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Abstract: A graph Laplacian based distributed protocol that can achieve a group consensus
over weighted, signed, directed, and weakly connected graphs is investigated. It is said to achieve
the group consensus if the state of agents who belong to the same group converges to a common
value, while the one of agents who belong to another group converges to a different value. It is
assumed that no agent knows which group she belongs to before the protocol is executed. In this
paper, for a given signed graph which contains a directed spanning tree, namely, at least one
leader that can affect all of the other agents, a definition of n-structurally balanced is proposed.
It is emphasized that this definition is a generalization of the structurally balanced which leads
a bipartite consensus. Then, necessary and sufficient conditions are established to guarantee
the agents’ state reaching the group consensus. The results are illustrated through numerical
examples.

Keywords: multi-agent systems, scaled consensus, group consensus, structurally balanced.

1. INTRODUCTION

Consensus algorithms in multi-agent systems have been
intensively developed and investigated for last several
decades. The objective of the algorithms is to achieve
the desired state for all agents in a distributed manner.
Hence, the algorithms are expressed as fully local agent
interactions and the agents form communication networks.
There exist many theoretical convergence analyses such as
averaging consensus (Fagnani and Frasca, 2018; Xiao et al.,
2007), optimization problems (Nedic and Ozdaglar, 2009;
Masubuchi et al., 2016), and modeling opinion dynamics
(Friedkin, 2015).

In ordinary consensus algorithms, the state of the agents
converges to the same value via attracting among agents,
that is, the agents are completely cooperative. However,
we have sometimes motivated ourselves to analyze the
behavior such that some agents are cooperative, while
the other agents are antagonistic or malicious, that is,
antagonistic agents repel each other. In the notion of
bipartite consensus, the agents divided into a couple of
groups. The graph Laplacian based bipartite consensus is
achieved autonomously if and only if a given signed graph
is equivalently called balanced (Cartwright and Harary,
1956; Harary and Palmer, 1967), cycle balanced (Acharya,
1980), or structurally balanced (Altafini, 2013). Studies
based on bipartite consensus have been attracted for a last
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decade (Altafini and Ceragioli, 2018). On the other hand,
scaled consensus (Yu and Shi, 2018; Shang, 2017) can deal
with multi partition of the agents. Although many existing
studies assume that each agent knows which group she
belongs to for all agents, the authors of the present paper
revealed the condition of weights over strongly connected
signed graph in order to achieve the group consensus even
if no agent knows which group she belongs to a priori
(Hanada et al., 2019).

In this paper we consider a graph Laplacian based dis-
tributed protocol that can achieve a group consensus over
weighted, signed, directed, and weakly connected graphs.
It is assumed that no agent knows which group she belongs
to before the protocol is executed. We should point out
that it is not necessary for follower agents to be the same
group that a leader agent belongs to. Then, we define n-
structurally balanced for signed graphs assuming that it
contains a directed spanning tree, namely, at least one
leader that can affect all of the other agents. Necessary
and sufficient conditions are established to guarantee the
agents’ state reaching the group consensus. This result is a
generalization of the existing studies in Altafini (2013) and
Hanada et al. (2019). The results are illustrated through
numerical examples.

2. PROBLEM STATEMENTS

Let us consider N agents having the same dynamics

xi[k + 1] = xi[k] + ui[k], (1)
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where xi[k] ∈ R is the state of agent i, ui[k] ∈ R is the
input of agent i, and k ∈ N is the discrete time. We
introduce the following agent interaction

ui[k] = r

N∑
j=1

aij (wijxj [k]− xi[k]) , (2)

where r ∈ R is a communication gain to be determined
later, aij ∈ R is a non-negative weight between agent i and
j, and wij ∈ R is a non-zero scaling factor between agent
i and j if (i, j) ∈ E otherwise wij takes an arbitrary value.
The parameter aij is strictly positive if (j, i) ∈ E , it is equal
to zero if (j, i) /∈ E . Furthermore, we suppose that aij = aji
if both aij and aji are strictly positive. We assume that the
scaling factors wi1, wi2, . . . , wiN are known to only agent
i for all i ∈ V, where V = {1, 2, . . . , N} is a set of agents.

Let G(A) = (V, E , A) be a weighted, signed, and directed
graph (sigraph for short), where E ⊆ V × V is a set of
directed edges, and A = [aijwij ] ∈ RN×N is an adjacency
matrix corresponding to the edges. In this paper, we
represent the adjacency matrix A as a compact form

A = A0 ◦W, (3)

where A0 = [aij ] ∈ RN×N and W = [wij ] ∈ RN×N

are matrices respectively and ◦ is the Hadamard product
which is elementwise multiplication of matrices. Note that
only the matrix A0 represents connectivity of the agents.

In this paper, we consider the following assumptions.

Assumption 1. All of the following conditions hold.

(1) The sigraph G(A) contains a directed spanning tree.
(2) We allow self-loop edges. That is, an edge (i, i) ∈ E

may exists for some i ∈ V.
(3) We allow bidirected edges. That is, the weight aijwij

corresponding to the edge (j, i) need not be the same
of ajiwji corresponding to the edge (i, j) if there exist
both (i, j) and (j, i).

Remark 1. Assumption 1-(1) ensures that the sigraph
G(A) is weakly connected. From the fact that aij = aji
if both aij and aji are positive, we reword the assumption
1-(3) as follows: the scaling factor wij need not be the same
of wji if there exist both (i, j) and (j, i).

In this paper, we consider several types of consensus. First,
we introduce scaled one.

Definition 1. The system (1) with agent interactions (2)
is said to achieve a scaled consensus if for any initial state
x[1] ∈ RN ,

lim
k→∞

|xi[k]− wijxj [k]| = 0

hold for any i and j ∈ V such that i 6= j.

We also define a trivial consensus as follows.

Definition 2. The system (1) with agent interactions (2)
is said to achieve a trivial consensus if for any initial state
x[1] ∈ RN ,

lim
k→∞

xi[k] = 0

hold for any i ∈ V.

Remark 2. Although the scaled consensus is defined by

lim
k→∞

|cixi[k]− cjxj [k]| = 0,

hold for any i and j ∈ V such that i 6= j, where ci, cj ∈ R
are non-zero scalar in several existing studies (Roy, 2015;

Hou et al., 2016; Yu and Shi, 2018), it is identical to our
definition since we can regard wij as cj/ci.

Remark 3. The trivial consensus is obviously a special
case of the scaled consensuses defined by Definition 1. If
the system achieves the trivial consensus, the agents form
exactly one group.

Next, we consider a partition of the agents. We denote
L = {1, 2, . . . , n} as a set of indices and V` ⊂ V (` ∈ L)
as a certain subset (group) of the agents, where n ∈ N
is the number of groups. Note that we assume that no
agent knows which group she belongs to. We now state
the following consensus problem:

Definition 3. For a given n, the system (1) with agent
interactions (2) is said to achieve an n-group consensus
if for any initial state x[1] ∈ RN , there exist a partition
{V1,V2, . . . ,Vn} of a set V and αi, i = 1, 2, . . . , n such that

lim
k→∞

|xi[k]− α`| = 0, ∀i ∈ V`, ∀` ∈ L,

V` 6= ∅, ` ∈ L,⋃
`∈L

V` = V, V`1 ∩ V`2 = ∅, `1 6= `2, ∀`1, `2 ∈ L,

α`1 6= α`2 , `1 6= `2,∀`1, `2 ∈ L,
hold, where α` ∈ R is a common consensus value for group
` ∈ L.

Remark 4. Definition 3 ensures that each agent can only
belong to exactly one group. Suppose that agents can
belong to two groups at the same time. Then, xi[k] =
α`1 = α`2 holds and thus it contradicts Definition 3. That
is, the sets V`, ` ∈ L should be the partition of V.

In order to represent (1) and (2) as a compact form, we
now define the matrix L as

L = D −A,
where D = [dij ] ∈ RN×N is a diagonal matrix such that

dij =
∑N

j=1,j 6=i aij if i = j otherwise 0. We also define the

diagonal matrix Γ whose diagonal element γii = aii(1 −
wii). By using the matrices L and Γ, the system (1) and
agent interactions (2) can be rewritten as

x[k + 1] = x[k] + u[k], (4)

u[k] = −rΓx[k]− rLx[k], (5)

where

x[k] = [x1[k] x2[k] · · · xN [k]]
> ∈ RN ,

u[k] = [u1[k] u2[k] · · · uN [k]]
> ∈ RN .

Substituting (5) into (4), we have

x[k + 1] = (IN − r (Γ + L))x[k]. (6)

The definition of n-group consensus can also be rewritten
as follows.

Definition 4. The system (6) is said to achieve a n-group
consensus if for any initial state x[1] ∈ RN , there exists
a vector α = [α′1 α′2 · · · α′N ]> ∈ RN and the set
α = {α1, α2, . . . , αn} such that the vector α′ consists of
n distinct values, α′i ∈ α, i = 1, 2, . . . , N , and

lim
k→∞

‖x[k]− α′‖ = 0

holds, where ‖ · ‖ is the Euclidean norm.

Remark 5. The definition of the matrix L is different from
the graph Laplacian. In fact, the graph Laplacian L0 is
defined as D −A0.
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The aim of this paper is to establish the conditions of
scaled, n-group, or trivial consensus for the multi-agent
system (6) over weakly connected sigraphs even if no agent
knows which group she belongs to.

3. CONVERGENCE ANALYSIS OF SCALED AND
GROUP CONSENSUS

3.1 Generalization of Structurally Balanced Graphs

In order to investigate the condition of n-group consensus,
we introduce the definition of n-structurally balanced
graphs for sigraphs. First of all, we recall definitions and
notations of paths and cycles in a graph. A directed path
Pij from agent i to j is a concatenation of directed edges
of E as

Pij = {(i, i1), (i1, i2), . . . , (ip−1, ip), (ip, j)} ⊆ E
in which all edges (i, i1), (i1, i2), . . . , (ip−1, ip), (ip, j) are
distinct. We denote C(A, i, j) is a set of all possible paths
from agent i to j in the sigraph G(A). A cycle Pii ∈
C(A, i, i) is a path such that agent i is a beginning and
ending one in the sigraph G(A).

Next, we consider a maximal subgraph G(Am) = (S, Em,
Am) of G(A) such that a root node of the directed spanning
tree is in S and G(Am) is strongly connected, where S ⊆ V
and Em ⊆ E . The term maximal means that it is largest
possible subgraph of G(A). Note that if there is no strongly
connected component in G(A), the root node is the only
element of S and Em = ∅.
Let βij ∈ R be a non-zero value corresponding to agents
i and j. Here we define a generalized n-structural balance
for the sigraph G(A).

Definition 5. For given matrices A0 and W , a sigraph
G(A) is said to be n-structurally balanced, where A = A0 ◦
W , if there exist scalars βij , i ∈ S, j ∈ V and a partition
{V1, V2, . . ., Vn} of a set V such that all of the following
conditions hold:

(1) V` 6= ∅, ∀` ∈ L.
(2)

⋃
`∈L V` = V.

(3) V`1 ∩ V`2 = ∅ (`1 6= `2), ∀`1, `2 ∈ L.
(4) βij = 1, ∀i, j ∈ V` (i 6= j), ∀` ∈ L.
(5) βij = βik, ∀i ∈ S, ∀j, k ∈ V` (i 6= j), ∀` ∈ L.
(6) βij 6= βik, ∀i ∈ S, ∀j ∈ V`1 , ∀k ∈ V`2 (`1 6= `2)
∀`1, `2 ∈ L.

(7) βij =
∏

(v2,v1)∈Pij
wv1v2 , ∀Pij ∈ C(A, i, j), ∀i ∈ S,

∀j ∈ V.

It is said to be structurally unbalanced if there does not
exist n such that it is n-structurally balanced.

Remark 6. The conditions (1), (2), and (3) are exactly the
same of the definition of the set partition. The condition
(4) says that the scalar βij is a unit if agents i and j belong
to the same group. The condition (5) claims that the scalar
βij must be the same of βik if j and k belong to the same
group, where departure agent i is in the strongly connected
component S. On the other hand, the condition (6) claims
that βij is different from βik if agent j belongs to another
group which agent k belong to, where departure agent i is
in S. The condition (7) defines a scalar βij as the product
of scaling factors wij along paths from agent i to j. Note
that βij must be the same value for any paths Pij .

The following lemma is the existing result (Hanada et al.,
2019) for the strongly connected sigraph, that is, the
maximal subgraph G(Am) is identical to the original
sigraph itself.

Lemma 1. (Hanada et al. (2019)). Suppose that a matrix
A0 and scaling factors wij such that (j, i) ∈ E are
given, the maximal subgraph G(Am) is identical to G(A),
and G(A) is n-structurally balanced. Then, the following
conditions are equivalent.

(1) The sigraph G(A) is n-structurally balanced.
(2) There exist scaling factors wij for (j, i) 6∈ E such

that the bidirected complete sigraph G(W ) is n-
structurally balanced.

(3) There exist scaling factors wij for (j, i) 6∈ E such that
W satisfies∏
(v2,v1)∈Pii

wv1v2 = 1, ∀Pii ∈ C(W, i, i), ∀i ∈ V, (7)

where the matrix W has exactly n−1 kinds of weights
for any rows except zero and one.

(4) There exists a diagonal matrix C ∈ RN×N which
consists of exactly n distinct non-zero values such that
CAC−1 = A0 holds.

We now discuss a uniqueness of the partition.

Lemma 2. For any given i ∈ S and N − 1 scalars βi1, βi2,
. . ., βi(i−1), βi(i+1), . . ., βiN , the partition of V is unique if
there exist subsets V1, V2, . . . , Vn such that all of βij and
V` satisfy the condition from (1) to (6) in Definition 5.

Proof. Suppose that there exist subsets V`, ` ∈ L, such
that all of βij and V` satisfy the condition from (1) to
(6) in Definition 5. Let us consider that agent j ∈ V \ {i}
belongs to V`1 (`1 ∈ L). Similarly, agent k ∈ V \ {i, j}
belongs to V`2 such that `1 6= `2 (`2 ∈ L).

First, we assume that V`2 \ {k} = ∅ holds. Then, we
immediately see that it violates the condition (1). Thus,
the number n of groups never decreases.

Next, we assume that V`2 \ {k} 6= ∅ and V`1 ∪ {k} hold.
Note that this assumption does not violate the conditions
(1) through (3). According to the condition (4), βij =
βik = 1 must be satisfied for any i ∈ S, which leads the
contradiction against the fact that βij 6= βik. It ensures
that agent k cannot move to another group for any k.

Lastly, we assume that V`2 \ {k} 6= ∅ holds and agent k
forms an independent group Vn+1 = {k}. Regarding L as
{1, 2, . . . , n, n+ 1}, we see that the conditions (1) through
(3) are satisfied. Since V`2 is nonempty, there exists an
agent h ∈ V`2 . According to the definition, βih 6= βik must
be satisfied for any i ∈ S, which leads the contradiction
against the fact that βih = βik. Thus, the number n of
groups never increases.

We therefore see that Lemma 2 is derived. �

Remark 7. The number of scalars βij in Lemma 2 is N−1.
It is identical to the number of edges in a directed spanning
tree.

Lemma 3. For any given matrices A0 and W , a partition
of V satisyfing Definition 5 is unique if G(A = A0 ◦W ) is
n-structurally balanced.
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Proof. If G(A) is n-structurally balanced, the scalars βij
are well defined by the condition (7). Furthermore, there
exist subsets V` such that the conditions from (1) to (3)
and all scalars βij saisfy the conditions from (4) to (6).
Hence, the statement is true from Lemma 2. �

Next, we discuss the property of subgraphs whose parent
graph is n-structurally balanced. Let us define a subgraph
G(A′) = (V, E ′, A′) of G(A) such that G(A′) and G(A)
have a common directed spanning tree, where E ′ ⊂ E ,
A′ = A′0 ◦W ′ = [a′ijw

′
ij ], a

′
ij is a positive arbitrary value

if (j, i) ∈ E ′ otherwise 0, w′ij = wij if (j, i) ∈ E ′ otherwise
a non-zero arbitrary value. Conversely, we call the sigraph
G(A) parent of G(A′) if E ⊃ E ′ holds and wij = w′ij
when (j, i) ∈ E ′. Note that aij in the parent sigraph G(A)
need not to be the same of a′ij . We further introduce the
maximal subgraph G(A′m) = (S ′, E ′m, A′m) of G(A′). Note
that no agent is removed from the original sigraph G(A)
and S ′ ⊆ S holds. Then, the following lemmas are derived.

Lemma 4. For any given A0 and W , the subgraph G(A′ =
A′0 ◦W ) of G(A) is n-structurally balanced if G(A) is n-
structurally balanced.

Proof. Suppose that G(A) is n-structurally balanced for
given A0 and W . Then, subsets V`, ` ∈ L, are all unique
from Lemma 2. Let us define β′ij =

∏
(v2,v1)∈Pij

wv1v2

for all i ∈ S ′ and j ∈ V \ {i}. From the fact that
C(A′0, i, j) ⊂ C(A0, i, j) = C(A, i, j), β′ij = βij holds for
any i ∈ S ′ and j ∈ V. That is, β′ij are all well defined if
(i, j) ∈ E ′. Selecting exactly the same set V`, ` ∈ L for n-
structurally balanced graph G(A), we see that Lemma 2 is
always true for any i ∈ S ′ ⊆ S andN−1 scalars β′ij(= βij),
j ∈ V\{i}. Since there exist scalars β′ij , sets V` (` ∈ L), and
a matrix W such that (3) holds and they satisfy all of the
conditions in Definition 5, we conclude that the subgraph
G(A′ = A′0 ◦W ) is n-structurally balanced. �

Lemma 5. For any given A′0 and W ′, there exists a matrix
W such that the parent sigraph G(A = A0 ◦ W ) of
G(A′ = A′0 ◦W ′) is n-structurally balanced if the sigraph
G(A′) is n-structurally balanced.

Proof. Suppose that the sigraph G(A′) is n-structurally
balanced for given A′0 and W ′. Let us define the matrix
W = [wij ] such that wij = w′ij if (j, i) ∈ E ′, wij = βji
if (j, i) /∈ E ′ and there exists a path from agent j to i
in G(A′), otherwise arbitrarily non-zero value. That is, if
there is no path from agent j to i, we can design the scaling
factor wij .

Let us consider the case that we add new edge (j, k) /∈ E ′
to G(A). Since there is at least one path from agent i ∈ S
to j, βij is already well defined. Similarly, βik is already
well defined. Then, we design wki = βik/βij . Applying the
same discussion of Theorem 1 (1 → 2) in (Hanada et al.,
2019), we see that the statement is derived. �

Remark 8. Lemma 4 claims that we can immediately
obtain n-structurally balanced subgraph if a given sigraph
G(A0 ◦W ) is n-structurally balanced. On the other hand,
Lemma 5 insists only the existence of the matrix W such
that a parent graph become n-structurally balanced if
a given subgraph G(A′0 ◦W ′) is n-structurally balanced.
Hence, it is NOT necessary and sufficient condition.

Lemma 6. For given matrices A0 and W , n-structurally
balancedness of the sigraph G(A) is supposed. Then, γii =
0 for all i ∈ V.

Proof. Applying the same discussion in the proof of
Theorem 1 (2 → 3) in (Hanada et al., 2019), wii = 1
must be satisfied if there exists a self-loop edge (i, i). On
the other hand, aii = 0 if there is no self-loop edge (i, i).
Thus, γii = aii(1− wii) = 0 holds for any i.

The following theorem is one of the main results of this
paper.

Theorem 1. Suppose that sigraph G(A) is a weakly con-
nected and has no self-loop edge and bidrected edge for
given matricx A0 and scaling factors wij such that (j, i) ∈
E . Then, the following conditions are equivalent:

(1) The sigraph G(A) is n-structurally balanced.
(2) There exists a unique scaling factors wij for (j, i) 6∈
E such that the sigraph G((A0 + A>0 ) ◦ W ) is n-
structurally balanced.

(3) There exists a diagonal matrix C ∈ RN×N which
consists of exactly n distinct non-zero values such that
CAC−1 = A0 holds.

Proof. (1 → 2) Suppose that the given sigraph G(A)
is n-structurally balanced. By applying Lemma 1, we
immediately obtain the statement since G((A0 +A>0 )◦W )
is identical to undirected, that is, strongly connected.

(2 → 3) Suppose that there exists a unique matrix W
such that the sigraph G((A0 + A>0 ) ◦W ) is n-structurally
balanced. Since the sigraph G((A0 +A>0 ) ◦W ) is strongly
connected and n-structurally balanced, there exists a ma-
trix C such that C((A0 +A>0 ) ◦W )C−1 = A0 +A>0 holds
from Lemma 1. Then, the (i, j)-th element of C((A0 +
A>0 ) ◦W )C−1 can be described as

aijwijci/cj + ajiwijci/cj = aij + aji.

Since there is no bidirected edge in A, either aij = 0 or
aji = 0 must be satisfied. If aij = 0, ajiwijci/cj = aji
holds for any i and j (i 6= j). On the other hand, if aji = 0,
aijwijci/cj = aij holds for any i and j (i 6= j). Thus, we
see that CAC−1 = A0 holds.

(3 → 1) Suppose that there exists a diagonal matrix
C ∈ RN×N which consists of exactly n distinct non-zero
values such that CAC−1 = A0 holds. Applying the same
discussion of Theorem 1 (4 → 1) in Hanada et al. (2019),
we see that the statement is derived. �
Remark 9. We should note that Lemma 1 which is the
existing result can be applicable to only strongly connected
graphs, while Theorem 1 can be applied to any weakly
connected sigraphs including strongly connected ones.

3.2 Example of 4-structurally balanced graph

Let us consider the sigraph G(A1) = (V1, E1, A1), where V1

= {1, 2, 3, 4, 5, 6}, E1 = {(1, 2), (2, 3), (2, 4), (2, 6), (3, 1),
(4, 6), (6, 5)}, and

A1 =


0 0 2 0 0 0
−4 0 0 0 0 0

0 −1 0 0 0 0
0 9/2 0 0 0 0
0 0 0 0 −3/4 3/2
0 −1/2 1/4 −1/3 0 0

 .
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Fig. 1. Topology of example 1: indicated numbers are w1
ij

(not a1ijw
1
ij).

Fig. 1 depicts a topology of G(A1). The maximal subgraph
G(A1

m) of G(A1) can be expressed as (S1, E1m, A1
m), where

S1 = {1, 2, 3}, E1m = {(1, 2), (2, 3), (3, 1)}, and A1
m = [[0 −

4 0]> [0 0 − 1]> [2 0 0]>].

In this case, we consider 4-structurally balanced. Let us
choose A1

0 = [a1ij ] and W 1 = [w1
ij ] such that (3) holds like

a113 = 4, a121 = 2, a132 = 1, a142 = 3,

a156 = 3/4, a162 = 1, a163 = 1/2, a164 = 4,

a1ij = 0 for all (i, j) /∈ E1,

w1
13 = 1/2, w1

21 = −2, w1
32 = −1, w1

42 = 3/2,

w1
56 = 2, w1

62 = −1/2, w1
63 = 1/2, w1

64 = −1/3,

and w1
ij is an arbitrary non-zero value for all (i, j) /∈ E1.

Note that indicated numbers in the left hand side of Fig. 1
are w1

ij corresponding to edge (j, i) ∈ E1. When we select

i = 1 ∈ S1 for this example, we have β12, β13, . . . β16 as

β12 = w21 = −2,

β13 = w21w32 = 2,

β14 = w21w42 = −3,

β15 = w1
21w

1
32w

1
63w

1
56 = w1

21w
1
42w

1
64w

1
56 = w1

21w
1
62w

1
56 = 2,

β16 = w21w42w64 = w21w62 = 1.

These are consistent and satisfy the condition (7). Sim-
ilarly, when we select i = 2 ∈ S1 and i = 3 ∈ S1, we
have consistent values of β21, β23, . . . , β26, β31, β32, β34,
. . . , β36 satisfying the condition (7). Next, let us choose
subsets V1

1 = {1, 6}, V1
2 = {2}, V1

3 = {3, 5}, and V1
4 = {4}.

Then, we see that scalars βij , i, j ∈ V1, and these subsets
satisfy all of the conditions in Definition 5. Hence, this
example is actually 4-structurally balanced.

In the last part of this section, we check the statement of
Theorem 1. Let us define a matrix C1 as

C1 = diag([1 − 1/2 1/2 − 1/3 1/2 1]
>

),

where diag(a) denotes the diagonal matrix whose diagonal
elements correspond to the column vector a. Then, we
see that the C1A1C−1 = A1

0 holds, that is, Theorem 1
is consistent in this example.

3.3 Convergence Analysis of Consensuses

The following lemma is important to analyze the conver-
gence property of the multi-agent system (6).

Lemma 7. Suppose that the sigraph G(A) is n-structurally
balanced. Then, the matrix L and the graph Laplacian L0

are similar.

Proof. Employing a transformation to the matrix L by a
diagonal matrix C such that CAC−1 = A0, we have

CLC−1 = CDC−1 − CAC−1 = D −A0 = L0.

Thus we obtain Lemma 7. �

Remark 10. Lemma 7 claims that the matrix L has the
same eigenvalues of the graph Laplacian L0. Since we
assume that the sigraph G(A) has a directed spanning tree,
the matrix L has eigenvalues λi ∈ C such that λ1 = 0,
λi 6= 0, i = 2, 3, . . . , N .

We now employ a state coordinate transformation

ξ[k] = Cx[k], x[k] = C−1ξ[k].

Applying the transformation to (6), we have

ξ[k + 1] =
(
IN − rCΓC−1 − rCLC−1

)
ξ[k]. (8)

We introduce the weighted average x̄[k] of the states at
time k and the deviation x̃[k] from the average

x̄[k] = f>Cx[k] = ξ2[k],

x̃[k] = x[k]− 1N x̄[k]

= C
(
IN − C−11Nf

>C
)
x[k] = Cξ1[k].

Selecting the communication gain 0 < r ≤ 1/σ̄, where
σ̄ ∈ R is the largest singular value of the graph Laplacian
L0, we achieve the second main result of this paper.

Theorem 2. Suppose that matrices A0 and W are given
and the sigraph G(A) is n-structurally balanced. Let us
choose the communication gain r such that 0 < r ≤ 1/σ̄
for any k. Then, the following statements hold.

(1) For any initial state x[1], the system (6) achieves the
scaled consensus. Then, the state x[k] satisfies

lim
k→∞

x[k] = C−11Nf
>Cx[1]. (9)

(2) The system (6) achieves a n-group consensus if x[1] ∈
X = {x[1]|f>Cx[1] 6= 0}. Then, the state x[k]
satisfies (9).

(3) The system (6) achieves a trivial consensus if x[1] /∈ X
holds.

Proof. Suppose that G(A) is n-structurally balanced.
Then, we have Γ = 0 from Lemma 6. As a result, the
system (8) is a classical graph Laplacian based distributed
protocol. Thus, following Fagnani and Frasca (2018), the
vector ξ[k] satisfies

lim
k→∞

‖ξ̃[k]‖ = 0, lim
k→∞

ξ[k] = 1Nf
>ξ[1].

The norm of the deviation x̃[k] satisfies

‖x̃[k]‖ = ‖C−1ξ̃[k]‖ ≤ ‖C−1‖‖ξ̃[k]‖.
We therefore see that

lim
k→∞

‖x̃[k]‖ = 0, lim
k→∞

x[k] = C−11Nf
>Cx[1]

hold. Hence, we see that the system (6) achieves the scaled
consensus.

If f>Cx[1] = 0 holds, we have

lim
k→∞

x[k] = C−11Nf
>Cx[1] = 0.

As a result, the system (6) achieves the trivial consensus.
Thus, we see that the system (6) achieves the n-group
consensus if f>Cx[1] 6= 0 is satisfied. �
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Fig. 2. The state trajectories of scaled and 4-group con-
sensus
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Fig. 3. The deviation of scaled and 4-group consensus
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Fig. 4. The state trajectories of scaled and trivial consensus

4. NUMERICAL EXAMPLES

Now, we demonstrate the 4-group consensus with the
example in Section 3.2 with r = 1/σ̄ = 0.1688.

4.1 Scaled and 4-group Consensus over 4-structurally
Balanced Graph

The initial states were set as

x1[1] = −4, x2[1] = −2, x3[1] = 3,

x4[1] = 7, x5[1] = −6, x6[1] = 5.

Desired consensus points are

lim
k→∞

x1[k] = 0.5714, lim
k→∞

x2[k] = −1.1429,

lim
k→∞

x3[k] = 1.1429, lim
k→∞

x4[k] = −1.7143,

lim
k→∞

x5[k] = 1.1429, lim
k→∞

x5[k] = 0.5714.

Figs. 2 and 3 depict the state trajectory of x[k] and the
deviation x̃[k], respectively. We see that the proposed
algorithm achieved the scaled and 4-group consensus.

4.2 Trivial Consensus over 4-structurally Balanced Graph

The initial states were set as

x1[1] = 1, x2[1] = 3, x3[1] = 1,

x4[1] = 3, x5[1] = −2, x6[1] = 1.

Desired consensus points are

lim
k→∞

xi[k] = 0, ∀i ∈ V1.

Fig. 4 depicts the state trajectory of x[k]. We see that
the proposed algorithm achieved the trivial consensus even
when the sigraph is 4-structurally balanced.

5. CONCLUDING REMARKS

We have considered a group consensus over weighted,
signed, directed, and weakly connected graphs. We have
proposed a definition of n-structurally balanced for signed
graphs assuming that a directed spanning tree is con-
tained. Then, necessary and sufficient conditions has been
established to guarantee the agents’ state reaching the
group consensus.
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