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Abstract: This paper investigates the effect of sensor placement on the observability and
LQG control of a thermoacoustic model. This model describes combustion instability in a
one-dimensional combustor, called a Rijke tube. The transfer function describing this model
is transcendental because of the time delay terms in the heat release dynamics. We apply
Padé approximation to achieve a finite-dimensional transfer function and truncate the system
by neglecting states with low Hankel singular values. We then analyze the impact of the
placement and number of sensors on the observability of each mode of the resulting reduced-
order model. Next, we design an LQG controller for suppressing pressure oscillations in the
simplified thermoacoustic system. We find that placing sensors near the model’s pressure nodes
slows down the rate at which LQG control attenuates pressure oscillations, increases the control
effort required for this attenuation, and worsens the controller’s robustness.

Keywords: Thermoacoustic system, Padé approximation, Hankel singular value,
Linear-Quadratic-Gaussian, sensor placement, µ analysis.

1. INTRODUCTION

This paper examines the impact of sensor placement in
a one-dimensional combustor on the problem of observ-
ing and controlling thermoacoustic instability within the
combustor. Combustion instability is a problematic phe-
nomenon occurring in lean premixed combustion systems.
It usually manifests itself in the form of large-amplitude
pressure oscillations. These oscillations can lead to flame
extinguish and, in extreme cases, system hardware vibra-
tions [Lieuwen and Yang (2005)]. The cause of combustion
instability is a positive feedback coupling between the
combustor acoustics and heat release rate oscillations from
flame [Lieuwen et al. (1999)].

Combustion instabilities can be attenuated by passive
[Richards et al. (2003)], phase-shift [Langhorne et al.
(1990)], or model-based active controls. In these controls,
sensors such as pressure transducers [Lang et al. (1987)]
and photo-detectors [Hermann et al. (1999)] can iden-
tify the instability. The actuators are usually speakers
providing acoustic forcing [Dines (1984), Heckl (1988),
Lang et al. (1987), Poinsot et al. (1989)], variations in
the acoustic boundary conditions [Bloxsidge et al. (1988),
Bothien et al. (2008)], or additional fuel injections [Her-
mann et al. (1999), Barooah et al. (2003)] to break the
coupling between combustor acoustics and flame heat re-
lease dynamics.

Sensor configuration is one important factor that affects
the performance of combustion stability controls. The
literature presents a number of studies examining the
effect of sensor placement on combustion stability con-
trol. Control techniques examined in this literature in-
clude phase shift control [Lang et al. (1987)], state feed-
back control, pole placement [Yang et al. (1992)], acous-
tic boundary condition control [Bothien et al. (2008),
Zhao and Li (2012)], and LQG control [Annaswamy and
Ghoniem (1995),Hathout et al. (1998), Annaswamy et al.
(2000)]. The metrics used for evaluating these controllers’
performance usually include control effort [Annaswamy
and Ghoniem (1995), Hathout et al. (1998), Annaswamy
et al. (2000)], objective cost function values (for both con-
trolled and residual modes) [Yang et al. (1992)], pressure
peak attenuation [Annaswamy et al. (2000)], settling time
[Hathout et al. (1998), Annaswamy et al. (2000)], and
stability domains [Lang et al. (1987), Poinsot et al. (1989)].

One common insight in the literature is that for active
combustion stability control, sensor location should ideally
be near the pressure anti-node of the fundamental acoustic
mode. See, for example, Lang et al. (1987). Smaller control
gains are also achieved if the actuator is closer to the
pressure anti-node as seen in phase-gain plane analysis
[Poinsot et al. (1989)]. Similarly, one study applied LQG
control and achieved system stabilization with a reduction
of control effort by 30% when the sensor was moved to
a better location [Annaswamy and Ghoniem (1995)]. In
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addition to a lower control effort, some studies also found
that collocated sensor-actuator pairs achieve a shorter set-
tling time compared to the non-collocated case [Hathout
et al. (1998), Annaswamy et al. (2000)]. Yang et al. [Yang
et al. (1992)] found that the optimal sensor location is
exactly the same as the optimal actuator location, which
is between the first nodal points of the lowest and high-
est residual modes. There is one successful application
of active instability control at an industrial scale, which
occurred in a Model V84.3A gas turbine [Seume et al.
(1997)], where a direct-drive valve responsible for a pi-
lot flame was controlled to suppress the single frequency
oscillation. The pressure oscillation amplitude decreases
by 86% with optimal sensor placement and the smallest
number of sensors along the circumferential coordinate.

Stability robustness of a controller is another important as-
sessment criterion in addition to performance. Annaswamy
et al. [Annaswamy et al. (2000)] applied both LQG-LTR
and H∞ to control the combustion instability in a lean-
premixed combustion rig with a range of equivalence ratios
and flow rates. They found that though H∞ is more
sluggish with a longer settling time in suppressing the
instability than LQG-LTR, it has a better robustness. A
similar conclusion is found by Lang et al. [Lang et al.
(1987)] that a smaller gain for the phase-shift controller
is required when sensor is closer to the pressure anti-
node, but this control suffers from uncertainty in the phase
information.

Based on the literature, we recognize that sensor place-
ment plays a significant role in determining both the
performance and robustness of a controller designed to
suppress combustion instabilities. The optimal sensor lo-
cation seems to be at the anti-node of the dominant acous-
tic mode(s). The performance and robustness of different
controllers have also been compared in the literature.

The overarching goal of this paper is to provide further
examination of the impact of sensor placement on: (i) the
observability of the different modes of a one-dimensional
combustor; (ii) the performance of an LQG controller
designed to suppress thermoacoustic instability in this
combustor; and (iii) the robustness of this LQG controller.
We perform this analysis based on an experimentally-
identified model of the combustor’s thermoacoustic dy-
namics. Moreover, in performing the robustness portion
of this analysis, we explicitly account for the uncertain-
ties in the experimentally-identified values of this model’s
parameters.

The structure of the paper is as follows. Section 2 describes
the thermoacoustic model for the one-dimensional combus-
tor and the experimental system identification results. Sec-
tion 3 describes a linear finite dimensional thermoacoustic
model by a multi-point Padé approximation. In the same
section, we analyze the effects of sensor placement and
number of sensors on the Hankel singular values of the
further reduced-order system. In analyzing the effects of
the number of sensors, we apply a sequential optimization
scheme to find the optimal combination of the multiple
sensors. For the further reduced-order system, we design
an LQG controller in section 4 to suppress the pressure
oscillations. This section further discusses the dependence
of both performance and robustness of the LQG controller
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Fig. 1. Rijke tube cross-section schematic

on the sensor placement and number of sensors with a
similar analysis scheme as that in section 3, followed by
conclusions summarized in section 5.

2. COMBUSTION INSTABILITY MODEL

2.1 Rijke Tube Experiment Setup

In this paper, we develop a thermoacoustic model and
identify the model with a Rijke tube setup shown in
Fig.1. This configuration consists of two tubes. The outer
tube has a length of L = 0.875m and a diameter of
douter = 0.091m. The inner has a diameter of dinner =
0.022m. A methane-air mixture flows through the inner
tube, stabilizing a laminar flame with an equivalence ratio
of 0.8 on the top, with the help of a perforate plate and
ball bearings to provide uniform flows. The flame location
b, defined as the distance between the inner tube top and
the outer tube inlet, can be changed by sliding the inner
tube upward or downward.

Near the outer tube inlet, a speaker is mounted to pro-
vide acoustic forcing either as the system identification or
control input. The tube exit is open to the atmosphere,
as a pressure release boundary. Along the Rijke tube
height, multiple uniformly distributed discrete locations
are available to implement pressure transducers and ther-
mocouples. The bottom measurement location is at 0.041m
and the uniform gap is 0.027m between adjacent locations.

2.2 Thermoacoustic Model

For simplicity, we describe the Rijke tube with a one-
dimensional thermoacoustic model by neglecting radial
and azimuthal variations; we consider independent vari-
ables time t and axial coordinate x. Further, due to the
heat release from combustion, the temperatures in regions
upstream and downstream of the flame are assumed to be
different constants T̄1 and T̄2, respectively. As a result, the
mean density ρ̄ and speed of sound c̄ are at two different
constants in the two regions, too. We also assume the mean
flow to be isentropic, homogeneous, and steady. Addition-
ally, the amplitudes of the oscillating variables including
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pressure p′, velocity u ′, and density ρ′ are assumed to
be small compared with their corresponding mean values
for linearization. The linearized governing equations that
describe the conservation of mass, momentum, and energy
are as follows.

∂ρ′

∂t
+ ρ̄

∂u′

∂x
= 0, ρ̄

∂u′

∂t
= −∂p

′

∂x
(1)

∂p′

∂t
= −ρ̄c̄2 ∂u

′

∂x
+ (γ − 1)q′ (2)

In (2), variable q ′ represents the fluctuation of heat release
rate per unit volume and γ is the specific heat capacity
ratio. We apply a linear time-lag model from Ref. Crocco
and Cheng (1956) to describe the heat release dynamics, as
indicated in the following equation. This model accurately
captures flame response at least in linear dynamics region.

q′(x, t) = Q′(t)δ(x− b), Q′(t) = − βρ̄c̄
2

γ − 1
u′1(t− τ) (3)

The right equation above describes the linear time-lag
response of the heat release oscillation per unit area Q ′

to the incoming flow perturbations u′1. Parameter β is
the amplification factor and τ is the time delay. The
left equation represents the acoustically compact flame at
location b by a Dirac delta function δ(x− b).
We describe the two boundary conditions in Fig. 1 by the
following equation. One represents the acoustic forcing at
the tube inlet and the other represents the pressure release
boundary at the tube outlet.

u′(0, t) = u′0(t), p′(L, t) = 0 (4)

Taking the spatial derivative of the right equation in
(1) and the time derivative of equation (2), rearranging
them considering equation (3) leads to a non-homogeneous
acoustic wave equation describing the pressure oscillations.

∂2p′

∂t2
− ρ̄c̄2 ∂

∂x

(1

ρ̄

∂p′

∂x

)
=
βρ̄c̄2

ρ̄1
δ(x− b)∂p

′
1(t− τ)

∂x
(5)

For the PDE in frequency domain (s) after Laplace trans-
form, we can achieve the analytical solution of the pressure
oscillation P ′(x, s) from a perspective of continuous spatial
domain. From system perspective, the pressure P ′(x, s)
can be regarded as local output of the thermoacoustic
system with the input from the acoustic forcing U ′0(s),
a Laplace domain input corresponding to u′0(t) in time
domain. We then apply a transfer function between nor-
malized input and output to describe the system.

Hn(x, s) ≡P
′
n(x, s)

U ′n(s)

P ′n(x, s) =
P ′(x, s)

patm
, U ′n(s) =

U ′0(s)

ub

(6)

Output and input are normalized with respect to atmo-
spheric pressure patm and bulk flow velocity ub, respec-
tively. Solving the PDE in (5) analytically, we obtain the
system transfer functions for region upstream

Hn(x, s) =
ρ̄1c̄1ub
patm

(ρ̄1c̄1e24)e−
x
c̄1
s − (ρ̄1c̄1e13)e

x
c̄1
s

ρ̄mc̄mem + ρ̄nc̄nen
(7)

and region downstream of the flame

Hn(x, s) =

(
ρ̄2
mc̄

2
m − ρ̄2

nc̄
2
n

)
et5sub

(
e

2L−x
c̄2

s − e
x
c̄2
s
)

2patm(ρ̄mc̄mem + ρ̄nc̄nen)
(8)

In the transfer functions, terms e13, e24, ρ̄mc̄m, ρ̄nc̄n, em,
en and t5 are further explained in the Appendix A.

2.3 Model Identification

The two parameters τ and β governing heat release dy-
namics strongly affect the transfer functions, as seen in the
authors’ previous paper [Chen et al. (2019)]. Specifically,
the transfer function magnitude is especially sensitive to
the parameters near acoustic resonant frequencies. Due
to the strong dependence of transfer function magnitude
on the two parameters, we indirectly identify the two
parameters by measuring the transfer function magnitude
at frequencies that are near the acoustic resonance of the
Rijke tube with setup in Fig. 1.

During parameter identifications, the sensor noise in the
transfer function output measurement propagates to the
parameters in terms of the estimate uncertainties. We
apply Fisher identifiability analysis to optimize the ex-
perimental design that achieves estimate uncertainties as
low as possible to reach the Cramér Rao lower bound
[Sharma and Fathy (2014)]. Flame location significantly
affects the system acoustics by determining the tempera-
ture distribution. To exclude the effects of flame location
when studying the effects of sensor placement, we select
two flame locations to make the analysis more general.
The parameters identification are summarized in table 1.

Table 1. Model identification results for two
cases

Case Design Variables Case 1 Case 2

Flame location b (m) 0.3 0.4
Bulk flow velocity ub (m/s) 2 2

Identification Results

Nominal β̂0 (1) 0.8274 1.337
Nominal τ̂0 (ms) 11.90 11.72
Standard deviation σβ̂ (1) 0.0030 0.0070

Standard deviation στ̂ (ms) 0.0065 0.0043

3. EFFECT OF SENSOR PLACEMENT ON HANKEL
SINGULAR VALUES

3.1 Model Order Reduction

The above system is infinite dimensional due to the time
delay τ in the heat response dynamics. To make it finite
dimensional, we apply multi-point Padé approximation
[Celik et al. (1995)] to focus on the first few finite acoustic
modes. So, we select multiple frequency points near the
system’s first four dominant acoustic modes and ensure
moment matches between original and approximated sys-
tem transfer functions at these frequency points. Similar
with single point Padé approximation, the coefficients
in the numerator and denominator of the approximated
transfer function Hn,pa(x0, sj) are determined by satisfy-
ing moment matching conditions. The number of moments
near each frequency point nk might be different depending
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on the local frequency response characteristics. They are
determined to achieve an overall minimal approximation
error, defined as an optimization problem below in (9).

min
nk,(k=1,...,5)

∆|Hn(x0, s)| =√√√√ 1

Ns

Ns∑
j=1

[|Hn(x0, sj)|−|Hn,pa(x0, sj)|]2

subject to sj = j2πfj , fj = 0, 1, 2, . . . , 800Hz

Ns = dim(fj)

1 ≤ nk ≤ 5,

5∑
k=1

nk = q

(9)

The objective cost function is the mean difference be-
tween the original and approximated transfer function
magnitudes over the frequency range of interest. Variable
N s is the length of the frequency points vector sj . The
constraints specify the range of nk and the total order
of the approximated transfer function q. For multi-output
system, multi-point Padé approximation method works
similarly. In this paper, for case b=0.3m and b=0.4m,
we apply 10 and 14 sensors uniformly distributed in the
region upstream the flame. The orders of the approximated
transfer function with the two flame locations are set to
be q=20 and 24. The optimal objectives in the two cases
are around 0.005, with an approximation accuracy of 95%
knowing that the analytical transfer function magnitude
near dominant acoustic modes is around 0.1.

3.2 Hankel Singular Value Calculation

For the approximated rational transfer function obtained
after Padé approximation, we analyze the mode observ-
ability quantified by the Hankel singular values. In this
paper, we assume that Padé approximation reserves the
observability of the mode in the original PDE-governed
system. We construct a state space model in block diago-
nalizing modal canonical realization form for the rational
transfer function. In this form, we truncate the system
with one mode remained and achieve the Hankel singular
value for the single mode.

The Hankel singular values are the square roots of the
eigenvalues of a matrix which is the product of the ob-
servability and controllability Gramian matrices. Repeat-
ing the truncation and Hankel singular value calculation
multiple times, we can achieve the Hankel singular values
for each mode. Because the system is unstable, we follow
the algorithm developed in [Nagar and Singh (2004)] to
analyze the mode observability in the system by referring
to [Zhou et al. (1999)] instead of using MATLAB toolbox
directly.

3.3 Dependence of Hankel Singular Values on Sensor
Placement

For each sensor placement, we calculate the Hankel sin-
gular values of both stable and unstable dominant modes
with the method in [Zhou et al. (1999)]. The dependence
of the Hankel singular values of the four dominant modes
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Fig. 2. Dependence of Hankel singular values for dominant
modes on sensor placement in case 1, b = 0.3m
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Fig. 3. Dependence of Hankel singular values for dominant
modes on sensor placement in case 2, b = 0.4m

on the sensor placement is illustrated in Fig.2 and Fig.3
for two cases, where we already neglect the other modes
with extremely small Hankel singular values.

For all the dominant modes in both cases, the dependence
of the Hankel singular values on sensor placement behaves
similarly with the corresponding mode shapes. There is
a trade-off among multiple acoustic modes for higher
observability if there is only one sensor available. For
example, single sensor placement at the bottom can ensure
the maximal Hankel singular value for the first and the
second mode, but not for the third and the forth mode.
This is one reason to study effect of multiple sensors
next. Additionally, to ensure good observability especially
for the unstable modes connected by the solid lines, we
need to avoid placing the sensors on the pressure nodes
where the Hankel singular values are close to zero. This
is another reason to study the potential improvement of
mode observability with multiple sensors.

3.4 Dependence of Hankel Singular Values on the Number
of Sensors

To solve the observability trade-off among different modes
and avoid placing sensor near the mode node, we study
the dependence of mode observability on multiple sensor
placements. In Fig. 2 and Fig. 3, we select the summation
of the Hankel singular values of the four dominant modes
as the metric to determine the optimal single sensor
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Fig. 4. Dependence of Hankel singular value summation of
four dominant modes on number of sensors

placement. For case 1, the optimal sensor denoted as #1,
is located at bottom x1. Then the second optimal sensor
location #2 is determined in a sequential scheme. For two-
output systems, the first sensor is placed at x1, the second
#2 is chosen from the remaining available locations that
ensures the largest Hankel singular value summation. With
the second optimal sensor location determined, we can
determine the third sensor in a similar manner. Based on
this sequential optimization scheme, we find the optimal
sensor combinations for any number of sensors.

With the above analysis, we obtain the dependence of the
optimal Hankel singular value summation on the number
of sensors, which is shown in Fig.4 for the two cases. The
labels near the data points denote the sensor locations.
x1 means the bottom sensor and x10 means the sensor
closet to the flame in case 1. The horizontal axis indicates
the order of adding sensors for optimal overall mode
observability. For instance, with three sensors available,
the optimal combination of sensor locations is x1, x2, and
x9. The additional sensors will always increase the mode
observability but with a diminishing trend.

4. EFFECT OF SENSOR PLACEMENT ON AN LQG
CONTROLLER

4.1 Further Model Order Reduction

In this section, based on the state space model in modal
realization form, we further truncate the model by ne-
glecting the modes with extremely small Hankel singular
values. Like the Fig. 2 and 3, only four dominant modes
remain. Since the stable modes hardly modify the stability
of the system, the sum of Hankel singular values from
neglected unstable modes represent the truncation error.
The truncation errors for the two cases are not greater
than 2.5%.

After the further modal truncation, we achieve an eighth-
order system with four acoustic modes. The Bode plots
in Fig. 5 show the comparisons of the transfer function
magnitude between the original (‘Analytical’) and trun-
cated (‘Truncated’) systems observed at the bottom sensor
location. The frequency response of the transfer function
magnitude remains nearly the same at the four dominant
modes and small differences exist at the other frequencies.
The approximated system behaves similarly with the origi-
nal system, at least near the acoustic resonant frequencies.
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Fig. 5. Frequency response comparison between truncated
and original systems at x 0=0.041m

4.2 LQG Controller Design

Based on the truncated systems, we design a Linear-
Quadratic-Gaussian controller to suppress the pressure
oscillation amplitude, included in the objective function
defined in (10). In the cost function J, the weighting
matrix Qxu determines the optimization trade-off between
input u effort minimization and output pressure oscillation
attenuation. The definition of Qxu is in (11). For simplicity,
we assume no correlation exists between x and u. R is
selected to be 1 and C is the output matrix in the state
space form.

In the state space form of the system, we consider the
existence of measurement noise v and process noise w. The
weighting matrix Qwv describes the covariance from the
two noise sources. The intensities of Gaussian white noise
sources w and v are selected to be δ∗ = 5×10-5 for the
normalized output, which is approximately the ratio of the
pressure measurement uncertainty 5Pa to the atmospheric
pressure 1.013×105Pa. The two noise sources are assumed
to be independent with each other. In (12), Nx is the
number of state variables in the state space model.

Based on the two weighting matrices Qxu and Qwv, we
achieve the optimal LQG controller Klqg that minimizes
the cost function J defined in (10).

J =
1

tsim

∫ tsim

0

[
xT , uT

]
Qxu

[
x
u

]
dt (10)

Qxu =

[
CTC 0
0 R

]
(11)

Qwv = [w, v] ·
[
wTvT

]
wT = [δ∗,δ∗, ..., δ∗, δ∗]1×Nx ,v

T = δ∗
(12)

In this system, heat release response described by a linear
time-lag model is proportional to the incoming velocity
perturbation without any saturation limit. As a result, the
open-loop thermoacoustic is linearly unstable, as seen by
the open-loop output response to a unit impulse input in
the left subplot of Fig. 6. The output oscillation amplitude
increases with an exponential rate of 75.4rad/s. With the
an LQG controller applied, the output of the closed-loop
system for the same input now decays at a rate of -
16.4rad/s. The control input effort also decays in a similar
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Fig. 7. Dependence of LQG controller’s performance on
sensor placement

way. We take the closed-loop output decay rate α and
control input effort integration

∫
u2
c dt as the metrics for

the LQG controller’s performance.

4.3 Dependence of LQG Performance on Sensor Placement

In this section, we study the effects of sensor placement
on the LQG controller’s performance. Similar with the
analysis for the case in Fig. 6, we place the single sensor
at other locations and obtain the performance metrics for
the corresponding LQG controller.

The dependence of the LQG controller’s performance on
the sensor placement is summarized in Fig. 7. The control
effort is insensitive to sensor placement for most sensor
locations. Much higher effort is observed at the location
where nearly zero Hankel singular values are achieved. As
shown in Fig.2 and Fig.3, the two locations are the fourth
sensor in case 1 for the fourth mode and tenth sensor in
case 2 for the second mode.

The decay rates are the smallest in magnitude at the above
two extreme locations. It means the even with a higher
control effort, the system is stabilized with a slower speed if
the sensor is placed near some pressure nodes. In addition,
the decay rate has a stronger dependence on the sensor
placement than the control input effort. For example, the
tenth sensor placement in case 1 and the thirteenth sensor
placement in case 2 achieve a much faster decay of the
pressure oscillations compared to the other locations even
with similar control effort.
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4.4 Dependence of LQG Performance on Number of
Sensors

Similar with analysis in section 3.4, we study the effects of
multiple sensors on the LQG control performance. For the
two metrics, we apply sequential optimization separately
to obtain the sensor location combinations for different
number of sensors.

In the circumstance of multiple outputs, the magnitude of
each frequency component behaves differently at different
sensor placements. As a result, the multiple outputs of the
closed-loop system will decay at different rates. Among
the multiple decay rates, we selected the one with the
smallest magnitude as the optimal decay rate because the
slowest decay process dominates the overall response. The
dependence of LQG control performance on the number of
sensors is summarized in Fig. 8.

In Fig. 8, numbers near the data points denote the sensor
labels as that in Fig. 4. We see an increase of decay rates
with the increasing number of sensors. This is because
in a multi-output system, different frequency components
contribute differently in the overall output due to the
spatial pressure distribution variations. If we pick the
slowest output decay rate among the multiple outputs as
the performance evaluation metric, it is not surprising to
see a relatively worse decay rate. There is also an increase
of the control effort with more sensors applied, but with a
much smaller trend.

Combining the analysis of the two performance metrics,
we find that the LQG control with a single sensor already
ensures a fast decay of combustion instability even with a
small control input effort. Additional sensors fail improve
the performance of the designed LQG controller.

4.5 Robustness Metric for LQG Controller

As shown in Table 1, both β and τ have uncertainties
due to the sensor noise in the system identification. We
assume that this is the only model uncertainties source
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and neglect the uncertainties due to the modeling errors
from Padé approximation or further order reductions. We
represent the model uncertainties in the multiplicative
form, as expressed in

∆u =
Gp −G0

G0
, Gp = (1 + ∆u)G0 (13)

where G0 is the nominal transfer function determined by
nominal parameters β0 and τ0, and Gp is the perturbed
transfer function associated with uncertain parameters.
The multiplicative uncertainty ∆u(s) can be replaced by
an upper bound weighting matrix Wu(s), as follows

∆u(s) = Wu(s)∆, ‖∆‖∞ ≤ 1 (14)

We assume that the two parameters vary within a range
of 3σ level. The original transcendental weighting matrix
Wu(s) is approximated with a sixteenth-order frequency
response fitting Wu,fit(s). With a 3σ uncertainty level in
parameters, the highest multiplicative uncertainty magni-
tude is near the fourth mode and the values are approxi-
mately 20% and 10% for case 1 and case 2, respectively.

With the determined uncertainty Wu,fit(s), the perturbed
system can be represented by the multiplicative trans-
fer function Hmult as the following form. With the de-
signed LQG control, the uncertain closed-loop system M
is achieved by the linear fractional transform.

Hmult =

[
0 Wu

G0 G0

]
,M = Fl(Hmult,−Klqg) (15)

The robustness of the controller can be evaluated by
the structured singular value µ∆(M) of the closed-loop
system M, which describes the gain from disturbance to
the error. With this metric, we analyze the dependence
of the LQG controller’s robustness on sensor placement in
the following sections.

4.6 Dependence of LQG Robustness on Sensor Placement
and Number of Sensors

As indicated in Fig. 9, most of the structured singular val-
ues of the system observed at different sensor placements
are around 0.1, much smaller than one. This means the
optimal LQG controller designed for the nominal plant
G0 can stabilize the perturbed systems with 3σ level of
uncertainties in either one of the two parameters. This
might because that the multiplicative uncertainty in the
two examples are no more than 20%, which is small enough
that nearly all the sensor placements achieve stability
robustness. The special case is for the system with flame
location at 0.3m and sensor placed at 0.122m, where the
structured singular value is about 0.4. This sensor location
is near the pressure node of 709Hz.

In situations with multiple sensors, we apply the same
sequential optimization scheme for the optimal robust-
ness - structured singular values. The dependence of the
structured singular value for the system M on the number
of sensors is shown in Fig.10. With multiple sensors, the
robustness of the LQG controller can be improved to some
extent but relation is not monotonous.
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Sensor Location  x

0
 (m)

10-1

100

 (
1)

b=0.3m
b=0.4m

Fig. 9. Dependence of structured singular value on sensor
placement for an LQG controller

0 5 10 15
Sensor number (1)

0.02

0.04

0.06

0.08

 (
1)

1 4 6
7

2 5 103 8

9

146 7
10114 5 9 121

8
3

132

b=0.3m
b=0.4m

Fig. 10. Dependence of structured singular value on num-
ber of sensors for an LQG controller

5. CONCLUSIONS

This paper systematically studies the effect of sensor
placement on the mode observability and performance of
an LQG controller on a one-dimensional thermoacoustic
model.

The method of placing sensor based on a Hankel singular
value achieves similar conclusion with the literature that
we should avoid placing the sensor near the pressure
node positions. Additional sensor will always increase the
Hankel singular values for both cases analyzed in this
paper.

We design an optimal LQG controller to suppress the
combustion instability of the reduced-order model with
minimal output oscillation amplitude and control input
effort. We select the output’s exponential decay rate, con-
trol input effort, and the closed-loop system’s structured
singular value as the evaluate metrics. We analyze the
effects of the sensor placement and the number of sensors
on the above performance and robustness metrics. The
conclusions are summarized as follows:

(1) Output decay rates vary strongly with the sensor
placement while the control effort nearly keeps as
constant.

(2) Similar to the small Hankel singular values observed
at pressure nodes, low decay rates and high control
efforts appear when the sensors are placed near the
pressure nodes.

(3) Similar to both decay rate and control input effort,
structured singular values of the closed-loop system
µ are almost independent with the sensor placement,
except for higher values achieved at some pressure
nodes.

(4) Additional sensors will not significantly change the
control input effort, but slightly worsen the thermoa-
coustic instability damping.
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(5) Additional sensors will improve the robustness of the
LQG controller but the magnitude of improvement
varies between the two different flame locations.
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Appendix A. TERMS IN THE TRANSFER
FUNCTIONS (7) AND (8)

e13 =
ρ̄mc̄me

t1s + ρ̄nc̄ne
t3s

ρ̄1c̄1

e24 =
ρ̄mc̄me

t2s + ρ̄nc̄ne
t4s

ρ̄1c̄1

(A.1)

ρ̄mc̄m = ρ̄1c̄1 + (1− βe−τs)ρ̄2c̄2

ρ̄nc̄n = ρ̄1c̄1 − (1− βe−τs)ρ̄2c̄2

t1 =
b

c̄2
+ τ, t3 =

(2L− b)
c̄2

+ τ

t2 =
2b

c̄1
+ t3, t4 =

2b

c̄1
+ t1, t5 =

b

c̄1
+ τ

(A.2)

em = et1s + et2s, en = et3s + et4s (A.3)
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