , tsk−tak, ∆tsk , tfk−tsk, and ∆tfk , tak+1−t
f
k ,

respectively.

3. CONTROL OBJECTIVE AND FUNCTION
APPROXIMATION

The focus of the following development is to design a con-
troller for the system in (1)-(5) to track predetermined 3

velocity and AOA trajectories. The velocity error, eV ∈ R,
is introduced as

eV , VT − Vr, (8)

where Vr ∈ R is the reference velocity 4 . Similarly, the
AOA error signal eα ∈ R is defined as

eα , α− αr, (9)

where αr ∈ R is the reference AOA signal.

Because the moment term (M) used to control the pitch
of the aircraft only appears in the pitch rate dynamics in
(4), a back-stepping strategy is necessary to track a desired
AOA reference trajectory. To this end, a pitch error signal,
eq ∈ R, is introduced as

eq , q − qd, (10)

where qd ∈ R is a desired pitch signal that will be
subsequently designed as a virtual control input to the
AOA error system in (9).

2 See Xu et al. (2018); Alwi and Edwards (2008); Hwang et al. (2009)
for fault detection methods and analysis.
3 In practice, these desired trajectories could be generated online.
4 The reference signals Vr and αr, and their first derivatives V̇r and
α̇r, are assumed to be known and bounded.

Furthermore, the various uncertain terms that appear in
the nonlinear system in (1)-(5) will be approximated using
NNs. In the interest of space, the exact definition of each
unknown function will not be listed, however, the majority
of these functions follow the form

fj =
Cj
mj

, (11)

for all j ∈ FC , where the numerator is a
(lift/drag/moment) coefficient with a subscript from
(7) (CL0

, CTδT , etc.) and the denominator is the relevant

mass property (mass, m, for the lift and drag coefficients,
and moment of inertia, IY Y , for the moment coefficients).
Each of these functions will be estimated by a NN (see
Lewis (1999)) as 5

fj (x) = WT
j σj (x) + εj (x) , (12)

where, for all j ∈ FC , fj : R5 → R are the functions con-
taining the unknown aerodynamic coefficients and mass
properties, σj : R5 → RLj are known, bounded, locally
Lipschitz, vectors of basis functions, Wj ∈ RLj are vectors
of the unknown ideal weights, Lj ∈ N is the number of
neurons 6 used in the NN in (12), and εj : R5 → R are the
function approximation residual errors.

Remark 1. The function approximation residual errors
can be upper bounded by positive constants that
can be made arbitrarily small based on the Stone-
Weierstrass theorem (see Cotter (1990)), i.e., ε̄j ,
supx∈χ,t∈[0,∞) ‖εj (x (t))‖, ∀j ∈ FC . The Stone–
Weierstrass theorem requires that the states remain in a
compact set (i.e., x (t) ∈ χ). The stability and switching
analyses in Sections 5 and 6 show that if x (0) is bounded,
then x (t) ∈ χ, where χ is a compact simply connected set
such that χ ⊂ R5.

Let 7 W̃j (t) , Wj − Ŵj (t) denote the parameter estima-
tion error for the weights associated with the jth element
in the function set FC , where Ŵj ∈ RLj is the estimate of
the ideal function approximation weight vector associated
with the jth function.

4. CONTROLLER DEVELOPMENT

The following development introduces an adaptive con-
troller that stabilizes the uncertain nonlinear system in
(1)-(5).

4.1 Velocity Controller

Taking the time derivative of (8) and using (1) and the
notation in (11), the open-loop aircraft velocity error
dynamics can be written as

5 For notational brevity, functional dependence on states and time
will be henceforth suppressed, except for when introducing new terms
and where necessary for clarity.
6 With reasonable knowledge of the operating domain, most modern,
consumer-grade computers (including the ones commonly mounted
to a quadcopters) are capable of meeting the computational require-
ments for these estimators to function.
7 For the purposes of notational clarity in later sections, any defined
NN weight error W̃j has an associated ideal weight Wj and weight

estimate Ŵj , for all j ∈ FC .
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ėV = q̄SD cos (α)
(
fT0

+ fTVT + fTδT δT

)
− q̄S

(
fD0

+ fDα + fDVT + fDδe

)
+ FV , (13)

where the lowercase f(·) functions are defined by the

form in (11), and FV = −g sin (θ − α) − V̇r contains the
measurable quantities in the velocity dynamics in (1).
Using the NN approximation form in (12), (13) can be
rewritten as

ėV = q̄SD cos (α)

(
WT
T0
σT0

+ εT0

+WT
TVT

σTVT + εTVT +
(
WT
TδT

σTδT + εTδT

)
δT

)
− q̄S

(
WT
D0
σD0

+ εD0
+WT

DασDα + εDα

+WT
DVT

σDVT + εDVT +WT
Dδe

σDδe + εDδe

)
+ FV .

(14)

Furthermore, by adding and subtracting the term
q̄SD cos (α) ŴT

TδT
σTδT δT and rearranging, (14) becomes 8

ėV = W̃T
TδT

YTδT +WT
T∗
YT∗ +WT

DYD

+WT
εδT YεδT + ET∗ + ED + EεδT + FV

+ q̄SD cos (α) ŴT
TδT

σTδT δT . (15)

This enables the design of the thrust controller δT as

δT ,
1

q̄SD cos (α)

1

ŴT
TδT

σTδT

(
−KV eV − FV

− ŴT
T∗
YT∗ − ŴT

DYD − ŴT
εδT YεδT

)
, (16)

where KV (VT ) , kV 1 + kV 2 (q̄SD)
2

+ kV 3 (q̄S)
2
, and

kV 1, kV 2, kV 3 ∈ R+ are positive constant control gains.
Substituting (16) into (15) yields the closed-loop velocity
error system

ėV = −KV eV + W̃T
1 Y1 + ET∗ + ED + EεδT , (17)

where

W̃1 ,
[
W̃T
T0

W̃T
TVT

W̃T
TδT

W̃T
D0

W̃T
Dα W̃T

DVT
W̃T
Dδe

W̃T
εδT

]T
=
[
W̃T
T W̃T

D W̃T
εδT

]T
and

Y1 ,
[
Y TT0

Y TTVT
Y TTδT

Y TD0
Y TDα Y TDVT

Y TDδe Y
T
εδT

]T
=
[
Y TT Y TD Y TεδT

]T
.

4.2 AOA Controller

The open-loop AOA error dynamics are obtained by taking
the time derivative of (2) to yield

ėα = q + fα −
q̄S

VT

(
fL0

+ fLα + fLVT + fLδe

)
+ Fα,

(18)

where fα = −T sin(α)
mVT

, the remaining lowercase f(·)
functions are defined by the form in (11), and Fα =

8 The term εTδT
δT is estimated by a NN as fεδT = εTδT

δT =

WT
εδT

σεδT + εεδT .

g
VT

cos (θ − α)− α̇r contains the measurable terms in (2).

The expression in (18) can be rewritten using the NN-
based approximation form in (12) to yield

ėα = q +WT
α σα + εα −

q̄S

VT

(
WT
L0
σL0

+ εL0
+WT

LασLα

+ εLα +WT
LVT

σLVT + εLVT +WT
Lδe

σLδe + εLδe

)
+ Fα.

(19)

After adding and subtracting the desired pitch qd, the
expression in (19) can be rearranged and rewritten as

ėα = qd + eq +WT
2 Y2 + Eα + EL + Fα, (20)

where

W̃2 ,
[
W̃T
L0

W̃T
Lα W̃T

LVT
W̃T
Lδe

W̃T
α

]T
=
[
W̃T
L W̃T

α

]T
and

Y2 ,
[
Y TL0

Y TLα Y TLVT
Y TLδe Y

T
α

]T
=
[
Y TL Y Tα

]T
.

In order to regulate the back-stepping error, the virtual
control input qd is designed as

qd = −Kαeα − ŴT
2 Y2 − Fα, (21)

where Kα (VT ) , kα1 + kα2 + kα3

(
1
2ρSVT

)2
, and kα1, kα2,

kα3 ∈ R+ are positive constant control gains. Using (21),
(20) is rewritten as

ėα = −Kαeα + eq + W̃T
2 Y2 + Eα + EL. (22)

4.3 Pitch Controller

In order for the overall control system to be stable,
the back-stepping error introduced in Section 3 must be
regulated as well. Taking the time derivative of (10), the
open-loop pitch (back-stepping) dynamics are written as

ėq = q̄Scref

(
fM0

+ fMα
+ fMVT

+ fMδe
δe

)
− fq − Fq,

(23)
where Fq and fq contain the known and unknown terms
that arise from taking the time derivative of (21), re-
spectively, and the remaining lowercase f(·) functions are
defined by the form in (11). After substituting the NN
approximations of the form in (12), (23) can be rewritten
as

ėq = q̄Scref

(
WT
M0
σM0 + εM0 +WT

Mα
σMα + εMα

+WT
MVT

σMVT
+ εMVT

+
(
WT
Mδe

σMδe
+ εMδe

)
δe

)
−
(
WT
q σq + εq

)
− Fq. (24)

Using a strategy similar to that in Section 4.1, adding and
subtracting the term q̄ScrefŴ

T
Mδe

σMδe
δe enables (24) to

be rearranged as 9

ėq = W̃T
Mδe

YMδe
+WT

M∗
YM∗ +WT

q Yq +WT
εδeYεδe

+ EM∗ + Eq + Eεδe − Fq + q̄ScrefŴ
T
Mδe

σMδe
δe,

(25)

where YMδe
, q̄ScrefσMδe

δe, YM∗ ,

q̄Scref

[
σTM0

σTMα
σTMVT

]T
, Yq , −σq, Yεδe , q̄Screfσεδe ,

9 The term εMδe δe is estimated by a NN as fεδe = εMδe δe =

WT
εδe
σεδe + εεδe .
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EM∗ , q̄Scref

(
εM0

+ εMα
+ εMVT

)
, Eq , −εq, and

Eεδe , q̄Scref εεδe . The elevator controller δe is then
designed as

δe ,
1

q̄Scref

1

ŴT
Mδe

σMδe

(
−Kqeq − eα

+ Fq − ŴT
M∗
YM∗ − ŴT

q Yq − ŴT
εδeYεδe

)
, (26)

where Kq (VT ) , kq1 + kq2 + kq3 (q̄Scref )
2
, and kq1, kq2,

kq3 ∈ R+ are positive constant control gains. Using (26),
the expression in (25) can be rewritten in closed-loop form
as

ėq = −Kqeq − eα + W̃T
3 Y3 + EM∗ + Eq + Eεδe , (27)

where

W̃3 ,
[
W̃T
M0

W̃T
Mα

W̃T
MVT

W̃T
Mδe

W̃T
q W̃T

εδe

]T
=
[
W̃T
M W̃T

q W̃T
εδe

]T
and

Y3 ,
[
Y TM0

Y TMα
Y TMVT

Y TMδe
Y Tq Y Tεδe

]T
=
[
Y TM Y Tq Y Tεδe

]T
.

4.4 ICL and Adaptive Update Laws

This section details the ICL function approximation
scheme necessary for the implementation of the controllers
designed above in Sections 4.1, 4.2, and 4.3. The follow-
ing steps facilitate the development of the FE condition
associated with the ICL strategy that is used below.

Rearranging (15) and integrating both sides yields∫ t

t−∆t

ėV (ς) dς =

∫ t

t−∆t

Y T1 (ς) dςW1

+

∫ t

t−∆t

E1 (ς) dς

+

∫ t

t−∆t

F1 (ς) dς, (28)

where E1 , ET∗ + EεδT + ED, F1 , FV , and ∆t ∈ R+

is a positive constant denoting the size of the window of
integration. Using the Fundamental Theorem of Calculus,
(28) is rewritten as

eV (t)− eV (t−∆t) = Y1 (t)W1 + E1 (t) + F1 (t) , (29)

∀t ∈ [∆t,∞), where Y1 (t) =
∫ t
t−∆t

Y T1 (ς) dς, E1 (t) =∫ t
t−∆t

E1 (ς) dς, and F1 (t) =
∫ t
t−∆t

F1 (ς) dς. In similar

fashion, (19) is rearranged and integrated to give∫ t

t−∆t

ėα (ς) dς =

∫ t

t−∆t

Y T2 (ς) dςW2

+

∫ t

t−∆t

E2 (ς) dς

+

∫ t

t−∆t

F2 (ς) dς, (30)

where E2 , Eα +EL and F2 , q + Fα. The Fundamental
Theorem of Calculus enables (30) to be rewritten as

eα (t)− eα (t−∆t) = Y2 (t)W2 + E2 (t) + F2 (t) , (31)

where, ∀t ∈ [∆t,∞), Y2 (t) =
∫ t
t−∆t

Y T2 (ς) dς, E2 (t) =∫ t
t−∆t

E2 (ς) dς, and F2 (t) =
∫ t
t−∆t

F2 (ς) dς. Lastly, the

expression in (25) is rearranged and integrated to yield∫ t

t−∆t

ėq (ς) dς =

∫ t

t−∆t

Y T3 (ς) dςW3

+

∫ t

t−∆t

E3 (ς) dς

+

∫ t

t−∆t

F3 (ς) dς, (32)

where E3 , EM∗ + Eεδe + Eq and F3 , −Fq. Finally,
applying the Fundamental Theorem of Calculus to (32)
yields

eq (t)− eq (t−∆t) = Y3 (t)W3 + E3 (t) + F3 (t) , (33)

where, ∀t ∈ [∆t,∞), Y3 (t) =
∫ t
t−∆t

Y T3 (ς) dς, E3 (t) =∫ t
t−∆t

E3 (ς) dς, and F3 (t) =
∫ t
t−∆t

F3 (ς) dς.

The parameter estimates for each of the unknown weight
vectors W1, W2, and W3 are generated from an ICL-based
adaptive update law (see Parikh et al. (2019); Bell et al.
(2016); Licitra et al. (2019)). The update laws associated
with the velocity error, AOA error, and pitch error are
given by

˙̂
W1 , proj

{
Γ1Y1eV + kCL,1Γ1×

N1∑
i=1

YT1,i
(

∆eV,i −F1,i − Y1,iŴ1

)}
, (34)

˙̂
W2 , proj

{
Γ2Y2eα + kCL,2Γ2×

N2∑
i=1

YT2,i
(

∆eα,i −F2,i − Y2,iŴ2

)}
, (35)

and

˙̂
W3 , proj

{
Γ3Y3eq + kCL,3Γ3×

N3∑
i=1

YT3,i
(

∆eq,i −F3,i − Y3,iŴ3

)}
, (36)

respectively, where proj {· } is a smooth projection oper-
ator 10 , Γ1 ∈ RL1×L1 ,Γ2 ∈ RL2×L2 ,Γ3 ∈ RL3×L3 and
kCL,1, kCL,2, kCL,3 ∈ R+ are constant, positive definite
control gains, N1, N2, N3 ∈ Z are constants that represents
the number of saved data points for the associated data
stack, ∆eV,i , eV (ti) − eV (ti −∆t) , ∆eα,i , eα (ti) −
eα (ti −∆t) , ∆eq,i , eq (ti)− eq (ti −∆t), and ti ∈ [∆t, t]
represents times when data measurements are available.

The philosophy for using a concurrent learning (see
Chowdhary and Johnson (2011b); Parikh et al. (2019))
scheme is based on the idea of utilizing online recorded
input and output data to better identify the ideal weights
in order to improve function approximation. Data points
are selected in real time to be saved in a way that

10The limits used in the projection algorithm are based on the known
bounds on the unknown functions in (1)-(5). See Section 4.4 in Dixon
et al. (2003) for details of the projection operator.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14963



maximizes the minimum eigenvalues of
∑N1

i=1

(
YT1,iY1,i

)
,∑N2

i=1

(
YT2,iY2,i

)
, and

∑N3

i=1

(
YT3,iY3,i

)
11 .

For use in the stability analysis that follows in Section
5, the update laws in (34), (35), and (36) can each
be rewritten in an equivalent, but non-implementable 12 ,
form as

˙̂
W1 = proj

{
Γ1Y1eV + kCL,1Γ1

N1∑
i=1

YT1,i
(
Y1,iW̃1 + E1,i

)}
,

(37)

˙̂
W2 = proj

{
Γ2Y2eα + kCL,2Γ2

N2∑
i=1

YT2,i
(
Y2,iW̃2 + E2,i

)}
,

(38)
and

˙̂
W3 = proj

{
Γ3Y3eq + kCL,3Γ3

N3∑
i=1

YT3,i
(
Y3,iW̃3 + E3,i

)}
,

(39)

respectively, for all t > ∆t, where E1,i , E1 (ti), E2,i ,
E2 (ti), and E3,i , E3 (ti).

5. CONTROLLER STABILITY ANALYSIS

This section details the analysis of the overall stability
of the system in (1)-(5) when the controllers and update
laws designed in Section 4 are implemented. The following
analysis is carried out under the assumption that the
following FE 13 conditions are satisfied at some point
(see Parikh et al. (2019); Bell et al. (2016); Licitra et al.
(2019)). The FE conditions associated with the velocity,
AOA, and pitch errors are given by

∃λ1 > 0, τ1 > ∆t : ∀t ≥ τ1, λmin

{
N1∑
i=1

YT1,iY1,i

}
≥ λ1,

(40)

∃λ2 > 0, τ2 > ∆t : ∀t ≥ τ2, λmin

{
N2∑
i=1

YT2,iY2,i

}
≥ λ2,

(41)
and

∃λ3 > 0, τ3 > ∆t : ∀t ≥ τ3, λmin

{
N3∑
i=1

YT3,iY3,i

}
≥ λ3,

(42)
respectively, where λmin {· } refers to the minimum eigen-
value of {· }. Because overall system stability is desired, the
time at which all three of the above FE conditions have
been satisfied will be denoted by τ̄ , max {τ1, τ2, τ3}.
To facilitate the following Lyapunov-based stability anal-
ysis, let V : R3+L1+L2+L3 → R be a positive definite,

11See Chowdhary and Johnson (2011a) for details on methods of
selecting data.
12The update laws in (37)-(39) contain W̃(·) terms, which are
unmeasurable.
13The FE conditions in (40)-(42) require that the system be suf-
ficiently excited, which is a milder (can be satisfied in finite time)
condition than the typical PE condition. For more information about
the FE condition and how likely a given system is to satisfy it, see
Chowdhary and Johnson (2011b); Chowdhary et al. (2013).

continuously differentiable candidate Lyapunov function,
defined as

V (ζ (t)) ,
1

2
e2
V +

1

2
e2
α +

1

2
e2
q +

1

2
tr
(
W̃T

1 Γ−1
1 W̃1

)
+

1

2
tr
(
W̃T

2 Γ−1
2 W̃2

)
+

1

2
tr
(
W̃T

3 Γ−1
3 W̃3

)
,

(43)

which can be upper and lower bounded as

β1 ‖ζ (t)‖2 ≤ V (ζ (t)) ≤ β2 ‖ζ (t)‖2 , (44)

where ζ (t) ∈ R3+L1+L2+L3 is the stacked state vector,
defined as

ζ (t) ,
[
zT W̃T

1 W̃T
2 W̃T

3

]T
,

z (t) , [eV eα eq]
T

, tr (·) denotes the matrix trace op-
erator, and β1, β2 ∈ R+ are known positive bounding
constants.

The following Theorem proves the stability of the overall
aircraft system in (1)-(5) under influence of the control
strategy detailed in Section 4, once enough data has been
collected to satisfy each of the FE conditions in (40)-(42)
(i.e., for all t ≥ τ̄) 14 .

Theorem 1. The controllers given in (16), (21), and (26),
implemented in conjunction with the adaptive update laws
in (34), (35), and (36), ensure that all system signals are
bounded under closed-loop operation and that, ∀t ≥ τ̄ ,

‖ζ (t)‖2 ≤ β2

β1
‖ζ (t0)‖2 exp (−λa (t− t0)) + κa, (45)

where λa, κa ∈ R+ are subsequently defined positive
constants that act as a measure of stability.

Proof. Using (17), (22), and (27), as well as (37)-(39), the
time derivative of (43) can be upper bounded as

V̇ ≤ −kV 1e
2
V − kα1e

2
α − kq1e2

q − kCL,1λ1

∥∥∥W̃1

∥∥∥2

− kCL,2λ2

∥∥∥W̃2

∥∥∥2

− kCL,3λ3

∥∥∥W̃3

∥∥∥2

+ cCL

+
[
(ε̄T∗ + ε̄εδT ) (q̄SD |eV |)− kV 2 (q̄SDeV )

2
]

+
[
ε̄D (q̄S |eV |)− kV 3 (q̄SeV )

2
]

+
[
ε̄α |eα| − kα2e

2
α

]
+

[
ε̄L

(
1

2
ρSVT |eα|

)
− kα3

(
1

2
ρSVT eα

)2
]

+
[
ε̄q |eq| − kq2e2

q

]
+
[
(ε̄M∗ + ε̄εδe) (q̄Scref |eq|)− kq3 (q̄Screfeq)

2
]
,

(46)

where λj ≤ λmin

{∑Nj
i=1 YTj,iYj,i

}
, ∀j ∈ {1, 2, 3}, cCL ∈

R+ is a positive constant that upper bounds the integrated
reconstruction error terms in (37)-(39), and the ε̄(·) ∈ R+

terms are known positive upper bounds of the correspond-
ing reconstruction error ε(·). Then, using the completing-
the-square technique, (46) can be rewritten as

14The system can be shown to be stable in a similar fashion for all
t < τ̄ as well, but because the aerodynamic function estimates can
be shown to be greatly improved following all FE conditions being
satisfied, the presented strategy only considers the possibility of the
switch from the adaptive to nominal subsystem after this time. For
this reason, the stability analysis for the time period t <τ̄ is omitted.
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V̇ ≤ −kV 1e
2
V − kα1e

2
α − kq1e2

q − kCL,1λ1

∥∥∥W̃1

∥∥∥2

− kCL,2λ2

∥∥∥W̃2

∥∥∥2

− kCL,3λ3

∥∥∥W̃3

∥∥∥2

+
(ε̄T∗ + ε̄εδT )

2

4kV 2
+

ε̄2D
4kV 3

+
ε̄2α

4kα2
+

ε̄2L
4kα3

+
ε̄2q

4kq2
+

(ε̄M∗ + ε̄εδe)
2

4kq3
+ cCL. (47)

In (47), the gains kV 2, kV 3, kα2, kα3, kq2, and kq3 can
be made arbitrarily large (based on actuator limits) in
order to make each of the extra additive terms as small as
possible. The expression in (47) is upper bounded by

V̇ ≤ −λaV + ca, (48)

where λa , 1
β2

min
{
kV 1, kα1, kq1, kCL,1λ1, kCL,2λ2,

kCL,3λ3

}
is the minimum error decay rate for the closed-

loop adaptive system, and ca ,
(ε̄T∗+ε̄εδT )

2

4kV 2
+

ε̄2D
4kV 3

+
ε̄2α

4kα2
+

ε̄2L
4kα3

+
ε̄2q

4kq2
+

(ε̄M∗+ε̄εδe )2

4kq3
+ cCL. Applying the Comparison

Lemma (see Khalil (2002, Lemma 3.4)) to (48) yields

V ≤ V (t0) exp (−λa (t− t0)) + κa, (49)

where κa , ca
λa

. Then, (49) along with (44) yields (45).

6. SWITCHED SYSTEMS ANALYSIS

In this section, a brief switched systems analysis is detailed
to show that the system states remain bounded, even
through multiple subsystem changes. The NN-based adap-
tive controller detailed in this paper is to be used in the
event of a system fault that causes the nominal controller
to destabilize the system. In other words, the adaptive
controller will be activated when a fault is detected. The
aircraft control system will switch between subsystems in
the order: nominal-faulted-adaptive-..., where the switches
are triggered by the following: The system switches from
nominal -to-faulted at the time the fault physically oc-
curs; the switch from faulted -to-adaptive happens once
the fault is detected; and the adaptive-to-nominal switch
is attempted (see Assumption 2) once enough data has
been collected to satisfy the FE condition (i.e., t ≥ τ̄).
To facilitate the switched systems analysis, the following
assumptions about the subsystems are made.

Assumption 2. Once the FE conditions in (40)-(42) are
satisfied, the NN estimates of the aerodynamic coefficients
are sufficiently accurate to enable the retraining 15 of the
nominal controller. If this retraining step is unsuccessful,
the switch to the nominal mode is skipped, and the
switching cycle restarts at the faulted stage.

Assumption 3. The aircraft system in (1)-(5) is initially
controlled by a nominal controller that ensures exponential
stability of the error states. When a Lyapunov-based
analysis is carried out using the candidate Lyapunov
function (43), the Comparison Lemma (see Khalil (2002,
Lemma 3.4)) can be applied to the resulting differential
inequality to yield

V
(
tfk

)
≤ V (tsk) exp (−λs∆tsk) , (50)

15This retraining step is a primary matter of future work.

for all t ∈
[
tsk, t

f
k

)
, k ∈ N, where λs ∈ R+ is a known

positive constant that represents the error decay rate when
the stable (nominal) subsystem is active.

Assumption 4. The system faults considered in this paper
will cause the states will grow unbounded in a way that can
be upper bounded by a growing exponential. Carrying out
the analysis using the same candidate Lyapunov function
(43), the Comparison Lemma (see Khalil (2002, Lemma
3.4)) can be applied to the resulting differential inequality

during the time periods t ∈
[
tfk , t

a
k+1

)
, k ∈ N, yielding

V
(
tak+1

)
≤ V

(
tfk

)
exp

(
λf∆tfk

)
, (51)

where λf ∈ R+ is a known positive constant that repre-
sents the error growth rate when the faulted (unstable)
subsystem is active. The amount of time that the system
spends in the faulted subsystem is upper bounded by a

positive constant as ∆tfk ≤ τD, ∀k ∈ N, where τD ∈ R+ is
the worst-case fault detection time.

Furthermore, during time periods spent in the adaptive
subsystem (i.e., during the time periods t ∈ [tak, t

s
k), k ∈ N

), the above result (49) can be rewritten using the switched
systems time-keeping notation from Section 2.2 as

V (tsk) ≤ V (tak) exp (−λa∆tak) + κa. (52)

Theorem 2. The controllers in (16), (21), and (26), and the
adaptive update laws in (34)-(36) ensure that all system
signals remain bounded under closed loop operation for all
time t ∈ [0, τ̄) and

lim sup
t
‖ζ (t)‖2 ≤ ν2

β1 (1− ν1)
, (53)

where ν1, ν2 ∈ R+ are positive constants, provided there

exist sequences {∆tak}
∞
k=0, {∆tsk}

∞
k=0, and

{
∆tfk

}∞
k=0

such

that ∀k ∈ N, the sufficient condition

λs
λf

∆tsk +
λa
λf

∆tak ≥ τD (54)

is satisfied.

Proof. Considering a single cycle of switching to adaptive
mode, followed by nominal mode, faulted mode, and back
to adaptive mode again, (51) can be written using (50)
and (52) as

V
(
tak+1

)
≤ ν1V (tak) + ν2,

where ν1 , exp
(
−λa∆tak − λs∆tsk + λf∆tfk

)
and ν2 ,

κa exp
(
−λs∆tsk + λf∆tfk

)
. Let {sk}∞k=0 be a sequence

defined by the recurrence relation sk+1 = Q (sk), with
initial condition s0 = V (ζ (ta0)), where Q : R → R
is defined as Q (s) , ν1s + ν2. Provided that (54) is
satisfied, ν1 < 1, and therefore Q is a contraction (Rudin
(1976, Definition 9.22)), and thus all initial conditions, s0,
approach the fixed point s = ν2

1−ν1 (Rudin (1976, Theorem

9.23)). Since the sequence {sk} upper bounds V , in the
sense that V (ζ (tak)) ≤ sk, V is ultimately bounded by
(53).

7. CONCLUSION

This paper presents a control and estimation scheme for
a fixed wing aircraft that experiences a fault which intro-
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duces severe uncertainties that begin to dominate the sys-
tem dynamics. An ICL scheme is employed to help ensure
that aerodynamic coefficients are approximated online and
yield ultimately bounded system errors. Future work will
include a more in-depth study of the stable (nominal) sub-
system and how the subsystems interact with one another,
the impacts of faults and switching control schemes on
flight performance, and the consideration of more compli-
cated dynamics (6-DoF models, input constraints, etc.).
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